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ABSTRACT

Multimedia social network analysis is an emerging research area,
which analyzes the behavior of users who share multimedia con-
tent and investigates the impact of human dynamics on multimedia
systems. Users watching live streaming in the same wireless net-
work share the same backbone connection to the Internet, thus they
might want to cooperate with each other to obtain better video qual-
ity. These users form a wireless live-streaming social network and
every user wishes to watch video with as high as possible quality
while paying as less as cost for cooperation. Thus full coopera-
tion cannot be guaranteed and the cooperation strategy must give
incentives to the users. This paper proposes a game-theoretic frame-
work to model user behavior and designs incentive-based strategies
to stimulate user cooperation in wireless live streaming. We analyze
the Pareto optimality and time-restricted bargaining equilibrium of
the game. We also take into consideration selfish users’ cheating be-
havior and propose cheat-proof strategies. Both our analytical and
simulation results show that the proposed strategies can effectively
stimulate user cooperation, achieve cheat free and help provide reli-
able services.

Index Terms— Multimedia social network, game theory, be-
havior dynamics, wireless live streaming

1. INTRODUCTION
With the explosive advance communication technologies and mul-
timedia signal processing, over millions of users share multimedia
data over Internet. These users interact with each other and form
large-scale multimedia social networks. Peer-to-peer live stream-
ing network [1] is one of the biggest multimedia social networks
on the internet, and recent development on wireless local area net-
work (WLAN) enable users to utilize WLAN with low cost and high
quality of service.Live-streaming users in the same WLAN form a
wireless live-streaming social network, and due to the instability of
wireless channel, the cooperation among users are even more impor-
tant than live-streaming networks in wired network.

Users in the wireless live-streaming social networks may have
different types, including laptops, PDAs, cellphones, and mp3/video
players. Different types of social network members have different
demand of quality and power, for instance, the laptop users would
prefer higher resolution of videos and are willing to use more trans-
mission power for cooperation than PDA users. They are likely
to manipulate any incentive system to maximize their own payoff.
Game theory [2] is a proper tool to model the interaction among
peers, and to analyze the optimal and cheat-proof cooperation strate-
gies. In this paper, we focus on providing incentives for two mem-
bers in the social network to cooperate with each other. In the orig-
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inal system, all the members directly download the video chunks
from the server. However, all the users share the same link through
the access point to the Internet and each user has different play-
back time and ask for different chunks at the same time. Also there
are other users in the wireless network accessing Internet simulta-
neously. Thus the link might be busy and some chunks can not
be received by the end users in time for the playback time. And
many of the users in the wireless networks have high mobility, with
which they would change physical positions from time to time and
the quality of network connections is also unstable. These reasons
would stimulate users in the wireless live-streaming social networks
to cooperate with each other.

In the literature,[3], propose an auction-based mechanism for
wireless peer-to-peer (P2P) file sharing, and [4] studied the capacity
of user-cooperation in wireless network. A game theoretic frame-
work was proposed in [5] for P2P file sharing and [6], [7] model to
provide incentives for cooperation in P2P file sharing. The works
in [8], [9] study the cooperation mechanism for P2P live stream-
ing networks. However, there is no prior work on user cooperation,
cheating behavior of selfish users and do not address the cheat-proof
issues in wireless live-streaming social networks.

In this paper, we will focus on designing cooperation stimula-
tion strategies for wireless live streaming social networks using a
game theoretic framework. We first model the cooperation between
two users as a Bayesian game and investigate the Bayseian-Nash
equilibria. Since this game usually has multiple equilibria, we then
investigate how to apply extra optimality criteria, such as Pareto opti-
mality, bargaining, and cheat-proofing, to further refine the obtained
equilibrium solutions. Such analysis aims to stimulate each pair of
user in the wireless live-streaming game to cooperate with each other
and achieve better performance.

The rest of this paper is organized as follows. Section 2 intro-
duces the wireless live-streaming system model. Section 3 studies
the two-player game and the equilibria. In Section 4 we show simu-
lation results to evaluate the performance of the proposed strategies.
Finally, Section 5 concludes this paper.

2. SYSTEM MODEL
In this section, we first describe the model of wireless live streaming
system and how two users in a wireless live streaming social network
cooperate with each other. We then define the payoff function and
introduce the game-theoretic framework of the user dynamics.

2.1. Wireless Live Streaming Model
Figure 1 shows the architecture of a wireless video live-streaming
social network. The wireless network service is provided by an ac-
cess point which is connected to the Internet. The video bit stream
is divided into media chunks of M ′ bits in the original server, and
are channel-coded to M bits, equivalent to t seconds piece by the ac-
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Fig. 1. Illustration of a wireless live-streaming social network

cess point depending on the communication protocol. All the chunks
are available at an original server in the Internet. Here we assume a
channel with bandwidth B and additive white Gaussian noise with
variance σ2

n that is available for members in the social network to
communicate with each other.

We assume that two users, u1 and u2 in the social network try
to cooperate with each other by exchanging chunks. Each user has
a buffer of length L, which keeps Lf chunks to be played, and L −
Lf chunks that have been played for cooperation. First u1 and u2

exchange the information about the availability of each chunk in the
other’s buffer, and the transmission power P1 and P2 that u1 and
u2 use to transmit the chunks, respectively. To ensure the quality of
cooperation, intuitively the users will not cooperate with people who
use too less power for cooperation. Hence we assume P1 and P2 are
larger than the minimum transmit power Pmin. The chunk exchange
is done on a round by round basis. At the beginning of each round,
each user sends requests to the other users, and at the same time keep
downloading from the original server. Each user are allowed to send
multiple requests in each round and also answer multiple requests.
Let τ be the duration of each round.

2.2. Two-Player Game Model
To simplify the analysis, we start from modeling the cooperation
in each round be a two-person game with single-layer video coding
structure. In this scenario, every chunk has the same value, thus the
users will always request chunks closest to playback time that they
need. Assume in the original structure, every user in the wireless
live-streaming social network only asks the original server in the
Internet for the media chunks, and two of them, u1 and u2, want to
see if they can cooperate with each other for to get a better-quality
video. We model the interactions between u1 and u2 as the following
game:

• Players and player types: There are two players, u1 and u2, in
this game. Each player ui has a type θi ∈ {laptop, PDA, cell-
phone}. Users with different type will have different cost of shar-
ing chunks and gain of obtaining chunks.

• Strategies: In each round, the two players first exchange their
buffer information, and then send the chunk requests to each other.
Upon receiving the chunk requests, each player ui decides how
many chunks he/she will send to the other user in this round. We
define the number of chunks ui agrees to send as his/her strategy
ai ∈ Z. Note that the two users are using the same channel, so
the bits to be transmitted within a round can not be larger than the
channel capacity, which equals to bandwidth times the logarithm

of 1+signal to noise ratio. Therefore, the constraint of strategy
profile (a1, a2) is

a1

log(1 + P1/σ2
n)

+
a2

log(1 + P2/σ2
n)
≤ τB

M
. (1)

If (1) is not satisfied and the collision happens, neither of the user
will receive any chunks successfully.

• Utility function: The utility function πi of ui is considered as the
gain of receiving chunks (with respect to the opponent’s action)
minus the cost of sending chunks (his/her own action). Since the
members in the wireless live-streaming social network are using
mobile devices, the battery energy is the most limited resource.
Hence the cost of cooperation is considered as the energy for trans-
mission where each type of player would give a different weight
to the cost of its energy. For example, clients running on tight
energy budget bear a higher cost than those with powerful batter-
ies. Let ci be the cost per unit energy for ui, and gi be ui’s gain
of completely received one chunk. Then the players’ payoffs for
each round are formulated as follows, provided that the strategy
profile (a1, a2) being taken:

π1(a1, a2) = a2g1 − a1c1
MP1

Blog(1 + P1
σ2

n
)

π2(a1, a2) = a1g2 − a2c2
MP2

Blog(1 + P2
σ2

n
)
. (2)

Let π(a1, a2) = (π1(a1, a2), π2(a1, a2)) be the payoff profile,
MP1/Blog(1 + P1/σ2

n) be K1, and MP2/Blog(1 + P2/σ2
n) be

K2. It is reasonable to assume that gi ≥ ciKi and there exists a
Cmax with ciKi ≤ Cmax. Here ci and gi are the private informa-
tion of the users depends on the user’s type and are not known to oth-
ers. We assume the users do not exchange their private information,
i.e., their types, then this is a game with incomplete information. But
the users have the belief of the probability of the other users’ type,
which is independent of their own type. Let p1, p2, p3 be the proba-
bility of a user being a laptop, PDA, and cellphone, respectively.

3. OPTIMAL STRATEGIES ANALYSIS
3.1. Repeated Game Model
It is easy to check that, if the above game will only be played for one
time, the only Bayesian-Nash equilibrium is (0, 0), which means no
one will answer the other’s requests. According to the backward
induction principle [10], there will also be no cooperation between
the two users when the repeated game will be played for finite times
with game termination time known to both players. Therefore, in
both circumstances,the only optimal strategy for both players is to
always play noncooperatively.

However, in live streaming scenario, these two players will inter-
act many rounds and no one can know exactly when the other player
will quit the game. Thus we can model the dynamics between u1

and u2 as an infinitely repeated game, and we will show that cooper-
ative strategies can be obtained in this realistic model. Let si denote
player i’s behavior strategy, and let s1, s2 denote the strategy pro-
file. Next, we consider the following utility function of the infinitely
repeated game:

Ui(s) = lim
T→∞

T∑

t=0

ui(s) (3)

Now, we analyze Bayesian-Nash equilibriums for the infinitely re-
peated game with utility function Ui. According to Folk theorem
[10], there exists at least one Bayesian-Nash equilibrium to achieve
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Fig. 2. Feasible and Enforceable payoff profiles

every feasible and enforceable payoff profile, where the set of feasi-
ble payoff profiles for the above game is:

V0 = convex hull{v|∃ (a1, a2) with π(a1, a2) = v}
where a1, a2 satisfy (1) (4)

and the set of enforceable payoff, denoted by V1, can be easily de-
rived:

V1 = {v|v ∈ V0 and v ≥ (0, 0)} (5)

Figure 2 illustrates the both feasible region and the enforce-
able region: the feasible region is inside the triangle bounded by
dashed lines, and the enforceable feasible set V1 is the shaded re-
gion shown in Figure 2. It is clear that there exists an infinite num-
ber of Bayesian-Nash equilibriums (BNE). To simplify our equa-
tions, in this paper, we use x = (x1, x2) to denote the set of BNE
strategies corresponding to the enforceable payoff profile (x2g1 −
x1c1K1, x1g2 − x2c2K2).

From the above analysis, one can see that the infinitely repeated
game has infinite number of equilibriums, and apparently, not all of
them are simultaneously acceptable. For example, the payoff profile
(0, 0) is not acceptable from both players’ point of view. Therefore,
in this section, we will discuss how to refine the equilibriums based
on new optimality criteria to eliminate those less rational and which
equilibrium is cheat-proof.

3.2. Nash Equilibrium Refinement
The following optimality criteria will be considered in this section:
Pareto optimality, proportional fairness, and absolute fairness.
Pareto Optimality: A payoff profile v ∈ V0 is Pareto Optimal if
and only if there is no v′ ∈ V0 that v′

i ≥ vi for all i ∈ N [2].
Pareto Optimality means no one can increase his/her payoff without
degrade other’s, which the rational players will always go to.

It’s clear that from Figure 2 that the solid segment between (−C2P2τ ,
g1τP2/K2) and (g2τP1/K1,−C1P1τ) in the first quadrant is the
Pareto Optimal set.
Time-restricted bargaining solution: Since the players’ action
(a1, a2) has to satisfy 1, and both players are rational, which means
they will try to maximize the quality of their live streaming by asking
as many chunks as possible in each round. Every user will request
all the chunks that his/her opponent has and he/she needs. Thus the
users have to bargain for their chunk-request quota for every round
to ensure the total number of bits to be transmitted is not larger than
the channel capacity. Also, the gain of receiving a chunk is time-
sensitive. For instance, if users cannot reach an agreement on time
and the chunk does not arrive before the playback time, then a user
has no gain by receiving that chunk.

We model the time-restricted process for round k as follows:

one user offers an action pair (a
(1)
1 , a

(1)
2 ) first, and the other user can

decide whether to accept this offer or to reject and offer back a action

pair (a
(2)
1 , a

(2)
2 ). This process continues until both players agree on

the offer. If the users reach agreement at the jth action pair, then gi

decreases to δj−1
i (LCk,i)gi for i = 1 or 2, where δi(LCk,i) is the

discount factor for ui, LCk,i = {I1, ..., Iq} denotes the indexes of
chunks ui wants to ask in the kth round, and I(k) denotes the chunk
playing at the beginning of kth round. Suppose the first q′ terms in
LCk,i are smaller than I(k) + τ/t, we define the discount factor as
follows:

δi(LCk,i) = 1−
∑q′

i=1
τ
t
− (Ii − I(k)) + (q − q′) ∗ d

τ
t
( τ

t
+ 1)/2 + (L− Lf ) ∗ d

, (6)

where d¡1 is the discount constant of the chunks that will be played
after the k + 1th round begins.

In the time-restricted bargaining model, the user who makes the
first offer is in advantage. Therefore, a reasonable model for the live-
streaming game is the two users take turns to take the first move.

Since both players’ payoffs decrease as the time for bargaining
increases, the first mover would seek the equilibrium and offer at the
first bargaining round for his/her maximum payoff. Let δ1 and δ2

are the averaged discount factor over for u1 and u2 over all rounds.

The Pareto-optimal equilibrium pair ((x
(1)
1 , x

(1)
2 ), (x

(2)
1 , x

(2)
2 )) for

the infinitely repeated game happens when

x
(2)
2 g1 − x

(2)
1 c1K1 = δ1x

(1)
2 g1 − x

(1)
1 c1K1

x
(1)
1 g2 − x

(1)
2 c2K2 = δ2x

(2)
1 g2 − a

(2)
2 c2K2,

where x1
K1

P1
+ x2

K2

P2
= τ. (7)

Since the two users take turn to make the first offer, the time-restricted
bargaining strategy (x∗

1, x
∗
2) is

x1 =
1 + m

2
× (1− δ1)

P2
K2

g1τ

(m− 1)K1c1 + (m− δ1)
K1P2
K2P1

g1

x2 = P2

τ − x1
K1
P1

K2
, where m =

g2 + c2K2
P2
P1

δ2g2 + c2K2
P2
P1

. (8)

It is clear that the bargaining solution in (8) depends on the
knowledge of both users’ types, i.e., the private information, which is
unavailable. Both players know the discount factors δ1, δ2 since the
discount factors only depend on the chunks to be requested, which
is the information the two users have to exchange. Although at the
beginning, the users do not know each other’s type, they can probe
it during the bargaining process using the following mechanism: Let
T1 be u1’s type, which is only known by u1, let T2 be u2’s type and
T (j) is the jth type. At the first bargaining stage, without loss of
generality, let u1 be the first mover. u1 calculates all the bargaining

equilibriums (a
(1)
1 (T1, T (j)), a

(1)
2 (T1, T (j))) for j = 1, 2, 3 corre-

sponding to the three possible types of u2. Then u1 chooses the the

equilibrium j′ that gives highest pj′π1(a
(1)
1 (T1, T (j′)), a(1)

2 (T1, T (j′))).

u2 will accept the offer if π2(a
(1)
1 (T1, T (j)), a

(1)
2 (T1, T (j))) is larger

than or equal to π2(a
(1)
1 (T1, T2), a

(1)
2 (T1, T2)). If not, u2 will of-

fer back (a
(2)
1 (T1, T2), a

(2)
2 (T1, T2)) and reach the agreement. Thus

after the first bargaining stage in the first chunk-requesting round,
u2 knows u1’s type, and since u2 will make the first move in next
round, after 2 rounds, the both users have the information of each
other’s type.
Cheat On Private Information: Since users know each other’s pri-
vate information (gi, ci) by the offers they made, users can cheat by
making different offer. First, let we exam whether the time-restricted
bargaining solution in (8) is cheat-proof with respect to (gi, ci): π2
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increases when x2 decreases, which can be achieved by increasing
x1 or decreasing P2. ∂x1/∂m is always less than 0, and m is a
monotonely increasing function of g2 and is a monotonely decreas-
ing function of c2. Thus u2 can have higher payoff by making the
bargain offer using lower g2, higher c2, and lower P2. Similarly, u1

can also achieve higher utility by offering the equilibrium based on
lower g1, higher c1, and lower P1.

As the consequence that both players cheat with respect to ci

and gi, from the above analysis, both players will bargain based on
the minimum value of gi and maximum value of ci. Since we have
assumed that gi ≥ ciKi, and Pi ≥ Pmin, both players will make
the offer based on gi = ciKi = Cmax, and Pi = Pmin, thus the
solution (8) becomes:

x∗
1 =

(δ2 + 3)(1− δ1)

2(4− (1 + δ1)(1 + δ2))
× τ

M/B log(1 + Pmin/σ2
n)

,

x∗
2 =

τ

M/B log(1 + Pmin/σ2
n)
− x∗

1, (9)

which implies that both players should always cooperate with each
other. It is clear that solution in (9) forms an Nash Equilibrium, is
Pareto-Optimal, and is cheat-proof with respect to private informa-
tion gi and ci. Note that the user whose discount factor is closer to
1 has advantage, and if δ1 = δ2, then x∗

1 = x∗
2 = half number of

chunks can be transmitted in τ seconds.

Cheat On Buffer Information: The other way of cheating is to
cheat on buffer information, that is, although player i has chunk k in
the buffer, he/she does not report it to its opponent, so that reduce the
number of requests from its opponent. However, hiding the chunk
that the other user needs to prevent he/her from asking will increase
the other user’s discount factor based on (6), thus the cheating user
will be in disadvantage in bargaining. Therefore, the users have no
incentives to cheat on buffer information.

Based on the above analysis, we can conclude that, in the two-
player wireless live-streaming game, in order to maximize each user’s
own payoff and be resistant to possible cheating behavior, for each
player in each round, it should always agree to send the requested
chunks up to the bargained chunk-requesting quota as in (8). We
refer to the above strategy as two-player cheat-proof wireless live
streaming cooperation strategy.

4. SIMULATION RESULTS
In our simulations, we use a Wi-Fi network as an example. The link
from the wireless router to the Internet is a DSL link with 1.5Mbits
download bandwidth. There are total 10 users in the network using
live-streaming service without cooperation, and another 5 users us-
ing Internet resources at the same time. We fix the ration between
laptop, PDA,and cellphone users as 1:2:2. The video is initially
stored at an original server with an upload bandwidth of 3 Mbps,
and there are other 400 users in the Internet watching the same live
stream. The request round is 1 second and the buffer length is 10 sec-
onds. We choose the ”Foreman” video sequence (352x288) resolu-
tion with frame rate 60 frame/sec. We encode the video into a single
layer bitstream with 150 kbps, and divide the video into chunks of
0.1 second, thus the chunk size is M= 15 kbits. Among those 10 live-
streaming users in the Wi-Fi network, we randomly choose two users
to cooperate using the two-player cheat-proof wireless live streaming
cooperation strategy. We run the simulation 40 times with 40 differ-
ent pairs of users. We set gi = 1 = Cmax = 0.8ccellphone ∗ Ki,
ccellphone : cPDA : claptop = 1:0.9:0.4, Pmin = 100mW , noise
power = 20mW , and bandwidth B = 100kHz. Discount measure in
(6) is set to be 0.1.
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Fig. 3. Utilities of cheating player and honesty player versus number
of cheating chunks in buffer

Figure 4 shows the averaged utilities of the player cheating on
buffer information versus number of cheated chunks in the buffer
while the other player is always honest. The utility is averaged over
all the simulation runs and all the rounds. It is clear that the more
chunks the player cheats on, the lower its own payoff, thus the best
policy is being honest, which shows the cheat-proof property of our
proposed cooperation strategy. And also, from the simulation, the
averaged number of chunks per second of peers without cooperation
is 3.7, and that of the two peers with cooperation is 6.2, which is
much higher than peers without cooperation. Thus, cooperation can
help users in wireless live-streaming social networks significantly
improve the quality of their received video sequences.

5. CONCLUSION
In this paper, we investigate cooperation stimulation in wireless live-
streaming social networks under a game theoretic framework. An
illustrating two-player Bayesian game is studied, and different op-
timality criteria, including Pareto-Optimal and time-restricted bar-
gaining solution is performed to refine the obtained equilibriums.
And finally, a cheat-proof cooperation strategy is derived which pro-
vide the users in wireless live streaming social network an secured
inventive to cooperate.
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