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Abstract 
The objective of this study is to develop an efficient 

method to highlight the geometric characteristics of mass 
patterns, and isolate the suspicious regions which in turn 
provide the improved segmentation of suspected masses. 
In this work, a combined method of using morphological 
operations, finite generalized Gaussian mixture modeling, 
and contextual Bayesian relaxation labeling was developed 
to enhance and segment various mammographic contexts 
and textures. This method was applied to segment suspi- 
cious masses on mammographic images. The testing re- 
sults showed that the proposed method can detect all sus- 
pected masses as well as high contrast objects and can be 
used as an effective pre-processing step of mass detection 
in computer-aided diagnosis systems. 

I. INTRODUCTION 
In recent years, some computer-aided diagnosis (CAD) 

schemes for mass detection and classification have been 
developed by several researchers [l], [2], [3], 141, [5], [6]. 
Since masses have different size and shape, some research 
works only focused on the detection of spiculated masses 
[5], [7], and the others were proposed to detect circum- 
scribed masses [l]. In all automatic detection procedures, 
segmentation of suspected masses from breast tissue back- 
ground is of great importance since all subtle masses should 
not be missed in the detecting process. The segmentation 
of suspected masses is difficult due to the variability of 
normal breast tissue and the lower contrast and ill-defined 
margins of masses. Therefore, some research works were 
directed towards to the classification of masses from local 
regions of interest selected manually by experienced ra- 
diologists [8], [9]. The results of all these CAD methods 
indicate that a high sensitivity rate can be achieved at the 
expense of higher false-positive detection. However, it is 
difficult to compare the relative performance of these meth- 
ods because the reported performance strongly depends on 
the degree of subtlety of masses in the training and testing 
database. Also, the performance of algorithms highly de- 
pends on the accuracy and efficacy of the segmentation of 
suspected masses and the feature extraction based on the 
segmented regions. 

A number of image processing techniques have been pro- 
posed to perform suspicious mass segmentation. Lai et al 
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[I] have proposed using a modified median filter to reduce 
noise and to enhance mammograms followed by locating 
suspicious masses by template matching. Brzakovic et a1 
[2] used thresholding and fuzzy pyramid linking for mass 
localization. Yin et a1 proposed using bilateral-subtraction 
to determine possible mass locations [3]. Bianchi et a1 
used a segmentation method by calculating medians in 
the histogram of the image [lo]. Some other investigators 
proposed using feature-based segmentation of suspected 
masses [5], [ll]. Recently, Petrick et a1 [12] proposed a 
two stage adaptive density weighted contrast enhancement 
filtering technique along with edge detection and morpho- 
logical feature classification for automatic segmentation of 
potential masses. 

Stochastic model-based image segmentation is an effi- 
cient approach to segment objects which have low contrast 
and embed on inhomogeneous background. This approach 
is a technique for partitioning an image into distinctive 
meaningful regions based on the statistical properties of 
both gray-level and labeled images. Recently, this segmen- 
tation technique has received considerable attention for 
medical image pattern segmentation [13], [14]. However, 
a good segmentation result would depend on the suitable 
model selection for a specific image modality [15]. On the 
other hand, when the stochastic model is fixed, the segmen- 
tation result can also be improved by pattern-dependent 
enhancement techniques if the geometric characteristics of 
patterns is pre-defined. In this study, based on the anal- 
ysis of the characteristic features of masses, we proposed 
using finite generalized Gaussian mixture (FGGM) model 
to model the histogram of mammograms which enhanced 
by morphological operations, then employed contextual 
Bayesian relaxation labeling (CBRL) technique to perform 
the segmentation of suspected masses. 

11. METHODS 
The framework of our proposed segmentation approach 

is shown in Fig. 1. A detailed description follows. 

A. Mass Enhancement by Morphological Operation 
Based on the geometric properties of the contexts and 

textures in mammograms, we designed a morphological 
filtering-based enhancement algorithm which performs as 
follows [16]. The textures without the pattern information 
of interest are extracted by 

r ( i , j )  = ma@, [f(i,j> - (f O B)(i,j)l) (1) 
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Fig. 1. The flow chart of the algorithm. 

where f ( i , j )  is the original image, f o  B is the morphologi- 
cal opening operation. r ( i , j )  is the residue image between 
the original image and the opening of the original image by 
a specified structuring element B. The size of B should be 
chosen smaller than the size of masses. Then, the regions 
of interests are enhanced by taking the difference between 
the original image and the specified rescaling transforma- 
tion of the texture image 

fl(i,j) = ma@, [f(i,j) - g(r( i , j ) ) l> (2) 

where g ( . )  is the specified rescaling transformation and 
fi(i,j) denotes the enhanced image. If we define g ( . )  as 

g(r ( i , j ) )  = r ( i , j )  + (f O Bl)( i , j )  (3) 

where B1 is a specified structuring element which has large 
size than masses. This is equivalent to  the following pro- 
cess. Let r l ( i , j )  be the mass pattern enhanced image by 
background correction, i.e., 

T l ( i , j )  = m a @ ,  [f(i,j) - (f 0 Bl)(i,j)l).  (4) 

Then 

We call it dual morphological operation. Fig. 2 shows the 
mass patch and the enhanced results after dual morpholog- 
ical operation. The one-dimensional profiles corresponding 
to  each image patches in Fig. 2 is shown in Fig. 3. As we 
can see from Fig. 2, both background correction (Fig. 2 (c)) 
and dual morphological operation (Fig. 2 (d)) enhanced 
the mass pattern, but dual morphological operation re- 
moved more structural noise inside the mass region which 
in turn can improve the mass segmentation results. This 
phenomenon can also be clearly seen from Fig. 3. 

Fig. 2. The original and enhancement results of the mass patch using 
dual-morphological operation. (a) original image block f(i ,  j ) ;  
(b) the textures in image block without mass information r ( i , j ) ;  
(c) the enhanced result by background correction rl(Z,j); (d) the 
enhanced result by dual-morphological operation f1 (i, j). 
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Fig. 3. The I-D profiles of image patches in Fig. 2.  

B. Finite Generalized Gaussian Mixture Model 
Given an image which consists of NI  x NZ pixels, as- 

sume this image contains K regions. By randomly reorder- 
ing all pixels in the underlying probability space, one can 
treat pixel labels as random variables and introduce a new 
probability measure Irk.  Then the finite generalize Gaus- 
sian mixture (FGGM) probability density function (pdf) 
of gray-level of each pixel is given by [15]: 

K 

p ( Z i )  = x ? ' i ' k p k ( Z i ) ,  i = l , . . - N l N z  (6) 
k=l 

where zi is the gray-level of pixel i, Pk(Zi)'S are conditional 
region pdf's with ~ r k ,  satisfying Irk > 0, and ck=l Irk = 1. 
The generalized Gaussian pdf given region k is defined by 

K 

where pk is the mean, r(*) is the Gamma function, and ,6k 
is a parameter related to  the variance Crk by 

When a = 2.0, one has the Gaussian pdf; when a = 1.0, 
one has the Laplacian pdf. When (Y >> 1, the distribu- 
tion tends to  a uniform pdf; when a < 1, the pdf becomes 
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sharp. Therefore, the generalized Gaussian model is suit- 
able to  model the histogram of those images which statis- 
tical properties are unknown. 

The whole image can be well approximated by an inde- 
pendent and identically distributed random field x. The 
corresponding joint pdf is 

(9) 
i=l k=l  

where x = [ X I ,  5 2 , .  . . , X N 1 N Z ] ,  and x E x. 
The number of image regions K in the FGGM model 

can be determined by Akaike information criterion (AIC), 
minimum description length (MDL), and minimum con- 
ditional bias and variance criterion (MCBV) approaches 
[17]. Once K is known, one can initialize model parame- 
ters using adaptive Lloyd-Max histogram quantization al- 
gorithm [14] and estimate model parameters using expec- 
tation maximization (EM) algorithm [17]. 

C. Contextual Bayesian Relaxation Labeling (CBRL) 
In this labeling task, one would need to  define the local- 

ized FGGM model. Let di be the neighborhood of pixel i 
with an m x m template centered at pixel i. An indicator 
function is used to represent the local neighborhood con- 
straints Rij(Zi,Zj) = I(Zi,Zj), where li and l j  are labels of 
pixels i and j ,  respectively. Note that pairs of labels are 
now either compatible or incompatible. Similar to  refer- 
ence [18], one can compute the frequency of neighbors of 
pixel i which has the same label values k as at pixel i 

where lai denotes the labels of the neighbors of pixel i. 
Since r f )  is a conditional probability of a region, the 10- 
calized FGGM pdf of gray-level xi at pixel i is given by 

K 

k=l 

where pk (x i )  is given in (7). Assuming gray values of the 
image are conditional independent, the joint pdf of x, given 
the context labels 1, is 

i=l k=l 

where 1 = (li : i = 1, . . . , NlNz).  

It is known that CBRL algorithm can obtain a consis- 
tent labeling solution based on the localized FGGM model 
(11). Since 1 represents the labeled image, it is consistent if 
& ( E % )  2 & ( I C ) ,  for all k = 1,. . . , K and for i = 1, . . , NlN2 
[MI, where 

Now we can define 

as the average measure of local consistency, and 

LC, = IQ2 ,  k ) S , ( k ) ,  i = 1 , .  . . , NiNz (15) 
k 

represents the local consistency based on 1. The goal is to 
find a consistent labeling 1 which can maximize (14). In the 
real application, each local consistency measure LCi can 
be maximized independently. In [18], it has been shown 
that when Rij(Z$,lj) = RJ2(Zj,Zi), if A(1) attains a local 
maximum at 1, then 1 is a consistent labeling. 

Based on the localized FGGM model, Z,(O) can be initial- 
ized by ML classifier, 

( 0 )  - Zi (16) - arg{max p k ( X z ) } ,  k = 1, * * .  , K. 
k 

Then, the order of pixels are randomly permutated and 
each label I, is updated to  maximize LC,, i.e., classify pixel 
i into kth region if 

~i = arg{max k K t ) P k ( X z ) } ,  IC = 1,.  . . , K (17) 

is given in (10). For our where p k ( X 2 )  is given in (7), rd) ( 
specific mass segmentation, the brightest regions (i = K )  
are selected as the suspicious masses. 

111. RESULTS AND DISCUSSION 
Twenty real mammograms with masses were chosen as 

testing images. The areas of suspicious masses were lo- 
cated by an expert radiologist. The selected mammograms 
were digitized with an image resolution of 100pm x 100pm 
per pixel by the laser film digitizer (Model: Lumiscan 150). 
The image sizes are 1792 x 2560 x 12bpp. For this study, 
we shrunk the digital mammograms with the resolution 
of 400pm by averaging 4 x 4 pixels into one pixel. This 
shrinking step is applicable for mass cases and can save 
computation time. 

In order to  justify the suitability of morphological struc- 
tural elements, the geometric properties of the contexts 
and textures in mammograms were studied. At the res- 
olution of 400pm, a disk with a diameter of 7 pixels was 
chosen as morphological structuring element B to  extract 
textures in mammograms. A disk with a diameter of 75 
pixels was empirically chosen as morphological structuring 
element B1 for background correction. In the last stage of 
our approach, we applied morphological opening and clos- 
ing filtering using a disk with a diameter of 5 to eliminate 
small objects which contribute to  false masses. 

According to  previous investigator’s work [lo], the suit- 
able number of regions, K ,  is 8 for most mammograms. In 
this work, we used three information criteria (AIC, MDL, (13) 
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and MBVC) to determine K .  Fig. 4 is one of the results 
based on one real mammogram. As we can see in Fig. 4, 
all three criteria achieved minimum when K = 8 which is 
consistent with the previous research. 

6.448 

MDL -- 
- ‘ , MBVC - 

\ 

We fixed K = 8, and changed the values of a for es- 
timating the FGGM model parameters. We used global 
relative entropy (GRE) between the histogram and the es- 
timated FGGM distribution as a measure of the estimation 
bias. We found that GRE achieved a minimum distance 
when the FGGM parameter a = 3.0 as shown in Fig. 5. 
This indicated that the FGGM model is better than the 
finite normal mixture model (a = 2.0), which has been 
mostly chosen in stochastic model-based segmentation, if 
the statistical properties of mammograms are not known. 

With K = 8, and a = 3.0, we compared the segmen- 
tation results based on the enhanced mammograms with 
those based on the original mammograms. The results 
demonstrated that all the areas of suspicious masses in our 
tested mammograms were detected after enhancement. On 
the other hand, only parts of suspicious masses were de- 
tected with the original mammograms. In addition, some 
very subtle cases were undetected based on original mam- 
mograms. The undetect areas were mainly occurred at 
lower intensity side of the shaded objects which, however, 
extracted on morphological enhanced mammograms. Fig. 6 
is one of segmentation results with original and enhanced 
mammograms. 

IV. CONCLUSIONS 
This work was a part of our research in mammographic 

mass detection. The experimental results indicate that 
the segmentation of suspected masses can be affected by 
different K and a. With suitable K and a,  the segmenta- 
tion results can be significantly improved by the proposed 
pattern-dependent enhancement algorithm using morpho- 

(a) a = 1.0, GRE = 0.0783 (b) a = 2.0, GRE = 0.0369 

(c) a = 3.0, GRE = 0.0251 (d) a = 4.0, GRE = 0.0282 

Fig. 5. The comparison of different learning curves and histogram 
of original mammogram, K = 8. 

(a) Original Mammogram (b) Mass Segmentation 

(c) Enhanced Mammogram (d) Mass Segmentation 

Fig. 6. The comparison of segmentation results between original and 
morphological enhanced mammograms, K = 8, a = 3.0. 

logical operations. Hence, morphological filtering com- 
bined with stochastic model-based segmentation is an ef- 
fective way to  extract mammographic suspicious patterns 
of interest, and thereby will facilitate the procedures of 
mammographic computer-aided diagnosis. 
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