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Abstract 
According to  the theory of deterministic fractal geome- 

try, images can be modeled by deterministic fractal objects 
which are attractors of sets of two dimensional affine trans- 
formations. In this paper, a fractal modeling approach 
is developed to  analyze and model mammographic breast 
tissue background. We show that general mammographic 
parenchymal and ductal patterns can be well modeled by 
a set of parameters of affine transformations. Therefore, 
microcalcifications can be enhanced by taking the differ- 
ence between the original image and the modeled image. 
Our results are compared with those of the partial wavelet 
reconstruction and morphological operation approaches. 
The evaluation results demonstrate that  the fractal mod- 
eling method is an effective way to enhance microcalci- 
fications, and thereby may facilitate the radiologists' di- 
agnosis. It may also be able to improve the detection of 
microcalcifications in a computer system. 

I. INTRODUCTION 

The task of detection of microcalcifications for the diag- 
nosis of breast cancer is a difficult one. Dense breasts, im- 
proper technical factors or simple oversight by radiologists 
may contribute to the failure of detecting microcalcifica- 
tions [l]. Especially, some subtle case, such as faint micro- 
calcifications which have small sizes and are superimposed 
on dense breast regions, are very difficult to  detect, even for 
experienced radiologists. Consequently, computer-assisted 
detection of microcalcifications has aroused a great deal 
of interest. Microcalcification enhancement is a important 
step in any computer-assisted systems. In this study, we 
propose a novel enhancement technique. Our basic idea 
IS that if we can tell the different properties of disease 
patterns (such as microcalcifications) and background pat- 
terns in both spatial and frequency domains, then we can 
separate the whole image into different layers using differ- 
ent models according to the difference in patterns. One 
layer only contains disease pattern information. The other 
layer contains non-disease related background information. 
Hence, the disease pattern will be enhanced by taking the 
background layer from the original image. 

Recently, both stochastic and deterministic fractal-based 
techniques have been applied in many areas of digital im- 

analysis [a], [3] .  Based on the deterministic fractal the- 
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ory, images can be modeled by deterministic fractal ob- 
jects which are attractors of sets of two-dimensional affine 
transformations [4], [5], [6]. In this work, we use the de- 
terministic fractal approach to model the mammographic 
background and to  enhance microcalcifications. We ob- 
served that microcalcifications are visible as small objects 
which appear to be added to  the mammographic back- 
ground. Some of them are bright, some are faint. Mi- 
crocalcifications can be characterized as different shapes. 
But compared with breast background tissue, they have 
less structure. On the other hand, the mammographic 
parenchymal and ductal patterns in mammograms possess 
structures with high local self-similarity which is the ba- 
sic property of fractal objects. These tissue patterns can 
be constructed by fractal models, and be taken out from 
the original image, as such the microcalcification informa- 
tion will be enhanced. The results are very encouraging 
compared with those of partial wavelet reconstruction [7], 
[8] and morphological operation methods [9]. We antic- 
ipate that the proposed fractal approach is very helpful 
for radiologists to detect the microcalcifications, and also 
facilitates the evaluation procedures in a mammographic 
computer-aided diagnosis system. 

11. THEORETICAL BACKGROUND 
Given a complete metric space (X, d ) ,  we can define the 

metric space ('H(X), h) ,  where R(X) is the space of com- 
pact subsets of XI and the distance h : 'H(X) x X(X) -+ R 
between two sets A and B is the Hausdorff distance, which 
is characterized in terms of the metric d. Under these con- 
ditions, it can be shown that the metric space Z(X) is com- 
plete according to  the Hausdorf metric [4]. Let f E R(X) 
be an original image to  be modeled. We wish to  find con- 
tractive affine map T : %(X) -+ 3t(X), satisfying the re- 
quirement 

V f l i f 2  E WX),  h(7(f l ) ,7(f2))  5 s . h ( h , f 2 ) ,  (1) 

and such that 
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where s < 1 and 6 is a tolerance which can be set to 
different values according to  different applications. The 
scalar s is called the contractivity of 7 .  T can be a set of 
contractive mappings T,, i.e., T = u ~ L ~ T ~ .  According to  the 
deterministic fractal theory, a set of contractive mappings 
T~ is the main part of an iterated function system ( I F S ) .  
The definition of I F S  is given as follows [4]. 



Definition 1: An iterated function system ( I F S )  con- 
sists of a complete metric space (X, d )  with a finite set of 
contraction mappings ri : X -i X, with respective contrac- 
tivity factors si, for i = 1,2 ,  . . , N ,  and its contractivity 
factor is s = max{si : i = 1,2 ,  . . . , N } .  

property of I F S  in the following theorem. 

Theorem 1: (The Collage Theorem) Let ( X , d )  be a 
complete metric space. Let L E E ( X )  be given, and let 
E 2 0 be given. Choose an I F S  { X ; r i }  with contractivity 
factor 0 5 s < 1, so that 

With the definition of I F S ,  one can state the important 

(3) 

Then h ( L , A )  5 ~ / ( 1  - s), for all L E %(X), where A zs 
the attractor of the I F S .  

The proof of the Collage Theorem can be found in [4]. 
The Collage Theorem shows that, once an I F S  is found, 
i.e., r is known such that h ( f , r ( f ) )  < 6 is satisfied, then 
from any given image f o  and any positive integer n, one 
can get 

(4) 
1 

h ( f ,  r0"(fo)) 5 7 3 f 1  .(f)) + Snh( f ,  fo). 

Since s < 1, we see that after a number of iterations, the 
constructed image f, = r o n ( f o )  will be close visually to  
the original image f. 

The key point of fractal modeling is to  explore the self- 
similarity property of images. Real world images are sel- 
dom self-similar, so it is impossible to  find a transformation 
r for an entire image. But almost all real images have a 
local self-similarity. We can divide the image into n small 
blocks, and for each block find a corresponding r,. So fi- 
nally, we can define r = U : L I r t .  

I I I. A L GO RIT I I M IMPLEMENTATION 

Now we introduce a mathematical representation for 
digital gray-level images Let N1 = [0,1,. . . , MI,  A72 = 
[0,1,  . . . , NI, N3 = [0, 1. . . L ] ,  respectively, then for any 
digital gray-level image j ( k ,  I ) ,  we have ( I C ,  I, f ( k ,  I)) 6 
Nl x N2 x N3. Let D 1 , .  . . D ,  and R I , .  . . , R, be subsets 
of N1 x N2,  such that U,"=, R, = N I  x NL and R, n R, = 
I$, i # j .  We call R, the range squares, and D,  the domain 
squares. In practice, we can use mean square root metric 
and r, can be defined as 

.,(f(k, I ) )  = S L m .  O l ( X  / ) E D ,  + 0 1 1  ( 5 )  

where 

s, is a scaling factor and 0, is an offset factor; they are 
blockwise constants on each R,. The goal is: for each R,, 

a Di C NI  x N2 and ri : N I  x NZ x N3 -+ N3 are sought 
such that 

(7)  

is minimized. Through solving 2 = 0 and 2 = 0, we 
get the optimal values of si and oi. We put the optimal 
& ,  6i into (7) ,  and obtain the minimum error &. Then, we 
set a uniform tolerance bi = 8, and select the best Di,  such 
that 28 < 8. 

Suppose there is a cluster of microcalcifications or some 
single isolated ones on the image block above Ri, our inten- 
tion is to  find an area Di on which the image has a similar 
structure as on Ri but does not have similar microcalcifica- 
tion patterns. Then when a difference between the original 
image and modeled image is taken, the microcalcifications 
will be enhanced. This means that when searching for Di, 
the suitable Di should not cover the region of Ri. In our 
algorithm, for each given Ri, we constrain the search way 
of Di by Ri n Di = 4. 

A .  Fractal Modeling 

algorithm: 

Step 1: Initially, Ri are chosen to  be nonoverlapping sub- 
squares of size 32 x 32. A search is then performed for the 
domain squares which best minimized (7) and satisfied the 
constraint of D; by Ri n Di = I$. 

Step 2: If the value of (7) is less than a predetermined tol- 
erance, then the corresponding Di and ri are stored and the 
process is repeated for the next range square. If not, the 
range square is subdivided into four equal squares. This 
quadtreeing process was repeated until the tolerance con- 
dition was satisfied, or a range square of minimum size 
(here we set 8 x 8 pixels) is reached. 

Step 3: The process is continued until the whole image 
is modeled. A choice of Di,  along with a corresponding 
si and oi, determines the r; on Ri. Once all r; are found. 
we can define r = Ur=2=,~i, such that d( f ,  r ( f ) )  < 6, where 
6 = n6, and n is the block number of Ri. 

Step 4: Finally, based on the Collage Theorem, the mod- 
eled image can be easily obtained by performing the iter- 
ation for any starting image of the same size according to 
Di and ri. The iteration stops while the predetermined 
tolerance between the original image and modeled image 
is achieved. 

The modeling process is summarized in the following 

B. Enhancement of Microculcifications 

Based on the above algorithm development] we can en- 
hance microcalcifications by using the fractal modeling ap- 
proach. Let f ( k ,  I )  be the original image, and g(k ,  I )  be the 
modeled image after n iterations. The procedure is sum- 
marized as follows: 
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Step 1: First, we take the difference operation between 
f(k,I) and d k ,  1) :  

where f l  ( k ,  I )  is the residue image. 

Step 2: It is appropriate to ignore the negative value of the 
difference image fl ( I C ,  l ) ,  because negative part of fl ( k ,  I )  
does not contadn any information about spots (including 
microcalcifications) brighter than the background, so we 
take 

f d k ,  1 )  = max(0, fl(h 01, ( k ,  I )  E N I  x N z ,  (9) 

where f 2 ( k , l )  is the enhanced image from which back- 
ground structures were removed. 

Step 3: Image f z ( k ,  I )  contains useful signals and noises. 
Below a certain threshold T ,  any signal is considered unre- 
liable. The threshold T is estimated from the image itself 
as CY times the global standard deviation of the noise in 
an image f2(k,l). Thus, the value of cy is the same for 
all images, but T depends on each individual image. T 
can be determined by a two-step estimation process. First 
the standard deviation of the whole image f2 (k ,  I) is taken, 
and the initial threshold To is chosen to be about 2.5 times 
this global standard deviation. Second, only those pixels 
in which the gray values are below the initial threshold 
are used to  recalculate the standard deviation of the noise. 
This is a simplified version of a robust estimation of the 
standard deviation of noise[l0]. The final threshold T is 
determined by adjusting the value of CY so that no subtle 
cases are missed using human judgement. In our study, we 
found empirically that Q = 3 is a suitable choice. The final 
enhanced image f S ( k ,  I )  is 

IV. RES~JLTS A N D  DISCUSSION 
Thirty real mammograms with clustered and single mi- 

crocalcifications were chosen as testing images. The areas 
of suspicious microcalcifications were identified by a highly 
experienced radiologist. The selected mammograms were 
digitized with an image resolution of 1OOpm x 10Opm per 
pixel by the laser film digitizer (Model: Lumiscan 150). 
The image sizes are 1792 x 2560 x 12bpp. In addition, n-e 
generated one simple image based on jigsaw function us- 
ing computer. The simulated image has a simple periodical 
texture pattern and has a cluster of spots and a single spot 
embedded in the simulated background structure. This is 
a suitable example to test, t h e  fractal approach. 

A .  Evaluation of Enhan,ceni,ent 
In order to  evaluate the enhancement results of differ- 

ent approaches, we computed the contrast, the background 
noise level, the peak signal to noise ratio, and the average 
signal to  noise ratio. The definitions of these indexes are 

given in the following. The contrast C of an object is de- 
fined by [ll], [12] 

c=- f - b  
f + b ’  

where f is the mean gray-level value of a particular object 
in the image, called the foreground, and b is the mean gray- 
level value of a surrounding region called background. 

The background noise level can be measured by the stan- 
dard derivation o in the background region which is defined 
as 

where b, is the gray-level value of a surrounding back- 
ground region, and N is the total number of pixels in the 
surrounding background region. 

Since our work focused on specific microcalcification en- 
hancement and the more interesting work for radiologists 
is to  enhance microcalcifications embedded in inhomoge- 
neous and variable background, we defined two new evalu- 
ation indexes, the peak signal to  noise ratio ( P S N R )  and 
the average signal to  noise ratio ( A S N R ) .  These defi- 
nitions were based on the general medical physics mea- 
surement and accepted by radiologists for the detection of 
microcalcifications [13]. 

The peak signal to  noise ratio ( P S N R )  in our work is 
defined as 

where p is the maximum gray-level value of a foreground. 

The average signal to  noise ratio ( A S N R )  in our work 
is defined as 

f - b  A S N R  ~ 

(7 

B. Results and Discussion 
We have applied the fractal modeling approach to all 

real mammograms and the simulated images. Fig. 1 shows 
the modeled and enhanced results of the simulated image 
and one of the real mammograms. As we can see in Fig. 1 
(b) and (e), the background structure in the simulated 
image and the general mammographic parenchymal and 
ductal pa.tterns in mammograms were well modeled. In 
Fig. 1 (c) and (f) ,  we can see that all small less-structured 
objects, which include clusters of microcalcifications, single 
microcalcifications, film defects (such as artifacts caused by 
scratches on the screen or film emulsion), and sharp edges 
were clearly enhanced. 

In our study, we found that the block size of Ri and pre- 
determined tolerance 8 are two very important parameters 
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Fig. 1. The modeling and enhancement results of the simulated tex- 
ture image and one real mammogram using the fractal modeling 
approach. (a) original image; (b) modeled image; (c) enhanced 
result; (d) original mammogram; (e) modeled mammogram; ( f )  
enhanced result. 

which can affect the modeling process. We have tried dif- 
ferent Ri and 8 based on all tested images. Fig. 2 shows 
the curves of the mean square error ( M S E )  between the 
original and modeled mammogram with different R, and 8. 
As we can see in Fig. 2 (a), with fixed 8, too large block size 
would result in visible artificial edge effects on the mod- 
eled image, which would increase background noises in the 
residue image. On the other hand, an R, of too small size 
would have less-structured information, therefore making 
it difficult to  search for the correct D,. A similar situation 
occurred when we chose 8. In Fig. 2 (b), we can see that 
with fixed R,, too large 8 would introduce more noise and 
wrong structures on the modeled image. But too small 6 
would result in no solution of the search process. In our 
experiment, we found empirically that the suitable block 
size of R, is from 32 x 32 to 8 x 8, and the range of 8 is 
from 1.0 to 10.0. 

Fig. 2. The effects on the modeled image with different tolerances 
and block sizes. (a) the plot of MSE between the original and 
modeled mammogram with different block size R,. b = 10.0; (b) 
the plot of hISE between t~he original and modeled mammogram 
with different tolerance 8, R, = 8 .  

For the purposc of evaluating the performance of our 
proposed fractal enhancement method, we chose for com- 
parison two similar enhancement techniques of background 
removal: the morphological and partial wavelet reconstruc- 
tion methods [7],  [9] A thresholding was applied to irduce 

unreliable noise in the fractal, morphological and wavelet 
approaches. Fig. 3 shows the enhancement results of clus- 
tered and single microcalcifications in the mammograms. 
The first, second, third, and fourth rows in Fig. 3 corre- 
spond to original ROIs, fractal enhancement, wavelet en- 
hancement, and morphological enhancement, respectively. 
The results indicated that all three approaches removed 
the background, and in turn enhanced less-structured spots, 
including microcalcifications. We noted that even for the 
spots embedded in the bright background (such as dense 
tissues), the enhancement results were still very promising. 
Furthermore, we observed that the fractal and morpho- 
logical approaches can remove more background struc- 
tures than the wavelet approach does, especially for those 
ROIs with very low contrast compared with the surround- 
ing background. But the wavelet approach can preserve 
the overall shape of spots better than the other two ap- 
proaches. 

Fig. 3 .  The enhancement results of clustered microcalcifications on 
selected ROIs on mammograms using the fractal; wavelet, and 
morphological approaches. 

In order to quantitatively measure the enhancement per- 
formance with different approaches, we computed the con- 
trast, the noise level, the peak signal to  noise ratio, and 
the average signal to noise ratio. Table I showed the eval- 
uation results. .4s we can see from Table I, among these 
three approaches, the noise level of the fractal approach 
was the lowest. The contrast, the peak signal to noise 
ratio, and the average signal to  noise ratio of t,he fractal 
approach were better than those of the wavelet and mor- 
phological approaches. All results obtained in t his study 
are very encouraging, and indicate that the fract,al model- 
ing and segmenta.tion method is an effective technique to  
enhance microcalcifications embedded in inhoniogeneous 
breast tissues. 

I-. CONCLUSIONS 
In this study, we proposed a. microcalcification enhance- 

ment algorithm based on the fract,al modeling scheme. We 
compared the enha,nccment results with those based on 
morphological operations and partial wavelet reconstxuc- 
tion methods. Our study showed that in terms of contrast, 
peak signal to  noise ratio. and average signal to noise ratio, 
the fractal approach was the best compared t o  thc ot,her 
methods. The noise leyel in the fractal approach n-as also 

1853 



fl 

C 
P S N R  
ASNR 

TABLE I 
THE AVERAGES OF EVALUATION RESULTS BASED O N  THIRTY 

MAMMOGRAMS 

original fractal wavelet morphology _I 

141.42 22.90 53.70 40.30 
0.1918 0.8732 0.7797 0.7960 
4.5971 17.4963 10.3724 11.9312 
1.5473 3.8727 2.6113 3.5766 

lower than the other two methods. These results demon- 
strated that the fractal modeling method is an effective 
way to extract mammographic patterns and to enhance 
microcalcifications. Therefore, the proposed method may 
facilitate the radiologists’ diagnosis of breast cancer. 
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