
Stochastic Model and Probabilistic Decision-Based Classifier 
for Mass Detection in Digital Mammography 

Huai Li1j2>3 K. J. Ray Liu2 Shih-Chung B. Lo3 Yue Wang3>4 

'Odyssey Technologies LLC, 10620 Guilford Road, Suite 206, Jessup, MD 20794 
*Department of Electrical Engineering, University of Maryland at College Park, College Park, MD 20742 

3Department of Radiology, Georgetown University Medical Center, Washington, DC 20007 
4Department of Electrical Engineering, The Catholic University of America, Washington, DC 20064 

Abstract 
In this paper, we have developed a combined method 

utilizing morphological operations, a finite generalized 
Gaussian mixture (FGGM) modeling, and a contextual 
Bayesian relaxation labeling technique (CBRL) to en- 
hance and extract suspicious masses. A feature space 
is constructed based on multiplc feature extraction 
from the regions of interest (ROIs). Finally, a multi- 
modular probabilistic decision-based classifier is em- 
ployed to distinguish true masses from non-masses. 

1 Introduction 
The detection of masses is considered a difficult task 

for radiologists because of the subtle difference be- 
tween local dense tissues and masses. In recent years, 
some computer-aided diagnosis (CADx) schemes for 
mass detection and classification have been devel- 
oped by several researchers [l, 2, 31. Most CADx 
systems consist of three main procedures: prepro- 
cessing, feature extraction, arid classification. In the 
preprocessing step, segmentation of suspected masses 
from breast tissue background is of great importance 
since all subtle masses should not be missed at the 
first step. In addition, the accurate feature extrac- 
tion mainly depends on the performance of the seg- 
mentation. Stochastic model-based image segmenta- 
tion technique has received a considerable attention 
in medical image segmentation. In our previous work, 
we showed that a good segmentation result would de- 
pend on the suitable model selection and the enhance- 
ment of the patterns of interest [4]. At the end of 
the preprocessing step, all suspected mass regions as 
well as some normal dense tissues with brighter in- 
tensities are located. The latter should be eliminated 
from the true masses through feature discrimination. 
In the proposed mass cletecLiori approach, some inten- 
sity, geometric, and texture features are extracted and 

investigated based on the segmented regions. These 
features usually possess clinical significance and are 
widely used in most CADx systems. Finally, a multi- 
modular probabilistic decision-based classifier is em- 
ployed to  distinguish true masses from non-masses 
[5, 61. The classifier can solve classification problems 
by dividing the input feature space into regions and 
learning simplified problems within each region. It is 
a powerful classifier in statistical pattern recognition 
and can often lead to  simple and efficient learning al- 
gorithms. 

2 Methods 
The framework of our proposed method is illus- 

trated in Fig. 1. For the purpose of enhancing mass 
signals, we developed a dual morphological operation 
approach as follows: 

where f ( i ,  j) and f l  (i, j )  are the original and enhanced 
images. B1 and Bz are two specified structuring ele- 
ments. This operation can remove the background 
noise and the structure noise inside the suspected mass 
pat terns. 

The finite generalized Gaussian mixture (FGGM) 
model is used to  model the histogram of the image. 
The FGGM pdf of gray-level of each pixel is given 
by p(xi) = Ck=l 7rkpk(xi). The generalized Gaussian 
probability density function given region k is defined 

h' 

by 

With different model parameter a ,  the model prob- 
ability density furletion represents different distribu- 
tions. Therefore, the generalized Gaussian model is 
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a good model for those images which statistical prop- 
erties are unknown. The model parameters can be 
estimated using a expectation-maximization (EM) al- 
gorithm [4, 71. The number of image regions K in 
the FGGM model can be determined by Akaike in- 
formation criterion (AIC) and minimum description 
length (MDL). Once K is known, we use global rel- 
ative entropy (GRE) between the histogram and the 
estimated FGGM distribution as a measure of the esti- 
mation bias. The appropriate value of a can be chosen 
when GRE is minimum. Given the FGGM model, a 
contextual Bayesian relaxation labeling technique is 
employed to perform image segmentation. Finally, bi- 
nary morphological opening and closing operations are 
used to reduce all small objects which, as we knew pre- 
viously, were not masses. 

In our feature extraction step, several reasonable 
features which include geometric features, intensity 
features, and texture features were extracted based 
on the segmented regions as shown in Fig. 3. The 
histogram pairs of these features extracted from true 
and false mass regions were investigated and the fea- 
tures which can better separate the true and false 
mass regions are selected to further study. In this 
,study, we chose area, two kinds of compactness (cir- 
cularity), and difference entropy as useful features for 
classifying masses and non-masses. The definitions of 
these features are as follows: Compactness definition 
1: C 1  = %, where A is the area of the actual sus- 
pected region, and A 1  is the area of the overlapped 
region of A and the effective circle A,, which is de- 
fined as the circle whose area is equal to A and is 
centered about the corresponding centroid of A. Com- 
pactness definition 2: Cz = where P is the bound- 
ary perimeter, and A is the area of region. Given a 
second-order joint probability matrix Pd,Q ( i ,  j )  which 
is the joint gray level distribution of a pixel pair with 
the distance d and in the direction 8,  the difference 
(entropy DHd,e is defined as 

1, - 1 

where ~ ~ - ~ ( k )  = C f = & ' C f z ; p d , ~ ( i , j ) ,  li - j l  = k. 
According to our investigation, these features have the 
better separation (discrimination) in true mass class 
and false mass class. They are also not correlated to  
each other. 

The structure of the classifier used in this study is 
shown in Fig. 2. The classifier is a simple version of 
mixtures of experts. One modular expert is trained to 
detect true masses, another is trained to detect false 

masses. After training, the feature vectors extracted 
from ROIs are input to  this network to classify true or 
false masses. In both training and testing processes, 
the feature vectors 5 in class i (i = 1,. . . , M )  are 
assumed to be mixtures of multi-dimensional Gaus- 
sian distribution, i.e., p(lc'li) = Ckzl  n@k( lc ' l i )  and 
pk(Z1i) = N ( & i , r k i ) .  The unsupervised EM algo- 
rithm is employed to train the local modular experts 
separately. We summarize the EM algorithm as fol- 
lows. 
1. E-Step: for training sample dt), t = l , . - . , N ,  
compute the probabilistic membership 

K 

2. M-Step: compute the updated parameter esti- 
mates 

( 5 )  

N 

N 

where A = [d') - ,4Yf1']. When the EM iteration 
converges, it should obtain the maximum likelihood 
estimation of the feature distribution, i.e., the estima- 
tion of the weighting factor T k i ,  the mean vector j i k i ,  

and the covariance matrix r k i  of class i .  

3 Results 
Fifty mammograms with biopsy proven masses and 

50 normal cases were selected from the data set for 
training. The mammogram set used for testing con- 
tained 46 single-view mammograms: 23 normal cases 
and 23 with biopsy proven masses. All selected mam- 
mograms were digitized with an image resolution of 
100pm x 100pm per pixel by the laser film digi- 
tizer (Model: Lumiscan 150). The image sizes are 
1792 x 2560 x 12 bpp. For this study, we shrunk the 
digital mammograms with the resolution of 400pm by 
averaging 4 x4  pixels into one pixel. According to radi- 
ologists, the size of small masses is 3 - 15mm. A 3mm 
object will occupy the range of about 7 - 8 pixels in 
the shrunk mammogram. The object with the size of 
7 pixels is expected to be detectable by any computer 
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algorithm. Therefore, the shrinking step is applicable 
for mass cases and can save computation time. For 
enhanced mammograms, we found that K = 4 is the 
optirnal choice using the AIC and MDL criteria. We 
also found that GRE achieved a minimum distance 
when the FGGM parameter a = 3.0. This indicated 
that the FGGM model is better than the finite nor- 
mal mixture model ( a  = 2.0), which has been mostly 
chosen in stochastic model-based segmentation. 

After the segmentation, the area index was first 
used to eliminate the non-mass regions. In our study, 
we set A1 = 7 x 7 pixels and A2 = 75 x 75 pixels as 
the thresholds. A1 corresponds to  the smallest size of 
masses (3mm), and an object with a area of 75 x 75 
pixels corresponds to 30“ in the original mammo- 
gram. This indicates that the scheme can detect all 
masses with sizes up to 30”. Masses larger than 
30” are rare cases in the clinical setting. When the 
segmented region satisfied the condition AI 5 A 5 Aa, 
the region was considered to be suspicious masses. 
The feature vector contained two features: compact- 
ness and difference entropy. The feature vector can 
extend multi-dimensionally. But a large number of 
features will increase the complexity of the learning 
procedure of the classifier. A training feature vec- 
tor set was constructed from 50 true mass ROIs and 
50 false mass ROIs. The training set was used to 
train two modular probablistic decision-based neural 
networks separately. Fig. 4 shows the classification 
of two classes with compactness definition 1. Fig. 5 
shows the classification of two classes with compact- 
ness definition 2 .  According to  our experience, the 
values of compactness with definition 1 are more reli- 
able than those of compactness with definition 2. In 
order to have more accurate texture information, the 
computation of the second-order joint probability ma- 
trix p d , e ( i , j )  is only based on the segmented region 
of the original mammogram. For the shrunk mam- 
mograms, we found that the difference entropy had 
better discrimination with d = 1. The difference en- 
tropy used in this study was the average of values at 
6’ = O”, 45”, 90°, and 135”. 

After the pre-scan process (i.e., suspected region 
segmentation), 6 - 15 suspected masses per mammo- 
gram were detected and required further evaluation. 
We found that the classifier can reduce the number of 
suspicious masses with a sensitivity of 84% at a speci- 
ficii;y of 82% (1.6 false positive findings per mammo- 
gram) based on the database containing 46 mammo- 
grams (23 of them have biopsy proven masses). Fig. 6 
shows the mass detection result on one mammogram 
with a spiculated mass. After the enhancement, ten 

regions with brightest intensity were segmented. Us- 
ing the area criterion, too large and too small regions 
were eliminated first and the rest regions were submit- 
ted to  the classifier for further evaluation. The results 
indicated that the spiculated mass was detected. 

4 Conclusions 
In this study, we proposed an unified method for 

mass detection on mammographic images. The results 
demonstrated that the morphological dual operation 
enhancement combined with the FGGM model-based 
segmentation is an effective way to extract mammo- 
graphic suspicious mass patterns. The proposed clas- 
sifier can effectively reduce the number of false positive 
cases and detect the true masses. Compared with con- 
ventional neural networks, the probabilistic decision- 
based classifier can lead to  a more efficient learning 
algorithm and can provide more understanding in the 
analysis of the distribution patterns of multiple fea- 
tures extracted from the suspicious masses. 
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Figure 1: The flow diagram of the mass detection 
in digital mammograms. 
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Figure 2: The structure of the mixtures of experts 
network. 

(a) mass patch; (b) segmentation; (c)boundary extraction 
Figure 3: One example of the mass segmentation and boundary extraction. 
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Figure 4: The classification using compactness Figure 5: The classification using compactness 
definition 1. -0- denotes true mass cases; -*- de- definition 2. -0- denotes true mass cases; -*- de- 
notes false mass cases. notes false mass cases. 

(a) original mammogram (b) suspected mass segmentation (c) true mass detection 

Figure 6: The mass detection results using the proposed approach. 
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