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Abstract- This  paper  presents a theoretical  analysis of t h e  
s ta t ic  and  dynamic convergence behavior for a general class 
of adaptive blind equalizers. W e  first s tudy  t h e  properties of 
prediction e r ro r  functions of blind equalization algorithms, and  
t h e n  we use these properties t o  analyze t h e  s ta t ic  and  dynamic 
convergence behavior based on  t h e  independence assumption.  
We prove in this  paper  t h a t  with a small  step-size, t h e  en- 
semble average of equalizer coefficients will converge t o  t h e  
minimum of t h e  cost function near t h e  channel inverse. How- 
ever, t h e  convergence is not consistent. T h e  correlation mat r ix  
of equalizer coefficients at equilibrium is determined by a Lya- 
punov equation. According t o  our  analysis results, for a given 
channel a n d  step-size, t he re  is a n  opt imal  length for a n  equal- 
izer t o  minimize t h e  intersymbol  interference. This result im- 
plies t h a t  a longer-length blind equalizer does not necessarily 
outperform a shor te r  one, as cont rary  t o  what  is conventionally 
conjectured. T h e  theoretical  analysis results a r e  confirmed by 
computer  simulations. 

I. INTRODUCTION 

Since the pineering work by Sato[14], many blind channel 
equalization algorithms have been proposed[S], [2], [6], 1171, 
[MI. They have been effectively used in digital communi- 
cation systems to cancel the inter-symbol interference (ISI). 
Blind equalization algorithms are usually designed to mini- 
mize some cost functions consisting of higher-order statistics 
of the channel output, without using the channel input. They 
are implemented mostly by stochastic gradient algorithms. 
The convergence analysis of blind equalization algorithms is 
very important to understanding their performance. 

Unlike most of the previous convergence analysis works[3], 
[7], [8], [lo], [12], [15], [20], [21] which specifically focused 
on some blind equalization algorithm, we will present the 
static and dynamic convergence analysis for almost all adap- 
tive blind equalization algorithms. Since there are many ini- 
tialization strategies[4], [ 5 ] ,  [9] to make blind equalizer reach 
an open eye pattern, we will concentrate on the convergence 
analysis when the coefficient sets of equalizers are near the 
global minima of their cost functions. In the static analysis, 
we derive the close form solution for the coefficients of FIR 
blind equalizers, from which we ca.n evaluate the distortion 
caused by the finite length effect. In the dynamic analysis, we 
only use the independence assumptzon[7], which is widely used 
in the dynamic convergence analysis of adaptive algorithms 
[7], [lo], [ll], [12], [15], [20], [all. Based on the independence 
assumption, together with the first-order approximation, we 
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study the convergence and consistence of the equalizer coef- 
ficients. Our analysis indicates that for a given channel and 
step-size, there is an optimum length of equalizer minimiz- 
ing the intersymbol interference, which implies that a longer 
blind equalizer does not necessarily perform better than a 
shorter one. This result can be applied to  the design of blind 
equalizers used in digital communication systems. 

11. ADAPTIVE BLIND EQUALIZERS 

algorithm 

Fig. 1. PAM communication system with blind channel equalizer 

Without lose of generality, we consider a baseband rep- 
resentation of the pulse-amplitude-modulation (PAM) com- 
munication system with blind channel equalizer as shown in 
Figure 1. A sequence of independent, identically distributed 
(i.i.d.) digital signal { a ,  E R} with zero-mean and variance 
cz is sent through a bounded-input bounded-output (BIBO) 
channel exhibiting linear distortion. The resulting output sig- 
nal x, can be expressed as 

i m  

k = - w  

where h, is the impulse response of the linear time-invariant 
(LTI) channel, and W ,  is white Gaussian channel noise. In 
this paper, we will ignore the effects of the channel noise. 

As shown in Figure 1, a linear channel equalizer with pa- 
rameters {cn} is used to remove the intersymbol interference 
caused by the channel distortion. The parameters {c,} are 
subject to adaptation via some algorithm to be determined. 
The equalizer output in Figure 1 can then be written as 
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where {s,} is the impulse response of the equalized system 
related to  h, and c, by 

k 

In blind equalization, the original sequence is unknown to 
the receiver except for its probabilistic or statistical prop- 
erties. A blind equalization algorithm is usually devised 
by minimizing a cost function consisting of the statistics 
of the output of the equalizer y,, which is a function of 
{. . . , s-1, SO, SI,...} or {..., cP1, co, c l , . . . } ,  The cost 
function is usually of the form E{@(y,)}, where @(y,), a 
function of y,, is selected such that the cost function has the 
global minimum points a t  

{sn}  = f{s[n - n d ] }  for all n d  = 0, f l ,  3 ~ 2 , .  .. (4) 

A stochastic gradient algorithm is used to  miniimize the cost 
function to  obtain an on-line equalization algorithm, which 
adjusts the k-th parameter of the equalizer at time n by 

( 5 )  4-(n+l) = 4,) - 
' k  ck &(Yn)zn-k, 

where p is a small step size, $(.) is the derivative of @(yn),  
that is, 

and it is sometimes called prediction error function. 

expressed as 

4(Yn)  = @ ' ( y n ) ,  (6) 

If an FIR filter is used as the equalizer, then (5) can be 

e(n+l) .=?(") - p X n 4 k n ) ,  ( 7) 
where 
71-th iteration defined as 

is the coeficient vector of a blind equalizer after 

and x, is the channel output vector at time n defined as 

(9) 
A T 

x n  = [xn+N, ' .  . , xn ,  ' '  ' , Z n - N ]  . 

Since all BIB0 channels can be approximated as a 
moving-average model with appropriate impulse response 
{LM,. . . , ho,. . . , h ~ } ,  the channel output vector can be ex- 
pressed as 

where U is a (2N+ 2M + 1) x (2N + 1) channel matrix defined 

x n  = UTan,  (10) 

as 

x& 

and a, is the input symbol vector at time n defined as 

With the above definitions, the channel output can be ex- 
pressed in a compact form: 

where Zdn) is t8he equalized system vector at time n defined as 

It is obvious that an FIR channel can not be perfectly equal- 
ized by an FIR equalizer, that is, there is no equalization 
vector c such that 

Uc = e M + N ,  (15) 

where 

However, when the length of the equalizes is large enough, 
there exists a e such that 1 1  - e M + N  11 is very small. 

111. PROPERTIES OF PREDICTION ERROR FUIVCTION 

Before analyzing the convergence behavior of blind equaliz- 
ers, we first introduce some properties of the prediction error 
function here. The following lemma considers two important 
properties to  be used in subsequent discussions. 
Lemma: The prediction error function 4(.) has the following 
two properties: 

1) When th,e parameters of a finite-length equalizer make 
its cost function attain one of its minima, the output of 
the equalized system, &, satisfies 

(ai) U T F %  is positive-definite, 
where the (2M + 2N + 1) x (2M + 2N + 11) matrix F is 
defined as 

( 2 )  E { d @ n ) x n }  0, and 

(17) 

with #(.) being the derivative of 4(.), &, = > l k  E k X n - k  

and & being the equalizer coeficients meking the cost 
function attain a minimum. 

1 
U2 

F = -E{a,C$(&)a;}, 

2) For all integers n and IC 

und  

E{d'(an)a2,} > 0. (19) 

With the a'bove lemma, we are now able to  analyze the 
static and dynamic convergence of adaptive blind equalizers. 
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IV.  STATIC CONVERGENCE ANALYSIS 

If the equalizer is double-infinite, then at the global mini- 
mum of the cost function, the parameters of the equalizer 

{Ci} = {+L,>, (20) 

for some integer n d .  However, only FIR blind equalizer is 
used in practical systems. In this case, smart initialization 
strategies [4], [5], [9] will make the equalizer coefficients con- 
verge to  a minimum { E ,  : n = -N,  . . . ,0,  + . . , N }  of the cost 
function near the channel inverse such that in - a, is very 
small. Using first-order approximation to  4 ( . )  at a,, we can 
prove the following theorem. 
Theorem 1: If a n  F I R  equalizer is used to  equalize a n  FIR 
channel, then at the minimum near the channel inverse, the 
equalizer coefficient vector [ E - N ,  . . . ,Eo ,  . . . , ENIT can be 
expressed as 

Z: = f(0)Ri'h. (21) 

where 

and 
R f  & Z T F Z  

with 

(23) 

- 
M+N M+N 

and 

From the above theorem, the equalizer coefficient vector at 
the minimum of the cost function near the channel inverse is 
determined by (21). 

For the channel with impulse response vector h, the opti- 
mum equalizer (Wiener-Hopf filter) coefficient vector to  min- 
imize E { ( y ,  - a, )2}  is given by [7] 

c ,  = R-lh, (26) 

where 
R = Z T Z .  

Comparing (21) and (26), we have that the sufficient and 
necessary condition for C = c ,  for any FIR channel is 

Since 3c is of full column rank for all no-zero h, Equation (28) 
implies 

f (0) = fU), (29) 

E{$'(a,)a:} = ~ { 4 ( a n W { a 3 .  (30) 

which means 

For Sat0 algorithm[l4], decision-directed equalizers[lO], [12], 
$'(a,) = 1, and therefore, C = c, .  For Godard algorithm[6], 
$ ( y )  = y ( y 2  - r )  with r = M ,  therefore, 

E{qqa,)a;} = 3u4 - m4, (31) 

E{$'(%)U;} = 2m4, ( 3 2 )  

m4 = ~ ( a 4 , ) .  (33 )  

and 

where 

Hence, if the channel input is binary, (30) is true and C = e,. 
Otherwise, E # c, .  

The distortion due to  the finite-length of equalizer is 

(34) 
A 2 Df = 1 1  g-eM+N 11 

2 = II Zc-eM+N II . 

With the increase of the length of the blind equalizer, the 
global minimum of the cost function adopted by the equal- 
ization algorithm will be closer to  the channel inverse. Hence, 
the distortion D f  will decrease. 

V. DYNAMIC CONVERGENCE ANALYSIS 

When the blind equalization algorithms are implemented 
using stochastic gradient method, as are most blind equal- 
izers, the blind equalizers will have an extra distortion 
E ,  = E(,) - C due to the gradient noise. Here, we study the 
stochastic dynamic convergence behavior of blind equalizers 
when the parameters of blind equalizers near the global min- 
imum of the cost function. In our analysis, we will use the 
independence assumption which assumes that  a,  and 6 ,  are 
statistically independent. Similar assumptions have also been 
used in the convergence analysis of LMS algorithm, decision- 
directed equalizer, and Sato algorithm. The references [7], 
[12], [20], [21] have given some good justification on the vali- 
dation of this assumption. 

By means of independence assumption, together with the 
first-order approximation, we are able to  prove the following 
dynamic convergence theorem. 
Theorem 2: Let 

A 

Rf A ZTF'H, ( 3 5 )  

R, ZTG'H, (36) 

(37) 

with the largest eigenvalue A,,,, and 

with 
- 1  
G = -E{a,$2(&)aT}. 

0 2  

1)  For any F I R  blind equalization algorithm mean conver- 
gence behavior near the global minimum of the cost function 
satisfies 

E{€,} = ( I  - p2R,)"E{6o}.  (38 )  
If the step-size p i n  iteration formula (5) or (7) satisfies 

(39) 
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then 

2) The equalizer coefficient vector c(") -+ Z. is not consistent 
and ut the equilibrium near the minimum of the cost function, 
the correlation matrix R, of E is uniquely determined by  the 
following Lyupunov equation 

E { c ( , ) )  -+ E and E{s (") }  --+ S ,  (40) 

R f &  -+ R,Rf = p R , ,  (41) 
1 if 0 P < A m a z D 2 .  

From the above theorem, the distortion of the equalized 
system due to  gradient noise is 

D, E{\ /  s - S  [ I2} 
= E{ll 7-k 1 1 2 }  
= t r [ 3tTR, X] 
= tr[RR,]. 

VI. COMPUTER SIMULATIONS AND CONCLUSION 

Since approximation has been used in our tlheoretical analy- 
sis, we shall check the validity of our theory by computer sim- 
ulations. Two computer simulation examples are presented 
in this section. 
Example I: 

The channel input sequence {a,} is independent, uniformly 
distributed over {fa,f3a} (a  = l/& to  make E { a i }  = 
1). The impulse response of the channel is h, = 0.3"u[n] 
with 4.1 being unit step function. An FIFL equalizer with 
coefficients 1% and c1 is used to  compensate for the channel 
distortion. The initial value of the equalizer coefficient vector 

(49) 

The Sat0 algorithm[l4] is first used to  adjust the coeffi- 
cients of the equalizer. When the step-size p = 0.002, 10 
trials of learning curves of c(,) are shown in Figuire 2. In this 
figure, the t,hick solid line is the theoretical average learn- 
ing curve, the thick dot-dash lines are the theoretical one- 
standard-deviation lines. According to this figure, 10 trials of 
learning curves are almost within one standard deviation of 
the theoretical average learning curves for Saio algorithm. 

Similar simulations have also been done for Godard algo- 
rithm[6]. The simulation results are shown in Figure 3, which 
also confirm our theoretical analysis. 

When an FIR equalizer is so long that { E ,  M in}, {& M 

(43) 
a,} , then 

where we have used the definitions 
Rf  z R f ,  R, M R,, 

R, 2 3tTG3t, (44) 

and 

For the blind equalization algorithms with f(0) = f(l), Rf  = 
f (1)R.  Using (473, we have Fig. 2. 10 trials of learning curves of (a) CO, and (b) c1 for Sato algorithm 

using 1.1 = 0.002. 

(.VI 
For those blind equalizers with f(0) # f (l), (48) can also be -~ ...... . 

used to approximately estimate the average distortion intro- 
duced by gradient noise. According to (48), D,  is propor- 
tional to  the step-size p and the length of equalizer N .  But, 
on the other hand, step-size affects the convergence speed of 
equalizers, i.e. the larger the p, the faster it converges if p is 011 

in the allowable range. Hence, when we select the step-size of 
an equalizer, we have to  consider the trade-off between these " *-CIIIIIu- 'm '_ " *""*-d,*lUI,. 

om 

two factors. 
As we have seen, there are two Sources of distortion. One is 

is D, in (48) due to  the gradient noise. Once the step-size 
of a blind equalizer is set, there must be an optimum length 
that can be found for an FIR equalizer to minimize the to- 
tal distortion D = D f  + D, since with the increase of the 
equalizer length, D f  decreases while D, increases. 

Fig. 3. i n  trials of learning curves of (a) CO, and l(b) for Godard 
Df in (4.24) due to the finite length of an equalizer, another algorithm using p = 0.002. 

Example 2: 
The channel input sequence in this example has the same 

stat,istical property as in Example 1. The channel impulse 
and frequency response are shown in Figure 4, which is a 
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typical telephone channel [16]. The center-tap initialization 
strategy[5] is used for blind equalization algorithm. 

When the Sat0 algorithm is used, the theoretical relation- 
ship between the total distortion and the length of equalizer 
for different step sizes are illustrated in Figure 5 (a), which 1 

(ai) 

~ ”.,” I 
’”’ ---em 

__--- indicates that the optimum length of Sat0 equalizer for this a ~ ~ l o  

channel is between 15 and 25 dependent upon the step-size. 
Figure 5 (b) demonstrates the comparison between the theo- 
retical results of D f  + D, and simulated results for step size 
p = 0.002. 

The calculation and simulation results are given in Figure 
6 for Godard algorithm. Because g ( l ) / f ( l )  for Godard algo- 
rithm (0.169) is less than that for Sat0 algorithm (0.250) for 
4-level PAM input, Godard algorithm should have less distor- 
tion than Sat0 should according to  (48), which is confirmed 
by comparing Figure 5 and 6. 

111 (hl 

Fig. 4. (a) The impulse response, and (b) the frequency response of 
channel 11. 

Fig. 5. Total distortion of equalized system (a) theoretical results for 
different step size p,  (b) simulation results for p = 0.002, using Sato 
algorithm. 

We have studied the static and dynamic convergence be- 
havior of adaptive blind equalizers in PAM digital communi- 
cation systems based on the first-order approximation to the 
cost function of blind algorithms under the independence as- 
sumption. Most of the analysis results presented here can be 
extended to  QAM digital communication systems. Our analy- 
sis result indicates that for a given channel and step-size, there 
is an optimal length for an equalizer to minimize the inter- 
synibol interference. The results imply that a longer-length 
blind equalizer does not necessarily outperform a shorter one, 
as contrary to what is conventionally conjectured. The anal- 
ysis results presented in this paper can be directly employed 
in the design of blind equalizer in practical communication 
systems. 

Fig. 6. Total distortion of equalized system (a) theoretical results for 
different step size p ,  (b) simulation results for p = 0.002, using 
Godard algorithm. 
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