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AbstTact- To separa te  and  recover multiple signals in 
da t a  communications, an tenna  a r rays  and  acoustic sensor ar- 
rays, t h e  impulse responses of multiple-input/multiple-output 
(MIMO) channels have t o  b e  identified explicitly or implicitly. 
This paper  deals with t h e  blind identification of MIMO F I R  
channels based on second-order statistics of t h e  channel out- 
pu ts  and  i ts  application in blind channel equalization and  sig- 
nal separation. W e  first investigate t h e  identifiability of M I M O  
FIR channels, and  obtain a necessary and  sufficient condition 
for MIMO FIR  channels t o  be identifiable u p  t o  a unitary am- 
biguity matr ix  using second-order statistics. Next,  we extend 
the  identification algorithms for single-input/multiple-output 
(SIMO) FIR channels, such as t h e  algebraic algorithm and  t h e  
subspace algorithm t o  t h e  identification of M I M O  FIR chan- 
nels. Since t h e  ambiguity mat r ix  can not be estimated using 
second-order statistics, we then  present a forth-order cumu- 
lant based ambiguity matr ix  estimation algorithm. Finally, we 
demonstrate  effectiveness of t h e  algorithms in this paper  by 
computer  simulations. 

I. INTRODUCTION 
Adaptive antenna arrays have been recognized as an im- 

portant technology to  be used in wireless communication 
systems to  increase the capacity and improve the quality 
of communication services. In wireless communication sys- 
tems, each sensor may receive a superposition of several in- 
put signals with linear distortion, which can be modeled as 
multiple-input/multiple-output (MIMO) systems. The MIMO 
systems are also encountered in other engineering fields in- 
cluding speech processing, sonar array processing, and in the 
analysis of biological systems. 

When the impulse responses of MIMO systems are ob- 
tained, linear equalizers or decision feedback equalizers can be 
used to remove intersymbol interference, suppress co-channel 
interference or crosstalk, and recover the original signals. 
However, in most cases, the impulse responses of MIMO sys- 
tems are unknown, and there is no reference or training signal 
available. Therefore, blind identification becomes an impor- 
tant technique t o  estimate the parameters of MIMO systems. 

Blind single-input/single-output (SISO) system identifica- 
tion is usually based on the higher-order statistics of the 
channel output. For the systems with cyclostationary inputs 
or single-input/multiple-output (SIMO) systems, several re- 
cent papers have presented identification methods based on 
second-order statistics of the channel outputs. Among them, 
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[3], [5], [8], [9] dealt with the blind identifiability and iden- 
tification of SIMO FIR channels. Tong e t  a1 [7] first investi- 
gated the blind identification of FIR channels and proposed a 
singular value decomposition (SVD) method to identify FIR 
channels under a special rank condition. Li and Ding[3] fur- 
ther proved that  this special rank condition is equivalent to 
the identifiability condition of FIR channel based on second- 
order cyclostationary statistics. Tugnait [9] also studied the 
identifiability of SIMO FIR channels from the point of view 
of common zeros of polynomials. Recently, subspace meth- 
ods[5], [6] have been proposed to  identify FIR channels us- 
ing cyclostationary statistics of the channel output,  which 
exploits the orthogonality of the noise-subspace and signal- 
subspace and the structure of filtering matrix. Van der Veen, 
e t  al ,  first investigated multiple signal separation and recovery 
in MIMO systems in [lo]. They proposed a blind estimation 
method for multiple signals using decision-directed principle 
together with signal-subspace property 

This paper deals with the blind identification of MIMO 
FIR channels using second-order statistics. In this paper, we 
are going t o  establish a necessary and sufficient condition for 
MIMO FIR systems t o  be identified up to  an ambiguity uni- 
tary matrix using second-order statistics. We also generalize 
two identification algorithms for SIMO FIR channels to  the 
identification of MIMO FIR channels. 

11. MODEL DESCRIPTION 

The mathematical model of d-input/M-output MIMO sys- 
tems can be illustrated as in Figure 1. The d sequences 
s1 In], . . . , sd[n] are sent through linear channels hij [n] for 
i = l , . . . , M  and j = l , . . . , d  . Hence, the channel output 
vector ~ [ n ]  can be expressed in time-domain as 

x[n]  = H[n] * +I, (1) 

where we have used the following notations 
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and 

Fig. 1 .  MIMO system. 

Equation (1) can also be written in 2-domain as 

x(.) = H(+(z ) ,  

where ~ ( z ) ,  s ( z )  and H ( z )  are the 2-transform of ~ [ n ] ,  ~ [ n ] ,  
and H [ n ] ,  respectively. For MIMO FIR channels, H ( z )  is a 
ploynomial matrix. The system described above is a single- 
input/multiple-output (SIMO) system when d = 1. 

Let the maximum length of h i j [ n ]  be L ,  then the input- 
output relation of MIMO FIR systems can also be described 
in matrix form as 

and 
s[n - L + 11 

s [ n  + K - 13 
(8) 

and ' F I K  is a K M  x (L+K-1)d  block Toeplitz matrix defined 
its 

H [ L -  11 " '  H[O] " .  
8 K  $ ( f ' . .  

0 . . '  H [ L - l ]  . . .  H[O] 

which is sometimes called generalized Sylvester matrix. By 
means of (6), we are going to develop an algebraic blind iden- 
tification algorithm for MIMO FIR channels, which can be 
viewed as the generalization of TXK's algorithm [8] for SIMO 
FIR channels. 

If we define a 1i"M x ( N  - I< + 1) block Toeplitz matrix 
X K  by 

K K  = ( X K I O ] , X K [ l ] r " ' l X K I N - ( < ] )  (10) 

and an ( L  + I< - l ) d  x (1%' - K + 1) block Toeplitz matrices 
S K  by 

S K  = ( S K [ o ] ,  s K [ 1 ] 1  ' '  ' 1  S K [ N  - I<] ) )  (11) 

X K  = % K S K >  (12) 
then 

From the characteristics of the signal-subspace and noise- 
subspace of XK and the block Toeplitz structure of ' F I K ,  we 
will obtain a subspace identification algorithm, which gener- 
alizes the subspace method proposed by Moulines, et al in 
[51. 

111. IDENTIFIABILITY USING SECOND-OREDER STATISTICS 

Since the rank of generalized Sylvester matrix ' F I K  plays 
an important role in the blind identification of MIMO FIR 
channels, we will reveal the relationship bet.ween its singular- 
ity and reducibility of polynomial matrix H ( z ) .  First, we give 
the definition of the MIMO FIR channel identification based 
on second-order statistics of the channel outputs. 

A .  The Definztzon of MIMO Channel Identaficatzon 

In most cases, blind channel (system) identification algo- 
rithms \ an  only estimate the channels up t o  some ambiguity 

For the blind channel identification and equalization of 
single-input/single-output (SISO) channels, the delay and the 
phase of the gain of the impulse response can not be estimated 
since s[n] and e3's[n - n d ]  for any integer n d  and 6 E [ -T,  7 ~ ]  

share the same (second- and higher-order) statistics. 
For the blind identification of SIMO FIR channels using 

second-order statistics of the channel outputs, the algorithms 
presented in [5], [8] can identify the impulse response up to a 
constant factor. In fact, this constant factor is unable to  be 
identified by means of second-order statistics of the channel 
output.  

For MIMO FIR systems, if the system inputs si["] are in- 
dependent identically distributed (i.i.d.) for different i and n,  
then s[n] and US[. - n d ]  for any integer n d  and d x d unitary 
matrix U have the same second-order statistics. Hence, we can 
at most identify the impulse responses of MIMO FIR channels 
up to  a delay and an ambiguity unitary matrix. Therefore, 
an MIMO FIR system is said t o  be zdentzfied by means of 
secozd-order statzstacs of the channel outputs, if we can find 
an H [ n ]  such that  

(13)  
H h 

H [ n ]  = H [ n  - n d ] u  

for all integer n,  some integer n d ,  and unitary matrix U.  

Hence, the mean square error (MSE) of identified channel 
should be defined as 

where 11 . ( I F  denotes the Frobenius norm. 
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B. '4 iVecessary and Suficient i21IMO F I R  Channel Identifi- 

Not all MIMO FIR channels can be identified using second- 
order statistics of the channel outputs. For SIMO FIR chan- 
nels, which is a special case of MIMO FIR channels when 
d = 1, a necessary and sufficient condition for them to be 
identifiable by using second-order statistics of the channel 
output is that  there is no common zero among subchannels 
[3], [8], [9]. However, for general MIMO FIR channels, nec- 
essary and sufficient identificat,ion condition is unknown yet. 
Here, we establish a necessary and sufficient condition for I F I K  
to be of full (column) rank, which, as we will show, is also a 
necessary and sufficient condition for MIMO FIR channels to 
be identifiable by using second-order statistics of the channel 
outputs. 

First we give a relevant definition. An M x d ( M  > d )  
polynomial matrix H ( z )  is said to  be irreducible if there is no 
d x d polynomial matrix R(z), with non-constant determina- 
tion, such that H ( z )  = I ? ( z ) R ( z ) ,  where I ? ( z )  is an M x d 
polynomial matrix. 

Using the properties of the matrix polynomials and filtering 
matrices, we are able to  establish the following identifiability 
theorem. 

Theorem 1: For an M I M O  F I R  channel with length L 
and H [ L  - 11 being of full (column) rank, the necessary and 
suficient condition for such a channel to be identifiable up t o  
an ambiguity unitary matrix b y  using second-order statistics 
of the channel outputs is that H ( z )  is irreducible. 

From Theorem 1, we can conclude the identifiability condi- 
tion of MIMO FIR channels as the following: 

An MIMO FIR channel is said t o  satisfy the identifia6ility 
condition if 

( i) .  H [ L  - 11 is of full (column) rank with L being the 

(ii). H ( t )  is irreducible, or equivalently, H ( z )  is of full 

When d = 1, an MIMO system becomes a SIMO system. 
In this case, Theorem 1 reduces to a special case and can be 
stated as: An SIMO FIR channel is identifiable using second- 
order statistics of the channel outputs if and only if H [ L  - 
11 is nonzero and there is no common zero among the M 
subchannels, which has been presented in [3]. 

cation Conditzon 

length of the MIMO FIR channel, and 

(column) rank for all z E C. 

Iv. BLIND IDENTIFICATION ALGORITHMS BASED ON 
S E C O N D - O R D E R  STATISTICS 

In this section, we will develop blind identification algo- 
rithms for MIMO FIR channels. They generalize t,he algebraic 
algorithm proposed in [8] and subspace algorithm proposed 
in [5] to the identification of MIMO FIR channels. 

A .  Algebraic Identijication 

zero-mean and unit-variance, that  is 
Assume that the channel input vector s[n] is i.i.d. with 

Rs[m] 2 E{s[n]SH[n -k m]} = 6[m]Id, (15) 
where 6[m] is the Kronecker delta function and I d  is a d x d 
identity matrix. From (6) and (15), we have 

RxK[O] 2 E{x~[n]xE[n]} = B K n E ,  (16) 

and 

RxK[l] 4 E { X K [ ~ ] X $ [ R  4- 11) = % K J % $ ,  (17) 

where J is an ( L  + I< - l ) d  x ( L  + Ii' - l )d  matrix defined as 

O 1  

Using the algebraic property of RZK[O] and R Z K [ l ] ,  the 
MIMO channels can be identified up to an ambiguit,y unitary 
matrix, which is stated as follows. 

Theorem 2: For digital communication systems with 
M I M O  FIR channels satisfying the identifiability condition, 
if the channel input vector s[n] is i.i.d. with zero-mean and 
unit-variance, then, based on RxKIO] and RZ,[l] for any 
Ii' > - [=I, the impulse response matrices of M I M O  F I R  
channels H[n] for n = O , . . . ,  L - 1 can be uniquely deter- 
mined up to an ambiguity unitary matrix. 

The above theorem demonstrates the blind identifiability 
of MIMO FIR channels based on second-order statistics of 
the channel outputs for those MIMO FIR channels satisfying 
the identifiability condition. 

Using Theorem 2, we can develop the following algebraic 
identification algorithm: 

Step 1. Estimate RxK[m] for m = 0,  1 by 

Step 2. Find R by 

R = FRx,[l]FH, (20) 

us = [ul,'-,U(L+K-l)dl, (23)  

with U: being the nonzero eigenvalues of R,,[O] corre- 
sponding t o  the eigenvectors ui for i = 1, . . . , ( L  + M - 
1)d. 

Step 3. Estimate 'HK by 

h 

'HK = usCQl (24) 

where 
Q = (r, Rr,  . . ., RL+K-2r),  (25) 

with r = (q, .  . . , rd)  and ri for i = 1,.  . . , d being the 
left singularvectors of R corresponding to  the only d zero 
singular-values. 
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B. Subspace Identification 
The algebraic algorithm developed in the previous section 

exploits the structure of R,,[O] and R,,[I]. The crucial as- 
sumption there is bhat the channel inputs are i.i.d.. Here, 
we will develop a subspace algorithm for MIMO FIR channel 
identification, which does not require the i.i.d. assumption of 
input symbols. 

In what follows, we will assume that SK is of full row- 
iank, which means that the vector sequence s[.] is persistently 
exciting of  order A' [I]. It relaxes the i.i.d. assumption for 
input vector sequence. 

Theorem 3: For digital communication systems with 
M I M O  F I R  channels satisfying the identifiability condition, 
let the channel input vector sequence s[n] is persistently ex- 
citing o f  order K .  For any Ii' > + 1, if there are 
a Sylvester matrix 2 and a matrix S with the same dimen- 
sion as RK and SK respectively, such that X K  = GS, then 
2 = R K ( P  8 I L + K - ~ )  f o r  some d x d nonsingular ambigu- 
ity matrix p.  Futhermore, if 2 satisfies the constraints (16), 
then p is unitary. 

Compared with the algebraic identification theorem, sub- 
space identification theorem makes full use of the Sylvester 
structure of the channel matrix 'HK. Without using the i.i.d 
property of the channel input, the channel can be identified 
up to a d x d constant ambiguity matrix p. Theorem 3 is in 
fact the extension of Theorem 2 in [5] to  the identification of 
MIMO FIR channels. 

Using the similar procedures to those in [5], a subspace al- 
gorithm has been developed in [ll] for the identification of 
MIMO FIR channels satisfying the identifiability condition. 
Theorem 3 establishes the theoretical foundation for the sub- 
space algorithm. 

The algebraic algorithm exploits the algebraic property of 
the correlation matrix of the channel output. Since this alge- 
braic property relies on the i.i.d assumption of the channel in- 
put, the algebraic algorithm needs more symbols to estimate 
channels. On the other hand, the subspace algorithm uses the 
Sylvester structure of channel matrix based on the exciting 
persistence of the channel input vector sequence, hence, it re- 
quires less symbols. This fact will be confirmed by computer 
simulation results in next section. 

V.  EQUALIZATION AND MULTIPLE SIGNALS RECOVERY 

Once the impulse responses of MIMO channels are known, 
the some optimum filter can be applied to recover the mul- 
tiple signals. As indicated in Section 111, using second-order 

statistics, the MIMO FIR channels can be identified up to  an 
ambiguity matrix q,, that  is, we can find H[n]. such that.  

E[n] = H[n]q,. ( 2 6 )  

Without loss of generality, we assume that q, is a unltary 
matrix. As shown in Figure 2 ,  if an MIMO filter with Z- 
transform 

F ( z )  = (E*(Z)E(Z)) - l i iyZ)  ( 2 7 )  
is applied, then the Z-transform of the filter output y[n] is 

To remove the effect of the ambiguity matrix, we perform a 
linear transform q = [ q i j ]  to the MIMO filter output y[n] for 
each time n. To recover si[n] for i = 1,. . . d up to a scaler, 
q must satisfy 

where P is a d x d permutation matrix and D is a diagonal 
matrix defined as 

qqL0 = P D ,  (29) 

D P diag{eJB1, . . . , e J B d } ,  (30) 

with Bi E [-n, T ]  f o r i  = 1, , d.  The following theorem will 
give an ambiguity matrix estimation algorithm based on up 
to forth-order cumulants of the MIMO filter output y[n]. 

Theorem 4: Assume that 
(2). channel znput si[n]'s satisfy 

E{s,[n]} = 0, E{s,[n]2} = 0 (31) 

and s,[n] and s, [n] are zndependent for all i # j ,  and 
(it). y[n] satisfies Equatzon (28) wzth q,, bezng unztary. 

Then, z f  a unztary matmx q mznzmzzes Eij ,+? IRzJl, zt wzll 
satzsfy (29), where 

( 3 2 )  
A I$. 3 = Cum(zi ,Zt*,z3,z ,*)  
- - q1klq:kaq3k3q3Sk1Cum(YklrY;,,Yk3,Y;,), 

ki,ka,k~,k4 

wzth Cum(x1, 2 2 ,  x3,24) bezng the cumulant o f  random varz- 
ables X I ,  2 2 ,  23 and 2 4  defined as 

Cum(xll  2 2 ,  23, 24) (33) 
A = E{21x22324} - E{x122}E{23x4} 

= -E{slz3}E(zZz4} - E { z 1 ~ 4 } E { z ~ z 3 } *  

VI. C O M P U T E R  SIMULATION RESULTS AND CONCLUSIONS 

A Monte Carlo simulation example has been conducted to 
illustrate MIMO FIR channel identification algorithms with 
application to  &AM digital communication systems. 

We have modified the simulation example in [lo] for QAM 
digital communication systems. In our simulation, the digital 
signals s;[n]'s are independent of each other for any different 
n or i, and they are uniformly distributed over { f l  & I } .  The 
digital signals are modulated by raised-cosin shaping filters 
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TABLE I 
THE PARAMETERS OF THE MULTIPATH CHANNEL 

! 

2 -2’ 0.3 0.8eU “ J  

3 -120’ 1.2 0.4e” ’‘J 

4 160’ 2.1 0.4e’ 643 

0 1 

with roll-off factor 0.35 and truncated to  a lengt,h of six sym- 
bol periods. The modulated signals are received by 2 sensors 
spaced by half wavelength. The simulated channel consists of 
four paths per signal and each path is specified by angle-of- 
arrival CY;, delay ri, and complex gain pi as shown in Table 
I .  From Table I, the maximum channel length is L = 9. The 
channel noise is complex white Gaussian with zero-mean and 
variance determined by the signal-to-noise ratio (SNR). 

The signal from each sensor is 5-time oversampled, result- 
ing M = 10 in the MIMO channel model shown as in Fig- 
ure 1. The algebraic and subspace algorithms are used re- 
spectively to  estimate the impulse responses of the multiple- 
input/multiple-output (MIMO) FIR channel. Although the 
maximum length of the MIMO FIR channel is L = 9, our sim- 
ulation indicates that  the estimation obtains the optimum 
performance when L = 8. The  estimation performance is 
measured by the mean-square-error (MSE) defined in (14) in 
Section 111. Figure 2 and 3 demonstrate the MSE’s of both 
algebraic algorithm and subspace algorithm via SNR and the 
number of symbols respectively. 100 independent trials have 
been conducted under the same simulation scenario to  obtain 
these MSE’s. From these figures, when S N R  2 40dB and 
the number of samples N 2 500, the estimation can attain 
satisfying performance. As indicated in Section IV, the sub- 
space algorithm has better performance than the algebraic 
algorithm. 

h 

Fig. 3. The MSE of estimated channel impulse responses via SNR based 
on 100 ensemble trials. 

We have investigated the blind identification of MIMO FIR 

t 
‘[ 

Fig. 4. The MSE of estimated channelimpulse responses via the number 
of symbols used in the estimation based on 100 ensemble trials. 

channels based on the second-order statistics of the chan- 
nel outputs. A necessary and sufficient condition for MIMO 
FIR channels t o  be identified up to  an ambiguity matrix has 
been established. An algebraic identification algorithm and a 
subspace identification algorithm have been developed. Us- 
ing these algorithms, the MIMO FIR channels satisfying the 
identifiability condition can be estimated up to an ambigu- 
ity matrix. Since the ambiguity matrix can not be identified 
using second-order statistics, we also presented an ambiguity 
matrix estimation method using forth-order cumulant. With 
this ambiguity matrix estimation method, the MIMO chan- 
nel identification algorithms developed in this paper can be 
applied to  array processing in mobile radio communication 
systems t o  increase the communication capacity. 
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