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Abstract—Recent emphasis on green communications has
generated great interest in the investigations of energy harvesting
communications and networking. Energy harvesting from ambi-
ent energy sources can potentially reduce the dependence on the
supply of grid or battery energy, providing many attractive ben-
efits to the environment and deployment. However, unlike the
conventional stable energy, the intermittent and random nature
of the renewable energy makes it challenging in the realization of
energy harvesting transmission schemes. Extensive research stud-
ies have been carried out in recent years to address this inherent
challenge from several aspects: energy sources and models, energy
harvesting and usage protocols, energy scheduling and optimiza-
tion, implementation of energy harvesting in cooperative, cognitive
radio, multiuser and cellular networks, etc. However, there has not
been a comprehensive survey to lay out the complete picture of
recent advances and future directions. To fill such a gap, in this
paper, we present an overview of the past and recent developments
in these areas and highlight a number of possible future research
avenues.

Index Terms—Energy harvesting, cooperative networks,
cognitive radio networks, multi-user interference networks,
cellular networks.

I. INTRODUCTION

W ITH unprecedented growth in wireless data services,
the demands for power are constantly increasing, lead-

ing to a battery depletion problem for wireless nodes/devices
[1]. Recent advance in green technology has attracted a lot
of attention from both academic and industrial research com-
munities to consider a new paradigm shift of power supply
by decreasing the use of fossil fuels while increasing more
renewable energy sources in wireless communications and
networking.

To achieve this, energy harvesting has been proposed as a
viable solution that enables wireless nodes to scavenge energy
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physically or chemically from natural or man-made phenomena
[2], [3]. For example, the physical effects like motion, vibra-
tion, pressure and electromagnetic radiation can be applied to
harness energy from the environment or the body, and convert
the harvested energy to electrical energy. As another example,
sunlight can be converted into electricity by applying the chem-
ical effect of photovoltaics. Also the thermoelectric effect, in
which charge carriers in materials are diffused from the hot side
to the cold side due to the temperature gradient, can be used to
generate electricity.

Energy harvesting provides us with many promising advan-
tages and unique features for future wireless communications
that cannot be offered by conventional battery or grid power-
operated communications, including self-sustainable capability,
reduction of carbon footprint, truly wireless nodes without
requiring battery replacement and tethering to electricity grids,
easy and fast deployment in any toxic, hostile or inacces-
sible environments, etc. Hence, we can expect that energy
harvesting in wireless networks is gaining more and more pop-
ularity in wide applications ranging from remote environmental
monitoring, consumer electronics, to biomedical implants. It
was reported by IDTechEx that the energy harvesting mar-
ket was amounted up to $0.7 billion in 2012, and the market
growth was expected to quadruple by 2024 [4]. Furthermore,
energy harvesting is particularly applicable to wireless sensor
networks. The amounts of required energy are different for dif-
ferent types of wireless networks. Typical power requirement
for wireless sensor nodes ranges from 100 μW to 100 mW,
which is much less than that for other commercial mobile
devices; for example, smart phone is on the orders of 20 mW
∼ 1.3 W. Thanks to the great achievements in low-power radio
transceivers, many low-power wireless sensors that consume
several microwatts have been developed, and more recently, the
researchers in [5] have come up with a way to design picow-
att radio chip. The combination of low-power wireless nodes
and energy harvesting communications creates unprecedented
opportunities in many emerging applications, e.g., internet of
things (IoT), that were impossible in the past.

Various types of energy sources can be utilized to supplement
energy supplies such as solar, wind, vibration, motion, electro-
magnetic (EM) wave [6]–[22]. The main difference between
these renewable energy sources and the conventional non-
rechargeable battery supply lies in the fact that the scavenging
power is time-varying and limited in most circumstances, which
stipulates a new design constraint on energy usage in the time
axis. As a result, there is a need to revisit power management
policies in all of the existing wireless communication systems
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so that energy expenditure can efficiently adapt to the dynamics
of energy arrivals during the energy harvesting period.

In the past few years, there have been significant research
progress on energy harvesting communications, and the main
focus is on the development of energy harvesting models,
protocols and transmission schemes in point-to-point commu-
nication systems [35]–[118]. Recently, considerable research
efforts have been extended toward energy harvesting network-
ing like cooperative networks, cognitive radio networks, multi-
user interference networks, cellular networks [139]–[190]. The
optimization of the entire energy harvesting network becomes
a more difficult task due to the inclusion of multiple nodes.

In addition to data transmission, different network topologies
pose various design considerations, and the energy consump-
tion in achieving these particular application purposes cannot
be ignored. In cooperative networks, relay nodes need to deter-
mine the signal relaying power in order to provide the desired
link reliability from the source to the destination nodes. In
cognitive radio networks, secondary users need to be aware
of primary users’ activity via spectrum sensing. To avoid the
waste of the harvested energy, the interference among users
is required to be appropriately managed in multi-user environ-
ments. In cellular networks, harmony of harvested energy and
grid power in a hybrid energy source should also be addressed
to ensure the user’s quality-of-service (QoS). More recently,
energy harvesting has fostered a new line of research, say
energy cooperation and sharing, which permits nodes to share
harvested energy with each other.

A couple of surveys related to energy harvesting have
been conducted [19], [21], [23]–[34]. In [23], fundamental
limits of energy harvesting communications are introduced
from information-theoretic perspectives. Paper [24] summa-
rizes the recent contribution in energy harvesting communica-
tions, whereas only few literatures related to energy harvesting
networks are discussed. A survey in [25] mainly focuses on
offline scheduling schemes, but online scheduling schemes are
ignored, for energy harvesting communications. The works
of [19], [21], [26]–[28] primarily cover the design topics of
wireless-powered energy harvesting communications. Energy
harvesting wireless networks have been also studied in lit-
eratures, e.g., cooperative networks in [29], cognitive radio
networks in [30], multiuser interference networks in [31], cellu-
lar networks or small cells in [32]–[34]. However, the fragments
of the broad area of energy harvesting communications and net-
working are reviewed in each individual work, and the amount
of research devoted to energy harvesting networking has been
rapidly increasing more recently.

While extensive studies are in progress on energy harvesting
techniques, it is worth reflecting upon the current achievements
in order to shed light on the future research trends. The goal
of this survey article is to provide a comprehensive overview
of the past development as well as the recent advances in
research areas related to energy harvesting communications
and networking. The rest of this paper is organized as fol-
lows. In Section II, we overview various energy sources and
models. Energy harvesting and usage protocols are presented
in Section III. We review the energy scheduling problems and
optimization frameworks of the existing works in Section IV

and various design issues in energy harvesting communications
in Section V. The state-of-the-art research results in energy har-
vesting networking are discussed in Section VI. Section VII
describes two application systems. We point out possible direc-
tions of future research in Section VIII and conclude this paper
in Section IX.

II. ENERGY SOURCES AND MODELS

In this section, we will first introduce several essential types
of energy harvesting sources in our daily life and discuss
the characteristics, amount and applications for these energy
sources. After that, energy harvesting models are reviewed,
which allows us to realize how to model the harvested energy
for the design of energy harvesting techniques and algorithms
in the subsequent sections.

A. Types of Energy Harvesting Sources

As shown in Fig. 1 and Table I, the energy harvesting sources
can be generally divided into four types: solar/light, thermo-
electric power, mechanical motion and electromagnetic radi-
ation. Energy harvesting for wireless communications mainly
considers ambient energy sources, e.g., solar, wind, motion,
vibration and interference signals. While ambient sources
enable environmentally friendly energy supplies, the main
disadvantage is that they may not guarantee QoS in wire-
less applications due to the uncertainty in time, location, and
weather conditions. To ensure the reliability, dedicated energy
sources, e.g., power stations, are alternatives to supply energy
on demand, and they afford to consistently recharge wireless
nodes with QoS constraints. However, a clear disadvantage, in
comparison with the ambient sources, is that the deployment
of the dedicated sources incurs additional cost which increases
with the performance requirement. Depending on the ways to
scavenge energy physically and chemically, each kind of energy
sources has unique characteristics in terms of predictability,
controllability and magnitude, and detailed descriptions of all
these energy sources are provided as follows.

1) Solar/Light Energy Sources: One of the most popular
ambient energy sources is visible sunlight/light, and it is well
studied and exploited in a wide variety of applications [3]–
[7]. The light radiation is converted into electricity through
photovoltaic cells. For outdoor environments, the solar power
is an obvious energy source for self-sustainable devices dur-
ing the daytime. While a potentially infinite amount of energy
is provided by the sunlight, the energy available to a device
could fluctuate dramatically even within a short period in prac-
tice, and the energy harvested level is influenced by many
sophisticated factors, such as the time of the day, the seasonal
weather patterns, the physical conditions of the environment,
the characteristics of photovoltaic cells used, to name but a
few [8]. Typically, the amount of solar-powered energy is in
the order of 100 mW/cm2 in the daytime, but the disadvan-
tage is that it disappears at night. Also, the solar radiation is
dynamic, uncontrollable and only partially predictable in some
stationary circumstances, but unpredictable in general cases.
For indoor environments, any illumination can be applied as
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Fig. 1. Types of energy sources.

TABLE I
VARIOUS ENERGY SOURCES, CHARACTERISTICS, AMOUNT, AND APPLICATIONS

the light energy source, while its power density is much lower
than that of the solar power and depends on the illumina-
tion density as well as the distance between energy sources
and energy harvesters [9], [10]. Specifically, its value ranges
from 10 μW/cm2 to 100 μW/cm. The efficiency achieved by

commercial photovoltaic cells is around 8%, which is approx-
imately one-third of the outdoor solar conversion efficiency.
Besides, the artificial illumination is only available for a lim-
ited period of time, e.g., office hours, depending on the indoor
environmental conditions. Although these challenges make the
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harvested energy relatively small, the indoor light is the most
common energy source in most office and residential environ-
ments.

2) Thermoelectric Energy Sources: The thermoelectric
effect can be used to harvest energy [6], [7], [11]. Specifically,
a circuit voltage can be stimulated between two conductors
with different materials when their junctions are kept at dif-
ferent temperatures. In reality, such a temperature gradient can
come out of human bodies or machine conditions. The power
densities of thermoelectric sources are primarily determined
by the thermoelectric properties and the temperature differ-
ence of materials, and they are relatively low and merely range
from 10 μW/cm2 to 1 mW/cm2. Wearable technologies includ-
ing health monitors, smart watches, fitness bands, and shoes
are growing in popularity. Thermoelectric sensors attached to
human body, e.g., clothes, are capable of generating electric-
ity by sensing the temperature difference between body and
environment. The devices with thermoelectric energy sources
have the advantages of long life and reliable with low main-
tenance, but the energy conversion efficiency is low. At tem-
perature gradient of 5 ◦C, the harvested power level is around
60 μW/cm2 [2].

3) Mechanical Motion/Vibration Energy Sources: Electric
power can also be produced by extracting energy from mechan-
ical motion and vibration through transduction methods, includ-
ing electrostatic, piezoelectric and electromagnetic [3]–[7]. In
the electrostatic method, the mechanical motion or vibration
can cause the distance change and voltage variation between
two electrodes of a capacitor, generating the current in a cir-
cuit. In the piezoelectric method, power is obtained by means
of piezoelectric materials, while in the electromagnetic method,
relative motion between a magnet and a metal coil can stimu-
late an AC current in the coil, which is referred to as Faraday’s
law of induction. Generally speaking, the motion and vibration
can arise from random and uncontrollable natural effects, e.g.,
wind and liquid flow [3], [7], [12], [13], or partially controllable
human actions, e.g., blood pressure, heart beating, and heel
striking [14]. Different motion and vibration energy sources
result in different power densities, which can span a wide range
of values. It is worth mentioning that when the intensity of the
sun is too low to produce sufficient energy, the wind power is
a good alternative for the solar power because they often com-
plement to each other in time. In the daytime, an area tends to
be windier with less sunlight if the sky is cloudier. Moreover,
in many areas, the solar energy is strong in summer, whereas
the wind energy gets high in winter. At wind speeds between
2 m/s and 9 m/s, a wind turbine is capable of generating around
100 mW of power [15], [16].

The kinetic energy is a popular energy source for wearable
applications. In general, a vibrational microgenerator can gen-
erate 4 μW/cm2 and 800 μW/cm2 from human motion (5 mm
motion at 1 Hz) and machine-driven motion (2 nm motion at
2.5 kHz), respectively [2]. With different types of generators,
the energy harvesting from running shoes is investigated by
Paradiso et al. of the MIT Media lab, and it is concluded in [17]
that the piezoelectric sole, heel and electromagnetic generators
can produce around 2 mW, 8 mW and 250 mW, respectively,
depending on user’s gait and weight. In addition, the vibration

of a car engine, the fluctuating pressure in a blood vessel and
the bending of the knee can produce output power up to 30 mW,
1 μW, and 7 W, respectively [2], [17].

4) Electromagnetic Radiation Energy Sources: Harvesting
energy from EM radiation has attracted more and more atten-
tion due to the broadcast nature of wireless communications
[3]–[7], [18], [19]. According to short-distance or long-distance
applications, the electromagnetic energy sources can be divided
into two categories: near-field and far-field. In near-field appli-
cations, EM induction and magnetic resonance methods are
usually exploited to generate electric power and to wirelessly
recharge devices within a distance of a wavelength. Thus,
this kind of methods pertains to the dedicated energy sources
which are predictable and controllable, and the energy transfer
efficiency in near-field applications is higher than 80% [20].

In far-field applications up to a few kilometers, the EM radia-
tion, appearing in the form of radio frequency (RF)/microwave
signals, can be received by antennas and then converted
to power by rectifier circuits [21], [22]. The RF/microwave
sources could be ambient EM radiations from the surroundings
or beamforming signals emitted by a known transmitter [32],
[27]. The possible sources of the ambient radiations include
WiFi access points, TV broadcast stations, amplitude modula-
tion (AM)/ frequency modulation (FM) radio transmitters, and
cellular base stations. Although the ambient RF energy is freely
available and sufficient in urban areas, it becomes few in sub-
urbs. The amount of harvested energy is uncontrollable and the
power level could be as low as −40 dBm [20]. On the other
hand, the dedicated RF energy sources like cellular power tow-
ers are capable of providing on-demand energy supply with
QoS constraints. While the power densities at the receiving
antennas depend on the power of available sources and the
signal propagation distance, this kind of energy is often control-
lable and predictable if an intended energy harvesting receiver
is static. The harvested energy, by contrast, could be random
if the receiver is in motion. Considering the power consump-
tion and size (yielding different antenna apertures) of popular
mobile devices, a power station transmitting tens of watts can
power sensors, smartphones, laptops at a distance less than
15 m [28].

B. Energy Harvesting Models

Energy harvesting models play vital roles in designing
energy scheduling and evaluating the performance of energy
harvesting wireless communications. Fig. 2 shows the clas-
sification of various energy harvesting models, and Table II
summarizes the advantages, disadvantages and applications
of various models. Based on the availability of non-causal
knowledge about energy arrivals at the transmitters, the mod-
els adopted in the literature is primarily divided into two
classes: deterministic models [35]–[38] and stochastic models
[39]–[57], along with other special models [47], [60]–[63].

1) Deterministic Models: In deterministic models, full
knowledge of energy arrival instants and amounts is known
in advance by the transmitters [35]–[38]. The advantage and
disadvantage of this model are given as follows. By assuming
that the non-causal energy state information (ESI) is acquired
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Fig. 2. Classification of energy harvesting models.

perfectly, deterministic models are useful to characterize the
optimal energy scheduling strategies, to provide insights into
designing some suboptimal approaches which only require the
causal ESI, and to benchmark the fundamental performance
limits of energy harvesting systems. Nonetheless, the success
of the energy management utilizing this model heavily depends
upon on accurate energy profile prediction over a somewhat
long time horizon, and modeling mismatch often occurs when
the prediction interval becomes enlarged. Hence, the determin-
istic models are suitable for the applications with the energy
sources whose power intensities are predictable or vary slowly.

2) Stochastic Models: Recent attention has focused on
stochastic energy harvesting models in which the energy
renewal processes are regarded as random processes. One major
advantage of this type of models is that there is no need for
the non-causal knowledge of ESI, thereby being suitable for the
applications when the ESI is unpredictable, while the drawback
is that modeling mismatch always occurs because it is hard
to fully understand the stochastic behavior of ambient energy
sources. The authors in [39] present a stochastic solar radiation
model to describe the impact of clouds on the intensity of solar
radiation and the battery capacity recovery process. In [40]–
[43], the energy generation process is described via Bernoulli
models with a fixed harvesting rate under the assumption that
energy harvested in each time slot is identically and indepen-
dently distributed (i.i.d.). Other uncorrelated energy harvesting
models applied in the literature include the uniform process
[44], Poisson process [45], [46], and exponential process [47].
While these models are simple, they are inadequate to capture
the temporal correlation properties of the harvested energy for
most energy sources.

To this end, a correlated time process following a first-order
discrete-time Markov model is adopted in [48] for model-
ing the energy packet arrivals. In [36], the energy arrival and
amount are modeled as a Poisson counting process in time
and a non-negative uniform random variable, respectively. In
[49]–[53], energy from ambient sources is modeled by a two-
state (“GOOD” and “BAD”) Markov model to mimic the

time-correlated harvesting behavior, where in BAD state, no
energy arrives, and in GOOD state, the energy quantum arrival
is a Bernoulli random process. In [54] and [55], the energy gen-
eration process is modeled as a two-state (“ON” and “OFF”)
correlated process, where the energy is harvested with a con-
stant rate in the on state and no energy is generated in the off
state.

The two-state energy harvesting model is a good approxima-
tion for the illustration of some energy sources. For example,
harvesting from human motion in a body area network can be
described by two states which represent the subject is either in
rest or moving, and the weather states of solar power harvest-
ing may be shaded/cloudy and clear. Some papers consider the
use of generalized Markov models, where the number of sce-
nario states is more than two, each of which is governed by a
conditional probability mass function to describe the amounts
of energy arrivals at each time instant [56], [57]. In general, the
modeling performance can be improved when the number of
Markov states increases, but the complexity is also increased.

In addition to the types of models, an appropriate choice
of the underlying parameters in stochastic models such as the
transition probabilities of states and the probabilities of energy
arrival amounts at given states is another crucial issue. In real
applications, this should be closely related to real empirical
energy harvesting data measured by the energy harvester of
each communication node, and the energy harvesting capabil-
ity is typically node-specific. Only few attention has been paid
to the construction of real data-driven energy harvesting mod-
els [8], [57]. In [57], discrete harvested energy is assumed for
estimating the scenario parameters and the transition probabil-
ities of the generalized Markov models, based on a suboptimal
moving average and a Bayesian information criterion. In [8], a
Gaussian mixture hidden Markov model is adopted to quantify
energy harvesting conditions into several representative states
and to capture the dynamics of empirical solar power data.
Unlike the model in [57] which is constructed using discrete
energy regardless of the underlying distribution of solar energy,
this model is completely driven by real solar irradiance to deter-
mine the values of the parameters in the underlying Gaussian
distributions, followed by a step to map the continuous-time
model into a discrete energy harvesting model, in which the
Markov chain states are described by the state transition prob-
ability and the probability of the number of harvested energy
quanta at a given state. It is verified in [8] that this model works
quite well for the solar power.

Some statistical information can be used to enhance the accu-
racy of energy arrivals. In [58], average solar power profiles as
functions of time have been adopted in solar power harvesting
systems, and the problem that optimally controls the sensing
range of sensors in order to maximize the quality of cover-
age is studied with the assistance of solar power profiles. In
[59], the authors analyze the correlation between large-scale
solar and wind power in Sweden as well as the effect of geo-
graphic dispersion and combination of solar and wind power.
These high-order statistics are likely to be used to enhance the
performance of energy harvesting systems.

3) Other Models: Apart from the natural renewable energy
sources, a new emerging solution is to collect energy from RF
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TABLE II
ADVANTAGES, DISADVANTAGES, AND APPLICATIONS OF ENERGY HARVESTING MODELS

signals which are artificially generated by other external com-
munication devices. In this model, the received RF power in
free space propagation can be expressed according to the Friis
equation as follows [60]:

Pr = Pt Gs Gr

(
βλ

4πd

)2

, (1)

where λ is the wavelength, β represents the polarization loss,
Pt is the transmit power, Gt and Gr denote the transmit-
ting and receiving antenna gains, respectively, and d is the
distance between the transmitter and the receiver. The above
model is commonly used for dedicated RF energy harvesting.
For ambient RF sources, where the RF transmitters are not
intended for energy transfer, the model becomes more compli-
cated because the ambient RF transmitters work periodically
and their transmit power varies significantly from 106 W for TV
towers to 0.1 W to WiFi devices. In [61], a stochastic-geometry
model is investigated to characterize the average RF energy
harvesting rate at sensors powered by ambient RF sources.
Although the RF energy sources could be deterministic or ran-
dom, the amount of the harvested energy from RF signals
largely depends on two crucial factors: transmit power of dedi-
cated or ambient transmitters and the channels (including path
loss, shadowing and small-scale fading) from the transmitters to
the harvesting receivers. These two factors make the RF energy
sources very different from other “natural” energy sources, e.g.,
solar, wind, etc., and introduce a performance tradeoff between
information and energy transfer in wireless networks.

Except for the ambient or RF-based energy harvesting mod-
els, there exists another special type of energy harvesting
models, named hybrid models which combine the energy har-
vesting with the conventional power supply. This results in very
different models, as compared with the ones discussed in deter-
ministic and stochastic models, where the energy supply purely
relies on energy harvesting. The authors in [47] consider a
hybrid energy replenishment model for which the wireless sen-
sor can make use of two methods to replenish the battery. One
is to harvest energy from environment and store it in the battery,
and the other is to replace the battery directly. In order to model
this hybrid replenishment, a Markov chain model is proposed
to mimic the battery energy state transition. In [62], a hybrid
energy storage unit which is composed of a super capacitor and

a battery is mounted on an energy harvesting transmitter. The
former has good storage efficiency but limited energy capacity,
while the latter is capable of infinite size but suffers from ineffi-
cient storage. In [63], not only the renewable energy sources but
also the conventional energy sources such as diesel generators
or power grid are considered in designing energy harvesting
systems to mitigate the variability of natural energy generation.
Still, there are well-established models for vibration (or motion)
energy harvesting such as mass-spring models. The interested
readers are referred to [17] and the references therein for details.

III. ENERGY HARVESTING AND USAGE PROTOCOLS

Unlike the traditional battery-operated communications, the
energy of ambient energy sources available to energy harvest-
ing communication nodes is time-variant and often sporadic
even though there is potentially an infinite amount of energy.
The energy expenditure is inherently subject to an energy neu-
trality constraint which stipulates that at each time instant, the
cumulative energy expenditure cannot surpass the cumulative
energy harvested by that time, i.e.,

∑t
i=1 Pi ≤ ∑k

i=1 Yi , where
Yi and Pi are the harvested and the depleted energy at the i th

time instant, and k could be t − 1 or t which hinges on whether
the present harvested energy can be immediately used or not.
To smooth out the randomness effect, the scavenged energy
can be stored in an energy buffer, e.g., a supercapacitor or a
battery, to balance the energy arrival profile and the energy
consumption profile. But the capacity of the energy storage
devices may be limited, and this results in the possibility of
energy overflow. In addition, energy spending for data trans-
mission should also be aware of several practical considerations
such as the efficiency in storing energy, the energy leakage
from the storage device, the basic processing cost at commu-
nication nodes, the sleep-and-awake mechanism, etc. Below,
we first introduce three energy harvesting and usage protocols
that address these considerations for natural ambient energy
sources. Second, two energy harvesting protocols are presented
for simultaneous wireless information and power transfer. This
section serves as an important preliminary for readers to under-
stand the fundamental performance limits and tradeoffs of the
basic energy harvesting and usage schemes before we proceed
with the subsequent sections in which the challenges, related
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TABLE III
AMBIENT ENERGY HARVESTING AND USAGE PROTOCOLS

design issues and constraints, and existing works for various
energy harvesting networks are reviewed.

A. Ambient Energy Harvesting and Usage

Three energy harvesting and usage protocols are commonly
used in the literature: 1) harvest-use (HU), 2) harvest-store-
use (HSU), and 3) harvest-use-store (HUS) [56], [64]–[68].
Let Bi and Zi be the amount of energy stored in the buffer
and the processing cost at the i th time instant, respectively.
The processing cost means the power consumption spent in the
data transmission circuitry, and the circuit power consumption
is non-negligible in short range communications, as compared
with the data transmission power. The energy buffer evolution
processes of these three protocols are summarized in Table III,
where [x]+ = min (max (0, x) , Bmax), Bmax is the maximum
capacity of the energy buffer, and �x�+ = max (0, x).

• HU [64]: The communication node is directly powered by
energy harvesting systems, and there is no buffer to store
the present harvested energy for future use. Data trans-
mission occurs only when a sufficient amount of energy
is acquirable to cover the processing cost, i.e., Zi ≤ Yi .

• HSU [56]: There is a storage device to gather the har-
vested energy which can be used only after it is stored
in the buffer at the next time instance. Thus, the node
is active only if Zi ≤ Bi , and the available energy for
data transmission Pi is limited to �Bi − Zi�+. The energy
buffer is evolved by assuming that only β1Yi harvested
energy is charged in the buffer and β2 energy in the buffer
gets leaked in each time slot due to the inefficiency in stor-
ing energy, where 0 ≤ β1 ≤ 1 and 0 ≤ β2 < ∞. For an
Ni-MH rechargeable battery, β1 ≈ 0.7, and for a super-
capacity, β1 ≥ 0.95. Typically, the leakage factor β2 for
a battery is very small, but that for a supercapacitor is
relatively larger [62].

• HUS [65], [66]: The harvested energy that is temporar-
ily stored in a supercapacitor can be immediately used,
and the remaining energy after processing and transmis-
sion is transferred to the energy buffer for later use. This
protocol requires two energy storage devices, and the
maximum available energy for transmission Pi is subject
to �Bi + Yi − Zi�+. As mentioned before, a supercapac-
itor has a faster charging efficiency than a battery, but the
energy leakage for a supercapacitor is larger than that for
a battery. To improve this self-discharging problem, one
can alternatively adopt a battery as an energy buffer to
efficiently save the remaining energy for future use.

The information-theoretic capacity of energy harvesting
Gaussian channels is investigated under the ideal conditions of

β2 = 0, β1 = 1 and Zi = 0 [67], [68]. For the HSU scheme, the
capacity with an unlimited energy buffer is equal to the classi-
cal additive white Gaussian noise (AWGN) channel capacity
with an average power constraint equal to the average recharge

rate, i.e., CH SU (Bmax = ∞) = 1
2 log

(
1 + E[Yi ]

σ 2
n

)
, where σ 2

n

is the noise power, and E [·] takes the expectation. In [68],
two capacity-achieving schemes, namely save-and-transmit and
best-effort-transmit, are introduced. In the former one, a portion
of the total block length is used to save energy and to obtain
a sufficient amount of energy for sending the remaining code
symbols, while in the later one, the code symbol is sent as long
as there is sufficient energy in the battery.

Furthermore, it is shown in [67] that the capacity-achieving
signalling is truncated i.i.d. Gaussian with zero mean and vari-
ance E[Yi ] − ε > 0, where ε is an arbitrarily small value, and
the truncation is owing to the limitation of the available energy
in the battery. Besides, the capacity of the HU scheme is
upper bounded by that of the HSU scheme with an unlimited
energy buffer, i.e., CHU ≤ CH SU (Bmax = ∞). For a Bernoulli
energy arrival process, a simple approximation to the capacity
of the HSU scheme with a finite battery is provided in [69],
and the gap between the exact and the approximate capacities
is bounded within 2.58 bits. It also shows that the constant
gap becomes larger for general i.i.d. energy arrival processes.
While the processing cost and the energy storage inefficiency
are present, the achievable rate of the HSU scheme can be
extended by simply replacing E[Yi ] in the capacity formula
with β1E[Yi ] − E[Zi ] − β2. With a sleep-and-awake mecha-
nism, the achievable rate can be improved by allowing for the
energy harvesting communication nodes to choose to sleep. In
general, the HUS scheme has a better achievable rate than the
HSU scheme, while the two schemes attain the same perfor-
mance at β1 = 1. In particular, the performances of the HSU
and the HUS schemes may be worse than that of the HU scheme
when β1 is not sufficiently large. A more thorough review of the
channel capacity under different sizes of the battery (e.g., finite,
infinite, or zero storage) and channel conditions (e.g., AWGN
or noiseless binary channels) can be found in [23].

B. Simultaneous Wireless Information and Power Transfer

By leveraging RF signals, a new dedicated energy harvest-
ing technology has been proposed to delivery information and
power simultaneously [32], [28], [70], [26]. Nonetheless, it
is impossible to realize simultaneous energy harvesting and
information delivery due to practical circuit design constraints.
In practice, wireless energy harvesting can be operated in a
time sharing manner, in which the receiver uses a portion of
time duration for energy harvesting and the remaining time
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Fig. 3. Energy scheduling and related design issues.

for information processing, or a power splitting manner, in
which the received signal power is divided into two parts for
energy harvesting and information processing [71]. As com-
pared with the power splitting scheme, the time sharing scheme
is more attractive since the information receivers and energy
receivers are separately operated with different power sensitiv-
ities, and the gap between them could be as large as 40 dBm,
e.g., −50 dBm for the information receivers and −10 dBm for
the energy receivers [72]. Note that in cellular scenarios, the
term “simultaneous wireless information and power transfer
(SWIPT)” is mainly used for downlink transmission, whereas
the term “wireless-powered cellular networks (WPCN)” is for
uplink transmission [26]. Readers can refer to Section VI.D for
more detailed survey.

Some information-theoretic results regarding simultaneous
wireless information and power transfer systems are reported
in [73] and [74]. In [73], a fundamental tradeoff between the
rates of energy transfer and information transmission is stud-
ied in several noisy channels by defining a capacity-energy
function. Particularly, it is shown that in AWGN channels, the
goals of maximum information rate and maximum power trans-
fer efficiency are aligned, and the capacity-energy function is a
non-increasing concave function with respect to the minimum
requirement of the harvested power. The authors in [74] study
the information-theoretic results for the problem of information
and power transfer on a coupled-inductor circuit. The consid-
ered problem is a special case of a frequency selective fading
channel, and the authors point out a non-trivial tradeoff between
the information and power transfer.

IV. ENERGY SCHEDULING AND OPTIMIZATION

In the previous section, we have discussed various prelimi-
naries which are the first crucial step toward designing energy
harvesting communications. In addition to the available amount

of harvested energy which rests on the characteristic of energy
sources and the adopted energy harvesting and usage proto-
cols, the performance of an energy harvesting communication
system is determined by how to efficiently use the harvested
energy available at hands. In contrast to battery-operated sys-
tems, power management in energy harvesting systems needs
to harmonize the energy consumption with the battery recharge
rate since the ambient energy may arrive dynamically and spo-
radically. Hence, overly aggressive or conservative use of the
harvested energy may either run out of the energy in a finite
capacity battery (called energy outage) or fail to utilize the
excess energy (called energy overflow).

An illustration of the energy scheduling schemes and the
related design issues is shown in Fig. 3. In this section, we
first introduce the objectives for designing energy harvesting
communications in the existing works. Second, we concentrate
on the design of energy scheduling policies for point-to-point
communications using natural ambient energy sources. The
current research approaches regarding these energy scheduling
designs are two-fold: offline and online, depending on whether
the knowledge of channel state information (CSI) and ESI is
available non-causally or causally at the beginning of transmis-
sion. Here, the terms “offline” or “online” mean that the energy
is scheduled with offline or online knowledge of energy arrivals
and channel gains. A summary of offline and online energy
scheduling works is provided in Table IV. Third, we turn to dis-
cuss the energy scheduling problems for RF energy harvesting
in point-to-point communications.

A. Objectives

Several objectives have been considered in the literature
for designing point-to-point energy harvesting communica-
tions, including transmission completion time, data throughput,
outage probability, mean delay, message importance, quality



1392 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 18, NO. 2, SECOND QUARTER 2016

TABLE IV
SUMMARY OF OFFLINE AND ONLINE SCHEDULING METHODS

of coverage, generalized concave functions, grid power con-
sumption, harvested energy, etc. In [37], [38], [75], [76], the
transmission completion time for a given data arrival profile is
minimized, and this objective is often accompanied with both
energy and data constraints. The data throughput is maximized
according to Shannon Capacity formula in [36], [76]–[79], a
concave power-rate function in [80]–[82], the number of suc-
cessfully delivered bits or packets in [8], [48], [50], a discrete
set of rates in [83]. The minimization of the capacity outage
probability is considered in [79], [84]–[87]. The mean delay
criterion is used in [88] to minimize the transmission delay in
the data queue. In [47], [53], the importance of reported data
is utilized for the applications of sensor networks. The qual-
ity of coverage, in terms of the average number of events that
are correctly reported when they occur in the sensing region,
is considered in [54]. The generalized concave functions are
considered in [89] and [90] to capture the performance and the
behavior of the designed transmission policies. In the presence
of a hybrid power supply system, the objective of the grid power
consumption minimization is discussed in [46], [91], [92]. The
harvested energy is maximized in [93] for a wireless power
transfer system.

B. Offline Energy Scheduling

For offline approaches, the full (causal and non-causal)
knowledge of CSI and ESI during the energy scheduling period
is known to the transmitter side a priori. With the deterministic
energy harvesting models, energy scheduling, or equivalently

power allocation, optimization problems are commonly formu-
lated to maximize a certain short-term utilities over a finite time
horizon and solved by convex optimization techniques [36],
[76], [80].

Taking point-to-point energy harvesting communications in
fading channels as an example, the offline energy scheduling
optimization problem is given as [36]

max
pi ≥0

T∑
i=1

fi (pi ) (2)

subject to
l∑

i=1

ti pi ≤
l−1∑
i=0

Yi , l = 1, . . . , T ; (3)

l∑
i=0

Yi −
l∑

i=1

ti pi ≤ Bmax, l = 1, . . . , T − 1 , (4)

where the entire scheduling period is partitioned into several
epoches, each of which corresponds to the occurrence of chan-
nel state change, energy arrival or both, and the i th epoch is
denoted as ti , for i = 1, . . . , T . Here, the HSU protocol is
adopted for illustrating energy storage and usage, and Yi rep-
resents the new arrived energy ahead of the i th epoch. The
goal is to find the optimal power allocation pi during the i th

epoch for maximizing the sum of the utilities fi (pi ), while
being subject to the energy causality constraints in (3) and
the finite battery storage constraints in (4). As the energy con-
straints are convex, the optimal power allocation can be found
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by solving Karush-Kuhn-Tucker (K.K.T.) conditions, if the util-
ity function is concave. In general, this is true for widely used
data throughput utilities, which are non-negative, strictly con-
cave and monotonically increasing functions with respect to pi .
Particularly, if Shannon capacity formula, ti log (1 + hi pi ), is
applied, where hi is the channel gain for the i th epoch, the
optimal power allocation behaves like the conventional water-
filling. Due to the concavity of the Shannon capacity formula, it
is suggested from Jensen’s inequality that the water level should
be as flat as possible in time in order to maximize the data
throughput. However, the water level may change over time
so that the imposed causality and storage constraints on the
energy usage are satisfied. While the offline scheduling is unre-
alistic in real applications because of the need for non-causal
ESI knowledge, the properties of the optimal solutions provide
useful insights into designing some practical/online algorithms.

The transmission completion time minimization problem for
offline scheduling has been considered in [37] and [38]. In
[37], an offline completion time minimization problem that
allows packet arrivals during transmission on energy harvest-
ing fading channels is solved by establishing an equivalence
to a convex energy consumption minimization problem. In
[38], the optimal packet scheduling that adapts the transmis-
sion rate according to the harvested energy and the traffic load
is proposed to minimize the transmission completion time in a
single-user communication system. Two scenarios are consid-
ered by assuming that the packets are ready at the transmitter
before the transmission starts or the packets arrive during the
transmissions. The structural properties of the optimal transmis-
sion policy as well as the globally optimal scheduling algorithm
are investigated, in that the basic idea is to keep the transmit
power or rate as constant as possible during the entire transmis-
sion duration, while considering the causality constraints due to
data and energy arrivals for the feasibility.

The data throughput maximization problem is discussed in
[36], [76], [77], [80]. The work in [36] attempts to maxi-
mize the throughput by a deadline by controlling the transmit
power under channel fluctuations and energy variations. From
the K.K.T. conditions, it concludes that in the case of an infi-
nite energy storage capacity, the water level is monotonically
increasing, and if the energy at one epoch is spread to the next
epoch, the water levels in two consecutive epochs are the same.
Moreover, when the water level changes, the energy consumed
up to that time instant is equal to the total harvested energy.
However, the monotonicity of the water level no longer holds in
the case of a finite storage capacity. A directional water-filling
algorithm is proposed to find the optimal power allocation.
Similarly, the problem of maximizing the data throughput under
a deadline constraint is studied in [80] with finite energy storage
capacity. The feasibility of the power allocation that satisfies the
energy causality and the energy storage constraints is explained
geometrically via a feasible energy tunnel. Assuming that the
utility function is strictly concave and monotonically increas-
ing with the power, the cumulative energy consumption profile
of the optimal policy must be piece-wise linear within this tun-
nel as time progresses. Through the Lagrangian dual analysis,
it is shown that the solutions of the completion time minimiza-
tion and the throughput maximization problems are identical.

The problem of energy allocation over a finite time horizon
is considered in [77] so as to maximize the throughput, and
the obtained structural results are analogous to [36], yielding
a variation of the so-called water-filling policy that follows
staircase water levels. In general, finding the optimal dynamic
water-filling level is not an easy task, and recursive geomet-
ric water-filling approaches are proposed in [76] to effectively
find the optimal water level for the data rate maximization and
transmission completion time minimization problems.

In addition to the aforementioned two utilities, the offline
approaches are investigated by considering other different
objectives and constraints that can satisfy application-specific
design considerations [75], [83]–[85], [88], [94]. In [88],
throughput optimal and mean delay optimal energy manage-
ment policies are studied for a sensor node with energy harvest-
ing. It is assumed that the data and energy buffers are infinite,
and a necessary condition for stability of the data queue under
the energy neutrality constraint is proposed. The throughput
optimal policy is the same as the capacity-achieving policy in
[67], while a greedy policy that removes the data in the queue
as much as possible is the mean delay optimal policy if the
rate-power function is linear. In [75], the time instants and the
amounts of energy and data arrivals are assumed to be known
beforehand. Under the QoS constraints as well as the energy
and data causality constraints, the optimal data transmission
strategy is studied to minimize the transmission completion
time for an energy harvesting node with a finite battery capac-
ity. It is shown that the optimal cumulative data departure curve
is a piecewise linear function, and the battery overflows happen
only when the data buffer is empty.

The authors in [84] study the optimal power allocation to
minimize the average outage probability, which is in general
non-convex over the transmit power in fading channels. The
optimal power profile is shown to be non-decreasing over time
and has a save-then-transmit structure, and the globally opti-
mal solution with non-causal ESI is obtained by a forward
search algorithm. In [85], a weighted sum of outage probability
is minimized for power scheduling under preset transmission
rates over a finite time horizon. This non-convex problem is
transformed into a convex one by applying high signal-to-noise
power ratio (SNR) approximation. A piecewise power alloca-
tion structure is discovered for both infinite and finite battery
capacities, and a divide-and-conquer algorithm is proposed to
recursively find the optimal power allocation. A discrete-rate
adaptation problem for optimizing the throughput is addressed
in [83] for energy harvesting wireless systems with infinite-size
energy buffers, while individual packet delay constraints are
further included in [94] to minimize the energy consumption
or to maximize the throughput in case the harvested energy is
insufficient for all packets to meet the deadlines.

The optimal offline solution for a generalized concave util-
ity function is studied in [89] and [90]. In [89], a generalized
concave utility maximization problem as well as its general
solution is investigated in energy harvesting wireless sensor
networks. Two applications, called sum-rate maximization and
distributed estimation, are demonstrated, and the solutions can
be considered as the extension cases of the well-known water-
filling. In [90], it is shown that if the considered utility function
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is a concave non-decreasing function and the energy reservoir
is unlimited, the performance upper bound can be achieved by
a constant energy spending strategy that equals to the aver-
age energy replenishment rate. Motivated by this insight to
develop a simple energy management scheme, the performance
limits of sensor nodes with finite battery and data buffers are
analyzed, which shows that the optimal utility can be asymptot-
ically achieved, while keeping battery discharge and data loss
probabilities low. Finally, some useful guidelines from the lit-
erature are summarized in [25] for the design of the optimal
offline policies.

C. Online Energy Scheduling

The online approaches only account for the causal knowl-
edge of the CSI and ESI, or some statistical knowledge of the
channel and energy harvesting dynamic processes. When the
transmitter only has the causal ESI, the time average of the
amount of harvested energy, called energy harvesting rate, is a
common figure of merit for designing the online algorithm [95].
On the other hand, with the stochastic energy harvesting mod-
els to acquire the statistical knowledge, stochastic optimization
techniques, e.g., Markov decision processes (MDP), are appeal-
ing solutions to maximize the long-term utilities of relevant
optimization problems [36], [50], [77], [81].

We take the design of online power control schemes in
point-to-point energy harvesting communications as an exam-
ple. Based on stochastic energy harvesting models, an MDP
design framework can be formulated, and the main ingredients
of the MDP are states s ∈ S, actions a ∈ A, rewards Ra(s) ∈ R

and state transition probabilities Pa
(

s′∣∣ s
)
. The state could be

a composite state of quantized channel and battery conditions,
and the action is referred to as the transmit power level or the
amount of energy to be used. The affordable action at the states
is limited to the corresponding battery condition. Furthermore,
the reward is a function of the states and the actions, which
could be data throughput [8], [50], outage probability [96],
symbol error rate (SER) [97], etc., and the state transition prob-
ability describes the transition probability from the current state
to the next state with respect to each action. The goal is to
find the optimal policy π (s) which specifies the optimal action
in the state and maximizes the long-term expected discount
infinite-horizon reward Vπ (s0) starting from the initial state s0
as follows:

Vπ (s0) = Eπ

[ ∞∑
i=0

αi Rπ(si ) (si )

]
, si ∈ S, π (si ) ∈ A , (5)

where 0 ≤ α < 1 is a discount factor, and the long run average
objective can be closely approximated by selecting a discount
factor close to one. The optimal long-term expected reward is
irrelevant to the initial state if the states of the Markov chain
are recurrent. Under this circumstance, the optimal solution
satisfies the Bellman’s equation [98]:

Vπ� (s) = max
a∈A

[
Ra (s) + α

∑
s′∈S

Pa
(

s′∣∣ s
)

Vπ�

(
s′)] . (6)

Standard algorithms for solving the Bellman’s equation include
value iteration, policy iteration and linear programming [98].
However, the main disadvantage of these algorithms is that
the optimization may be computationally cumbersome as the
number of states in the MDP increases even though the opti-
mal policy can be implemented using a look-up table. Besides,
constrained MDP problems can be formulated for online
scheduling with a certain constraints, e.g., minimum through-
put requirements in [99], [100]. To solve the constrained MDP
problems, a common approach is to transform the problems
into linear programming formulation and to obtain the optimal
solution by applying standard optimization solvers.

The online scheduling approaches using the MDP have been
extensively investigated in the literature. In [36], an optimal
online policy is proposed by using dynamic programming to
maximize the throughput by a deadline constraint. Due to the
curse of dimensionality in the dynamic programming, several
event-based suboptimal policies in response to the changes of
fading levels and energy arrivals are investigated. Some struc-
tural results are explored for optimal transmission policies in
[8], [50], [77] and [81]. In [50], a Markov decision problem is
formulated for an energy harvesting source node with an infinite
energy queue to decide whether to transmit or defer the trans-
mission in each time slot. With a simple uncorrelated energy
arrival assumption, the objective is to maximize the expected
number of successfully delivered packets over a Gilbert-Elliot
channel, and the optimal policy has a threshold-type policy
depending on the channel state and the energy queue length.
Besides, the structural properties of the maximum through-
put and the corresponding optimal policy are provided in [77].
Specifically, the optimal throughput and the optimal power
allocation are concave and non-decreasing, respectively, in the
battery states, if the throughput-power function is concave.

The authors in [81] discuss a monotonic structure for the
policy with multiple transmit power levels; that is, if a higher
transmit power level is preferred to a lower one at some bat-
tery levels, then it will continue to be a preferred one at a
higher battery level. While this structure may be intuitively
reasonable, it does not always hold in general cases, although
such cases are rare. The threshold and monotonic structures are
also discussed in [8] for a solar-powered communication sys-
tem with adaptive power and modulation schemes, based on a
realistic energy harvesting model. With an access control mech-
anism and a maximum power constraint for the transmitter, an
achievable rate maximization problem is cast as an MDP with
continuous battery states in [78], which is different from the
discrete battery-and-power assumption in the aforementioned
works. The value function is approximated as a piecewise lin-
ear function to efficiently solve the problem and to obtain the
continuous power allocation.

In general, the offline algorithms outperform the online algo-
rithms due to the availability of the non-causal knowledge of
energy arrivals and channels, and the author in [101] analyzes
the performance of an online algorithm by evaluating its com-
petitive ratio which is defined as the maximum ratio of the
gain between the optimal offline algorithm and the online algo-
rithm over possible sequences of energy arrivals and fading
coefficients. For the general case of arbitrary sequences, the
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competitive ratio is equal to the total number of time slots over
which the achievable rate is optimized.

The online transmission schemes are designed using other
utility functions in [47], [53], [54], [84] and [96] rather than the
data throughput. In [47], a threshold-based approach is investi-
gated for single-hop transmission over a replenishable sensor
network, and there exist optimal thresholds to maximize the
average reward rate in terms of message values. The author in
[53] attempts to maximize the long-term importance value of
reported data, and a low-complexity balanced policy that solely
adapts to the energy harvesting states is proposed to balance
the energy consumption and energy harvesting. In [54], energy-
efficient transmission strategies are developed for body sensor
networks with energy harvesting to maximize the quality of
coverage through an MDP design framework. In [84], optimal
and suboptimal online power allocation methods are proposed
to minimize the outage probability by applying dynamic pro-
gramming. In [96], an MDP-based power allocation policy is
proposed to minimize the rate outage performance. Therein,
a threshold structure and a saturated structure are discovered
for the optimal policy and the corresponding expected outage
performance, respectively.

Still, some works address the design issues of online trans-
missions from application aspects [51], [65], [102], [103]. In
addition to the transmit power, the energy allocation for sens-
ing is considered in an energy harvesting sensor node with a
finite data buffer in [102]. With the objective of maximizing
the expected total amount of transmitted data in the MDP, the
sensor needs to decide the amount of energy dedicated to sens-
ing and transmission by taking into account the data buffer,
battery, channel, and energy harvesting rate status. The prob-
lem of energy allocation for an energy harvesting sensor node
to convey the noisy measurements to the receiver is addressed
in [103], and the objective is to minimize the estimation error
covariance in Kalman filtering with random packet losses over
fading channels. From dynamic programming, a threshold pol-
icy is developed for binary energy allocation levels, and a
suboptimal gradient algorithm is proposed for computing the
threshold. In [51], a modified policy iteration algorithm is pro-
posed for the recent application of energy-harvesting active net-
worked tags in order to optimize the long-term communication
reliability.

Considering the fact that the energy harvesting process
evolves slowly compared to the channel fading, the authors
in [65] propose a dual-stage power management approach, in
which the outer stage schedules the power for the use in the
inner stage so as to maximize the long-term average utility,
while the inner stage optimizes the communication parameters
to maximize the short-term utility. In [104], a string tautening
method, which is comprised of three mixed policies (on, off
and first-on-then-off), is developed to perform energy-efficient
scheduling while providing QoS to delay-sensitive data. It
demonstrates that the packet drop rate and delay time can be
reduced when the energy harvesting rate and battery capacity
are large enough.

Learning the underlying stochastic knowledge of the energy
harvesting models must be an imperative but nontrivial
step toward the implementation of the MDP-based energy

management policies. This is especially difficult for some
unstable energy sources or in some deployment scenarios.
Some works have been conducted to address this issue. Some
non-real-time and real-time approaches have been proposed by
utilizing the past energy harvesting profiles to learn the random-
ness of the energy generated by harvesting sources [8], [45],
[48]. In [8], a data-driven stochastic energy harvesting model
is learned beforehand based on the historic energy harvesting
records gathered by a communication node, and by applying the
discounted MDP, a data-driven transmission policy is proposed
to decide the optimal action at each time instant according to
the past and present observations of solar irradiance.

As an alternative, Q-learning can be used to find the opti-
mal policy for any given MDP without requiring the model of
the environments. It works by learning an action-value func-
tion which ultimately gives the long-term expected reward for
a given action at a given state rather than using the state tran-
sition probability to carry out the long-term expected reward
statistically. In [45], two reinforcement learning algorithms,
Q-learning and speedy Q-learning, are applied to derive real-
time transmission policies by learning the joint randomness of
data arrivals and energy arrivals generated by the sensor and
the energy source, respectively. Similarly, a learning theoretic
approach is proposed in [48] to learn the optimal transmission
policy by tentatively performing actions and observing imme-
diate rewards for point-to-point energy harvesting communica-
tions, and it does not require any a priori stochastic information
on the data and energy harvesting Markov processes in the
MDP.

D. Energy Scheduling in Wireless/RF Energy Harvesting

The energy scheduling problems in dedicated RF energy har-
vesting are totally different from those in offline and online
scheduling because the RF harvested energy is predictable and
stable. Moreover, the energy scheduling for RF energy harvest-
ing is optimized only over a single period of time without being
subject to energy causality constraints. Hence, the main focus
in the existing works is to optimize the time duration of infor-
mation processing and energy harvesting. In [86], the authors
investigate a point-to-point wireless link, in which the receiver
decodes information and harvests energy from the transmitter
with a fixed power supply at the same time. The optimal mode
switching rule at the receiver is proposed to achieve various
trade-offs between the minimum information outage probabil-
ity (or the maximum ergodic throughput) and the maximum
average harvested energy. Similarly, a point-to-point wireless
link is considered in [105]; however, the energy harvesting
receiver makes use of harvested energy to transmit information
to the transmitter. Thus, the optimal time allocation between
the wireless energy reception and information transmission is
derived to maximize the average throughput.

Considering the two kinds of simultaneous information and
energy transfer methods, power splitting and time sharing, the
authors in [106] derive the average achievable rate. In [93],
the receiver neither transmits data signals to the transmitter nor
decodes information from the transmitter. Instead, the authors
emphasize a problem that the receiver feedbacks the CSI to the
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transmitter for energy beamforming so as to harvest the energy
as much as possible. The time duration of channel estimation
at the receiver is optimized to maximize the amount of energy
harvested by the receiver. In [107], a self-sustainable orthogonal
frequency division multiplexing (OFDM) receiver is proposed
by recycling the cyclic prefix of the received signals to extract
the power. The feasibility conditions for self-sustainability are
analyzed in terms of power consumption of the receiver. An
OFDM two-way communication link with hostile jamming is
studied in [108], wherein the receiver can decode information
and harvest energy from the received source signal and jam-
ming signal using the power splitting method. The transmit
power and power splitting ratio are jointly optimized to max-
imize the sum throughput of the forward and backward links.

V. DESIGN ISSUES IN ENERGY HARVESTING

COMMUNICATIONS

In this section, we consider other design issues, as shown in
Fig. 3, for point-to-point communications that have not been
discussed in the previous section, including imperfect batter-
ies, ESI and CSI uncertainty, upper-layer protocols, hybrid
power supply, etc. These design issues are even more chal-
lenging, but practical, to the success of energy harvesting
techniques. For example, the imperfection of battery storage is
an unavoidable problem which will degrade the system perfor-
mance. The uncertainty of ESI and CSI causes the ambiguity
in scheduling the harvested energy. Some upper-layer issues
have been addressed in the literature to improve the network
performance by considering the different energy harvesting
capabilities among nodes. While the combination of an energy
harvester and a power grid can potentially improve the feasibil-
ity of energy harvesting techniques, the main challenge is how
to minimize the grid power consumption and to maintain the
system performance at the same time.

A. Imperfect Battery Storage and Other Power Consumption

In previous works, the transmit power is the unique source
of energy consumption; however, in some cases, other sources
of energy consumption at the transmitter may dominate over
the power radiation. For example, the circuit processing power
could be larger than the transmit power for short-range com-
munications. These design considerations, including the energy
leakage and charging/discharging inefficiency of imperfect bat-
teries, are addressed in [82], [83], [109]–[111]. In [109],
throughput-optimal transmission policies that consider the non-
ideal circuit power are studied for energy harvesting wireless
transmitters with infinite battery storage capacity. The opti-
mal offline policies follow a two-phase transmission structure,
where in the first phase, the optimal transmission is on-off,
while in the second phase, continuous transmission is opti-
mal. Finally, an online algorithm based on the closed-form of
the offline solution is proposed by using the statistical knowl-
edge of energy arrivals to approximate the sum of causal energy
profiles.

The work of [110] generalizes the power consumption
model to mimic other hardware/software-dependent energy

consumption sources, e.g., channel access and stream acti-
vation, in multiple parallel AWGN channels with multiple
data streams. With this model, the authors study the opti-
mal resource allocation problem to maximize the capacity via
integer relaxation and dual decomposition and give a boxed
water-flowing graphical representation for the asymptotically
optimal solution. The result can be considered as a general-
ized interpretation of the directional water-filling in [36]. The
influence of battery charging/discharging inefficiency on the
throughput-optimal transmit power policy is studied in [111]
for single-user and broadcast channel models. Interestingly, a
double-threshold structure is discovered to determine when to
store, retrieve, and use the harvested energy in the battery.

The effects of various energy overheads, e.g., battery leakage
currents and storage inefficiencies, on discrete-rate adaptation
policies of energy harvesting nodes are examined in [83]. A
general framework that maximizes the transmission rate for
energy harvesting communications with an imperfect battery
is introduced in [82]. Different from the previous works, the
cumulative energy for data transmission is bounded within min-
imum and maximum energy curves, which can be used to model
the effects of the battery with finite size and energy leakage,
respectively. In fact, the constant energy leakage can be alter-
natively interpreted as the constant operation (or circuit) power
to keep the node awake. Hence, the optimal offline transmission
strategies in [82] and [109] are similar.

An energy harvesting transmitter with hybrid energy storage
which is comprised of a perfect super-capacitor and an inef-
ficient battery is studied in [62]. The storage capacity of the
super-capacitor is finite, whereas that of the battery in infinite.
In contrast to the previous works, the transmitter has to man-
age the internal dynamics of the storage unit. The obtained
solution of energy allocation generalizes the directional water-
filling algorithm in [36]. Furthermore, when a linear processing
cost in time is taken into account, a directional glue pour-
ing algorithm in [112] can be applied to find the optimal
solution.

B. ESI and CSI Uncertainty

The successful implementation of energy harvesting commu-
nications relies on accurate estimation of energy and channel
profiles or the relevant statistical information. However, accu-
rate estimation of these profiles in real-world is typically costly
and even impractical, and it inevitably causes performance
degradation due to estimation error. Thus, new algorithms have
been designed to accommodate these estimation errors [43],
[56], [78], [113], [114]. In [78], the energy prediction error
which is modeled as a discrete uniform distribution is con-
sidered in the design of MDP-based optimal power allocation.
In [113], a weather-aware transmission approach is proposed
based on a weather-conditioned moving average prediction
algorithm to mitigate the uncertainty.

By modeling the energy harvesting process as a hidden
Markov chain, the authors in [56] investigate the impact of
imperfect state-of-charge knowledge, i.e., the amount of energy
stored in the buffer, and design policies to cope with such uncer-
tainty, where the state-of-charge is only known to the extent
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of a rough quantization. It is concluded that the knowledge
of the state of the energy harvesting process is more criti-
cal than the perfect knowledge of the state-of-charge. Partially
observable MDP (POMDP) can be used to find the optimal
strategy when the network state information is incomplete, e.g.,
unknown CSI.

In [43], this work finds the outage-optimal power transmis-
sion policies with automatic repeat request, and the CSI is
partially observable only through ACK/NACK feedback mes-
sages. The POMDP framework is cast to find the optimal solu-
tion, and two computationally efficient suboptimal approaches
are proposed according to the belief state of the channel and
the solution of the underlying MDP. In [114], a simultaneous
information and power transmission system is studied under
imperfect CSI at the transmitter. A robust beamforming prob-
lem is formulated to maximize the worst-case harvested energy
for an energy receiver while satisfying the rate requirement for
an information receiver, and the problem is efficiently solved
by relaxed semidefinite programming.

C. Upper-Layer Protocol Designs

Due to the heterogeneity of energy availability among nodes,
new upper-layer algorithms are needed to adapt to the dynamic
of energy harvesting and to ensure the satisfaction of network
performance such as low latency, low packet loss, and high
packet delivery rates. In [115], several medium access con-
trol (MAC) protocols such as time division multiple access
(TDMA) and ALOHA are revisited for wireless sensor net-
works with energy harvesting. A performance tradeoff between
a delivery probability, which measures the capability of a MAC
protocol to successfully deliver data packets of any node, and
a time efficiency, which measures the data collection rate at a
fusion center, is analytically investigated using Markov models.
For the purpose of reducing sleep latency and balancing energy
consumption among nodes, two duty-cycle scheduling schemes
are proposed in [116] according to the current amount of resid-
ual energy only or more aggressively based on the prospective
increase in the residual energy. The proposed schemes have
lower end-to-end delay and a higher packet delivery ratio than
a static duty-cycle scheduling scheme.

In [55], closed-form expressions for the probabilities of event
loss and average delay are derived using a Markov model which
integrates the energy harvesting and event arrival processes.
Based on analytical results, the sizes of the energy harvester
and the capacities of the energy storage and the event queue
are optimized. In [117], data collection rates and data rout-
ing structures are designed for wireless sensors under energy
causality constraints. A centralized algorithm is proposed to
jointly optimize the data collection rate and the flow on each
link. Moreover, two distributed algorithms are proposed with
or without predefined routing structures. Only few attention
has been paid to cross-layer optimization in energy harvest-
ing communications. In [118], the authors develop a cross-layer
scheduling scheme among three layers: source rate control at
the transport layer, flow rate and multipath routing optimization
at the network layer, and duty cycling optimization at the MAC
layer.

D. Hybrid of Energy Harvesting and Power Grid

Due to the random nature of energy arrivals, it is hard to guar-
antee the QoS of a communication system solely powered by
the harvested energy. Furthermore, the communication services
may be interrupted when the energy exhaustion problem occurs.
Recently, hybrid energy supply, where the energy comes from a
power grid and an energy harvester, has emerged as an alterna-
tive solution to this challenge. In a hybrid energy supply system,
it is essential to design energy scheduling algorithms in order
to minimize the energy consumption of the power grid, while
ensuring the service requirements [46], [91]–[92]. In [91], the
task is to minimize the power grid energy consumption sub-
ject to harvested energy and data causality constraints in fading
channels, and in particular, the considered problem is the dual
problem of throughput maximization when all data packets are
arrived before transmission. The structures of power allocation
are also analyzed in some special cases, e.g., infinite battery
capacity, grid energy only or harvested energy only, etc. In
[119], a delay optimal scheduling problem is addressed for a
transmitter powered by an energy harvesting battery of finite
capacity together with a power grid subject to an average power
constraint, and it is found that the transmitter will resort to the
power grid when its data queue length exceeds a threshold and
no harvested energy is available.

In [92], the design goal is to minimize the power consump-
tion of the constant energy source for transmitting a given
number of data packets within a finite number of time inter-
vals. In [46], the average energy consumed from the power grid
is analyzed for two strategies having different ways of using the
harvested energy. In [87], the authors investigate transmission
scheduling problems in hybrid energy supply systems under a
save-then-transmit protocol, where a saving factor is used to
control the ratio of harvesting time and transmission time. If
the CSI is unknown, an outage probability minimization prob-
lem is formulated to find the optimal saving factor. For the case
that the transmitter has the CSI, a battery energy consumption
minimization problem is considered for jointly optimizing the
bit allocation and the saving factor via dynamic programming,
while ensuring the transmission service requirement. Moreover,
stochastic dynamic programming is applied when only causal
information is available.

VI. ENERGY HARVESTING NETWORKING

In the past decade, the spirit of cooperation among nodes
has fostered tremendous progress on the development of mod-
ern wireless communications. Several paradigm-shifting tech-
nologies such as cooperative communications and cognitive
radios have been proposed for wireless networks in the spirit
of cooperation to overwhelm the limitation of the two pre-
cious resources, power and spectrum, and the performance loss
caused by wireless fading channels.

However, energy harvesting wireless networks differ from
the traditional counterparts in that the nodes experience dis-
tinct energy harvesting capabilities and efficiencies and the
achievable performance gain is further influenced by the avail-
ability of energy resource. Therefore, the design of energy
harvesting networks must be revisited not only to account
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Fig. 4. A taxonomy of energy harvesting networking.

for the performance gain, probably resulted from informa-
tion, spectrum or energy cooperation, but also to adapt to the
temporal variation of battery recharge processes. Additionally,
it necessitates to reconsider new transmission schemes for
multi-user networks and cellular networks, e.g., multiple access
channels, broadcast channels, and multi-user interference chan-
nels, and to study their fundamental performance limits when
energy harvesting is applied. A taxonomy of energy harvest-
ing networking is shown in Fig. 4. In this section, we will
review the existing energy harvesting approaches in various
basic network configurations, including cooperative networks,
cognitive radio networks, multi-user networks, and cellular net-
works. The motivation and challenges to the inclusion of energy
harvesting techniques in various types of wireless networks are
discussed at the beginning of the following subsections.

A. Cooperative Energy Harvesting Networks

Cooperative communication that pertains to a paradigm of
information cooperation has gained much interest to mitigate

the wireless channel fading and to improve the reliability of
wireless links by exploiting the spatial diversity gains inher-
ent in multi-user environments [120]. This can be achieved by
allowing nodes to collaborate with each other with information
transmission and thus forming virtual multi-input multi-output
(MIMO) systems without the need of multiple antennas at each
node.

Considering the fact that wireless cooperative nodes are often
subject to space limitation to utilize a large battery with long
lifetime, energy harvesting techniques have been introduced
for self-sustainable cooperative relays to not only improve the
throughput and reliability by harnessing the spatial diversity
but also promise perpetual network lifetime without requiring
periodic battery replacement. Owing to the new imposed time-
varying energy constraints, several fundamental issues like
relaying protocols in [121], [122], power allocation in [123],
[97], relay selection in [124], [125], two-way relaying in [126],
etc., have been revisited for various cooperative network config-
urations. In general, energy scheduling problems in cooperative
communication become more complicated because the energy
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usage over time needs to make a tradeoff between the link per-
formance of each hop and the battery recharge rate at each node.
Below, we will review the recent advances in the topics of two-
hop, two-way, and multi-hop cooperative communications and
relay selection.

1) Two-Hop Cooperative Communications: The ambient
energy harvesting for two-hop cooperative communications
has been studied in the literature [97], [121]–[123], [127],
[128]. The authors in [121] study power allocation for clas-
sic three-node decode-and-forward (DF) relay networks under
deterministic energy harvesting models. The throughput maxi-
mization problem over a finite horizon of transmission blocks is
investigated by considering the cases of delay-constrained traf-
fic or no-delay-constrained traffic. For the latter case, a form of
energy diversity is explored with delay tolerance. By deploying
a half-duplex relay, a joint time scheduling and power allocation
problem is addressed in [123] for a two-hop relay network with
an energy harvesting source. Two design objectives are con-
sidered: short-term throughput maximization and transmission
completion time minimization, where a directional water-filling
algorithm found in [36] is served as a guideline for deriving the
optimal solutions.

The problem of throughput maximization in a two-hop
amplify-and-forward (AF) relay network is addressed in [122],
where both the source and the relay nodes have the capability
of harvesting energy. The offline and online power allocation
schemes are designed for the two scenarios with causal or
non-causal knowledge of harvested energy and channel gains,
respectively. For the offline case, an alternative convex search
algorithm is proposed to find the optimal power allocation at the
source and the relay. For the online case, the problem is solved
by an MDP framework, and a threshold property is explored
under an on-off switching power control scheme.

In [97], an MDP-based relay transmission policy is found
to minimize the long-term SER of a DF cooperative system.
The asymptotic SER and its performance bound are analyzed
to quantify the diversity gain and the energy harvesting gain,
which reveals that full diversity is guaranteed if the probability
of harvesting zero energy quantum is zero. In [127], stabil-
ity analysis is conducted for a non-cooperative protocol and
an orthogonal DF cooperative scheme in an energy harvest-
ing network with three nodes. The optimal transmission power
is found to maximize the stable data throughput. The authors
prove that the cooperative transmission scheme is a better solu-
tion in the case of poor energy arrival rates, whereas the direct
transmission scheme is suitable for high energy arrival rates.
In [128], optimal relay scheduling is investigated to decide
whether the energy harvesting relay helps the energy harvesting
source to forward information or transmits its own informa-
tion. The problem is formulated as the MDP and the POMDP
by considering the long-term link coverage quality as the
utility.

Dedicated energy harvesting from RF signals is naturally
applicable to cooperative networks as it facilitates informa-
tion relaying [29]. The main design concern in this direction
is to determine an appropriate time sharing or power split-
ting ratio that enables the best tradeoff between signal relay-
ing and energy harvesting. In [71], two relaying protocols of

time sharing and power splitting are considered for two-hop
relay networks, where the relay harvests energy and decodes
information from the RF signal of the source. The analytical
expressions for the outage probability and the ergodic capac-
ity are derived to quantify the effect of various parameters such
as energy harvesting time, power splitting ratio, source-to-relay
distance, etc. Moreover, the study in [29] shows the superiority
of a new unidirectional receiver, where the energy at the relays
either enters or leaves the energy storage without being split in
time or power. The work of [129] studies a three-node coopera-
tive network, where the relay node is operated in two modes:
harvesting energy from the RF signal of the source node or
relaying the source’s data to the destination. A greedy switch-
ing policy, where the second mode is executed only when the
relay has sufficient energy to ensure decoding at the destination,
is investigated by using Markov chain to characterize the outage
performance. A two-user cooperative network, which includes
two source nodes and one destination node, is considered in
[130], and the source nodes rely on the RF energy harvesting
from the destination node and may cooperate by using either
DF or network coding methods. The system outage probability
is minimized by optimizing the time allocation. Also the design
of RF energy harvesting is extended to relay channels with
multiple antenna configurations to reap the benefit of spatial
processing in the current literature.

In [131], a joint antenna selection and power splitting scheme
is proposed to determine the optimal power splitting ratio
and the optimized antenna set which is engaged in signal
relaying. The relay networks in the presence of multiple source-
destination pairs are studied in some existing works. In [132],
relay transmission strategies are proposed for one-way relay
networks, wherein multiple source nodes communicate with
their respective destination nodes via a RF energy harvesting
relay. The outage probabilities are analyzed for two central-
ized power allocation schemes, equal power and sequential
water filling, and a distributed auction-based power alloca-
tion scheme. A cooperative network with multiple source-
destination pairs and an energy harvesting relay in considered
in [133], where the relay exploits the DF protocol and harvests
energy from the RF signals of the sources. The outage prob-
ability is analyzed by considering the spatial randomness of
user locations. Furthermore, the cooperation is modeled as a
canonical coalitional game, and a grand coalition, which means
forming a larger cooperative group is better than acting alone,
is preferred in high SNR regimes. The authors in [134] use non-
cooperative games to derive power splitting ratios for all relays,
each of which is dedicated to one source-destination pair. Each
link is regraded as a strategic player who aims at maximizing
its own data rate. The existence and uniqueness of the game are
analyzed, and a distributed algorithm is proposed to achieve the
Nash equilibriums.

2) Relay Selection: Relay selection is a pragmatic tech-
nique to reduce the complexity for multiple relay-assisted net-
works. Unlike the conventional relay selection schemes where
the source node selects the relay which provides the best equiv-
alent SNR among all relays, relay selection in energy harvesting
communications needs to further take the energy harvesting
condition at each relay into account. This is because if a relay
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is often selected, its battery may drain out quickly due to a slow
recharge rate. Some existing works have focused on the coop-
erative systems with multiple relays, which allows the relay
nodes to leverage the energy harvesting opportunity. The works
in [95], [124], [125] address relay selection problems with
ambient energy harvesting. In [124], voluntary AF relays are
applied to assist in forwarding signals from a source node to
a destination node. The SER of the system is analyzed under
energy constrained and energy unconstrained cases, and asymp-
totic analysis is conducted for the cases when the SNR or the
number of relays is large. In [125], a survival probability of
energy harvesting relays, i.e., a probability that the remain-
ing energy is greater than zero during one data transmission
frame, is introduced in order to jointly optimize the resource
block allocation, power control and relay selection for orthog-
onal frequency division multiple access (OFDMA) systems. In
[95], joint relay selection and power allocation schemes are pro-
posed to maximize the throughput of a cooperative network,
wherein an energy harvesting source communicates with a des-
tination via multiple energy harvesting relay nodes exploiting
an AF protocol. An offline optimization problem is formu-
lated as a non-convex mixed integer nonlinear program and
solved by Bender’s decomposition. Two online but suboptimal
schemes, namely the energy harvesting rate-assisted scheme
and the naive scheme, are proposed with low complexity. The
relay selection problem with dedicated energy harvesting is
studied in [135]. Therein, the authors consider a two-hop relay
network with multiple relay nodes which can harvest RF energy
opportunistically from the source or other relays, and they pro-
pose the optimal time allocation for the source and the relays
by solving a linear program.

3) Two-Way and Multi-Hop Cooperative Communications:
Relevant design issues are also extended to two-way and multi-
hop relay networks with ambient energy harvesting in [52],
[126], [136], [137] and dedicated energy harvesting in [138].
In [126], the authors investigate the optimal transmission pol-
icy for energy harvesting two-way relay networks. Through an
MDP framework, a long-term outage probability is minimized
by adapting the relay transmission power to the wireless chan-
nel states, battery energy amount and causal solar energy states.
An interesting saturated structure for the outage probability
is revealed in high SNR, and a saturation-free condition that
guarantees a zero outage probability is proposed. Furthermore,
when only partial state information about the relay is avail-
able at the source node, the transmission scheduling problem
is cast as a POMDP in [52]. In [136], a cooperative auto-
matic repeat request (ARQ) transmission protocol for multiple
energy harvesting sensor nodes is investigated to maximize the
throughput, and it is shown that the proposed scheme improves
the system throughput by balancing the sensor nodes’ energy
consumption to match their own battery recharge rates. In
[137], power allocation, routing, and scheduling decision are
investigated for a multi-hop network powered by finite-capacity
energy storage devices using quadratic Lyapunov and weight
perturbation optimization techniques. A non-regenerative two-
way relay network which includes two source nodes, a relay
node equipped with multiple antennas, and a RF energy har-
vester is considered in [138]. The objective is to maximize

the sum rate of the two-way relay network by designing relay
beamforming under a transmit power constraint at the relay
and an energy harvesting constraint at the RF energy harvester.
An iterative algorithm based on semi-definite programming
and rank-one decomposition is proposed to find the optimal
solution.

Due to the heterogeneity and the variability of energy har-
vesting conditions, recent advances in energy harvesting com-
munications also stimulate the interest of researchers in another
dimension of cooperation, termed energy cooperation, which
relies on dedicated energy harvesting for sharing energy among
nodes. In [139], energy cooperation is studied for several basic
network structures, including relay channels, two-way chan-
nels, etc. In this context, nodes can cooperate with each other
to transfer energy from one of the nodes to the other over wire-
less physical channels despite the possible energy transfer loss.
In [79], joint power allocation for cooperation communications
with or without one-way energy sharing from the source to
the relay is studied under the assumption of non-causal CSI
and ESI, and in general, the energy sharing could improve the
end-to-end throughput. In [140], a sum distortion minimization
problem over a finite-time horizon is studied for multi-sensor
estimation systems, in which sensors can not only harvest ambi-
ent energy but also share energy with their neighoring nodes.
The optimal policy for energy allocation and sharing is pro-
posed, and it is found that the average distortion decreases when
the battery capacity and the energy transfer efficiency increase.
The authors in [27] consider three relay placement scenarios
for two-hop energy transfer (close to the RF source, the desti-
nation, and midpoint of the two nodes), and the experimental
results show that the destination node can obtain more energy
when the relay is closer to the destination.

Concluding remark: In this subsection, two-hop energy
harvesting cooperative networks have been reviewed, where
offline and online energy scheduling are studied for source and
relay nodes which strike a balance between energy harvesting,
energy expenditure and information relaying. Relay selection is
shown to significantly improve the performance by leveraging
the energy harvesting opportunity. More complicated coopera-
tive networks, e.g., two-way and multi-hop, together with a new
concept of energy cooperation, have been also introduced.

B. Cognitive Energy Harvesting Networks

Cognitive radio has been deemed as a key enabling tech-
nology to resolve the problem of spectrum scarcity due to the
ever increasing demand for wireless services and applications
[141], [142]. In cognitive radios, secondary users are allowed
to share the spectrum owned by primary users with one-way
cooperation or full cooperation according to the design crite-
ria of spectrum overlay or spectrum underlay, which enables
us to use the spectrum resource in a more flexible and efficient
fashion. Recently, incorporation of the concept of cooperative
relaying into cognitive radio networks has opened up a new
research direction which aims at the cooperation of information
transmission and spectrum sharing among nodes [143]. In this
new paradigm, the secondary user acts as a relay for improv-
ing the primary user’s throughput, and in return, the primary



KU et al.: ADVANCES IN ENERGY HARVESTING COMMUNICATIONS 1401

user provides the secondary user with more spectrum usage
opportunities [144].

Energy harvesting has been also applicable to cognitive
radios, creating a fascinating new research line on green cog-
nitive radio networks. In this context, the secondary users are
capable of harnessing green energy to support the subsequent
dynamic spectrum access of the licensed bands owned by the
primary users. Since the available energy is random and inter-
mittent, many research issues that have been well developed in
the conventional cognitive radio networks, e.g., spectrum sens-
ing, spectrum management and handoff, spectrum allocation
and sharing, are required to be reconsidered to enhance the net-
work reliability. The choice of parameters in cognitive radios,
like mode selection, sensing duration and detection threshold,
becomes even more crucial [30]. In such a network, several
conflicting objectives need to be considered due to sporadic
and unstable energy sources and limited spectrum resource:
(1) obtaining the knowledge of spectrum activity; (2) protecting
primary users from interference or collision ; (3) maximizing
the transmission opportunity of secondary users, and (4) har-
vesting, spending or conserving energy. Hence, a common
question arises as to how the secondary user efficiently uses the
harvested energy over time to achieve these objectives. Below,
we will first review the recent advances in the topics of spec-
trum sensing and channel access, followed by the study of
cognitive relay and cooperation.

1) Spectrum Sensing and Channel Access: The design
of spectrum sensing and channel access policies has been
addressed in the recent works [145]–[151] which apply ambi-
ent energy harvesting. In [145], optimal cognitive sensing and
access policies are investigated to maximize the data through-
put for a secondary user with an energy queue. By formulating
the problem as an MDP, the secondary user can either remain
idle or execute spectrum sensing based on the belief of pri-
mary activity and the amount of energy in the battery. A similar
scenario is considered in [146] by taking the constraints of
energy causality and collision into account, and a theoretical
upper bound on the maximum achievable throughput of the
secondary user is derived as a function of the energy arrival
rate, the temporal correlation of primary activity, and the detec-
tion threshold of spectrum sensing. With a multi-slot spectrum
sensing paradigm, joint optimization for save-ratio (a fraction
of time spent on harvesting, sensing and throughput), sensing
duration and sensing threshold is studied in [147] to maximize
the secondary user’s expected achievable throughput while
keeping primary users protected. It is shown that both the data-
fusion and decision-fusion spectrum sensing strategies finally
converge to a single-slot spectrum sensing when the maxi-
mum achievable throughput is attained. In [148], collaborative
sensing scheduling is designed for multiple nodes with energy
harvesting so that the time average utility, which is a concave
function of the number of active sensing nodes, is maximized
at a fusion center under individual energy causality constraints,
and the optimal offline scheduling has a property that the nodes
should be selected as fair as possible for performing sensing
actions.

By treating the spectrum occupancy state as incomplete
information, POMDP design frameworks are formulated to find

the optimal transmission policies in some works [149], [150].
In [149], a secondary user with energy harvesting capability can
opportunistically access the channels licensed by the primary
users. A channel selection criterion is proposed to maximize
the average spectral efficiency of the secondary user by exploit-
ing not only the knowledge of channel occupancy and channel
gains but also the dependency of the actions of sensing and
accessing channels on the energy harvesting probability. Based
on this criterion, a POMDP framework is developed to find the
optimal and myopic policies for determining which channels
to be sensed. In [150], the joint optimization of spectrum sens-
ing policies and detection thresholds is solved by a constrained
POMDP for maximizing the expected total throughput of an
energy harvesting secondary user subject to the constraints of
energy causality and collision. To reduce the complexity, the
problem is then converted into an unconstrained POMDP by
identifying the feasible set of detection thresholds that satisfy
the collision requirement. As an extension, the work in [151]
jointly optimizes the sensing duration and the sensing threshold
to maximize the average throughput of the secondary network.

Different from the cognitive networks that use natural renew-
able energy sources, a secondary user with ambient RF energy
harvesting can utilize not only an idle channel to transmit
data packets but also a busy channel to recharge its battery.
Several works have been devoted to taking advantage of wait-
ing time of secondary users in order to obtain more energy
and transmission opportunities. The authors in [152] propose a
cognitive radio network architecture that enables a secondary
transmitter to harvest RF energy from its neighboring pri-
mary transmitters and to reuse the spectrum of the primary
network. By introducing interference guard zones and energy
harvesting zones, transmission probability and the correspond-
ing spatial throughput of the secondary users are derived based
on a stochastic-geometry model of user locations. Finally, the
throughput is maximized by jointly optimizing transmission
power and density.

In [153], the authors consider a cognitive radio network in
which the secondary user can transmit packets or harvest RF
energy when the selected channel is idle or occupied by pri-
mary users, respectively. A channel access policy is proposed
to maximize the data throughput of the secondary user via
the MDP, and based on a policy gradient method, an online
learning algorithm which does not require model parameters
is proposed to adapt the channel access actions by observing
the environments. In [154], depending upon the sensing results
of the primary channel, the secondary user can operate in over-
lay or underlay transmission modes, remain in sleep mode to
conserve energy, or harvest energy from the primary users. An
energy threshold is applied to determine the transmission mode,
and a POMDP framework is used to select the action of sensing
the channel or staying idle according to the battery state and the
belief about the activity of the primary user.

Dedicated RF energy harvesting is applied for cognitive
radio in [155], and a robust transceiver design is investigated
for wireless information and power transmission in under-
lay multiple-input multiple-output (MIMO) cognitive radio
networks with channel uncertainty. An alternative optimiza-
tion approach between the transmit covariance matrix at the
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secondary transmitter and the preprocessing matrix at the
secondary information-decoding receiver is proposed to max-
imize the sum harvested power at energy harvesting receivers,
while guaranteeing the interference constraints at the primary
receivers and the required mean square error performance at
the secondary information-decoding receiver.

2) Cognitive Relays and Cooperation: The idea of coop-
erative communication is also integrated into cognitive radio
in the recent literature, which enables the secondary user to
obtain more transmission opportunities by serving as a relay
for the primary transmission. Consequently, there exist trade-
offs between the time durations of energy harvesting, data
transmission and cooperative transmission for the secondary
user. The authors in [156] consider a cognitive radio system
in which an ambient energy harvesting secondary user with an
unlimited energy buffer can obtain more transmission oppor-
tunities by optionally cooperating with a primary user. The
optimal actions, in terms of energy harvesting time and relaying
power, are analyzed for cooperative and non-cooperative modes
to maximize the achievable throughput of the secondary user.
Accordingly, an optimal cooperation protocol which involves a
two-level test is proposed to make the optimal decision.

In [157], joint information, energy and spectrum coopera-
tion between the primary system and the secondary system is
investigated in cognitive radio networks to achieve better spec-
trum utilization, in which the secondary transmitter can use the
energy transferred from the primary transmitter to help relay
signals to the primary receiver as well as serve its own receiver
through spectrum sharing. In [158], a secondary user main-
tains a relaying queue to store unsuccessfully delivered primary
packets, and a queuing delay constraint is imposed for a primary
user to stimulate cooperation with the secondary user which
employs Alamouti space-time coding schemes. A throughput
maximization problem for the secondary user is then solved
under the constraints of the stability of all data queues and the
primary end-to-end queuing delay.

Concluding remark: In this subsection, recent works
regarding the tradeoff between energy harvesting, spectrum
sensing and channel access in cognitive radio networks have
been reviewed. The POMDP design methodology is effective to
solve the problem when spectrum occupancy states of primary
users are incomplete. The idea of the combination of cognitive
radios and cooperative communications as well as the related
works have been introduced, which provides a new paradigm of
spectrum and energy exchange between primary and secondary
users.

C. Multi-User Energy Harvesting Networks

Multi-user wireless networks have been widely studied in the
literature. In contrast to the single-user paradigm, reviewed in
Section IV and Section V, one of the most distinctive features in
the multi-user paradigm is the mutual interference created from
multiple users to one another. To guarantee the QoS among
users, it becomes very important to deal with the interference by
carefully utilizing the harvested energy, which is in general very
limited, in multi-user energy harvesting networks. Typically,
there are four types of multi-user paradigms: multiple access

channels, broadcast channels, multicast channels, and multi-
user interference channels, and a review of the state-of-the-art
research in this field is provided in the following.

1) Multiple Access Channels: Two-user multiple access
systems are investigated in [159]–[161]. In [159], each user is
able to harvest energy from nature and have a fixed amount of
data to be transmitted to the receiver. A generalized iterative
backward water-filling algorithm is proposed to characterize
the maximum data departure regions of the transmitters, and
based on the obtained region, a decomposed transmission com-
pletion time problem is solved by finding the power and rate
policies via convex optimization. In [160], resource allocation
is investigated for multiple access channels with wired connec-
tions to share harvested energy and transmitter side information
between the two users. The achievable throughput region is
characterized by maximizing the weighted sum throughput over
a finite horizon of time slots, subject to energy harvesting con-
straints. In [161], a stability region is carried out for a pair of
busty users randomly accessing a common receiver, and the
impact of the energy availability and the battery capacity on
the stability region is quantified.

Some works have focused on the scenario with multiple users
[83], [162]–[165]. In [162], a multi-user system in multiple
access channels is studied from the information-theoretic view-
point, and it is shown that coordination among distributed nodes
is needed in order to satisfy energy transfer constraints. The
performance limits of a multiple access network with energy
harvesting nodes are studied in [163]. By applying a compound
Poisson dam model to capture the dynamics of the battery,
an upper bound on the sum rate is derived, and the necessary
conditions for the optimal power policies and the associated
algorithms are proposed to maximize the achievable sum rate
for both finite and infinite capacity of batteries.

With the goal of maximizing the sum rate, offline energy
scheduling over a finite number of time slots is investigated
in [164] for K -user multiple access channels with ambient
energy harvesting. The energy scheduler is bounded by the
constraints of the battery capacity and the maximum energy
consumption of transmitters, and an iterative dynamic water-
filling algorithm is developed to obtain the optimal solution. In
[165], the authors investigate a multiple access wireless sen-
sor network with two kinds of sensors, energy harvesting nodes
and conventional nodes. Two performance criteria, namely k-
outage duration and n-transmission duration, along with their
the performance bounds, are proposed and analyzed to eval-
uate this hybrid network. Furthermore, cost-effective hybrid
deployments for sensor nodes are studied to optimize these two
criteria. In [83], a system with multiple rate-adaptive energy
harvesting nodes in which one is selected for opportunistic
transmission is investigated, and a throughput-optimal joint
selection and rate adaptation rule is proposed.

Some works consider an issue that multiple access users are
replenished by the downlink RF signals from transmitters [166],
[167]. In [166], an access point first transmits the signal to mul-
tiple users for energy harvesting, and then the users exploit the
harvest energy to transmit information to the access point using
the TDMA scheme. The sum throughput of the network is max-
imized by optimizing the time allocation of the access point
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and all users under the constraints of average harvested energy
values. In [167], the authors consider a wireless powered com-
munication network in which a power station first replenishes
multiple users via beamforming and each user transmits infor-
mation to a common sink node by applying the TDMA scheme.
A joint design of beamforming and user’s time allocation is
proposed to maximize the sum throughput.

2) Broadcast Channels: In [168], the authors study a trans-
mission completion time minimization problem for an ambient
energy harvesting transmitter which has a preset number of data
packets to be delivered to each user. The structural property
of the optimal total transmit policy is analyzed and a cut-off
power policy is revealed for splitting the total power among
users. Based on this, an iterative algorithm is proposed to find
the globally optimal policy. An extension of [168] with a finite
capacity battery is later investigated in [169]. In this case, the
total transmit power sequence can be found by the directional
water-filling algorithm, and there exist cut-off power levels to
determine the power allocation among users by iteratively exe-
cuting the directional water-filling. The work [170] considers
the problem of transmission error and energy deficiency for
a downlink broadcast network with energy harvesting sensor
nodes. By designing the transmission period, three broadcast
policies, called reliability-first, throughput-first and eclectic, are
proposed to make a tradeoff between the reliability and the
throughput.

The fairness issue among users is considered in [171], and
the goal is to optimize the proportionally fair throughput by
allocating time slots, power, and rate to multiple receivers. The
joint design is decomposed into two subproblem problems in
terms of power allocation and time allocation and solved by
biconvex optimization techniques. In [172], the authors discuss
the problem of rate allocation and precoder design for a multi-
user MIMO broadcast system. Each user is equipped with an
energy harvesting device, and the power consumption at the RF
front-end and decoding stages is included in the design of the
optimal transmission policies with or without perfect CSI and
battery knowledge.

Broadcast channels with dedicated RF energy harvesting are
studied in [72], [173]. In [72], the authors study a three-node
MIMO broadcast system, where one receiver harvests energy
and another receiver decodes information from the signals sent
by a transmitter. When the receivers are separated, a rate-energy
region is characterized for the optimal transmission strategy to
achieve different trade-offs. When the receivers are co-located,
the rate-energy regions are characterized for time sharing and
power splitting schemes. The authors in [173] extend the work
[72] to the scenario with multiple information receivers. A
cooperative beam selection scheme is proposed to select a max-
imum number of active beams for data transmission while
satisfying the energy harvesting requirement, and the perfor-
mance tradeoff between the average harvested energy and the
sum rate is analyzed.

3) Multicast Channels: Multi-cast energy harvesting net-
works, where a transmitter sends common information to mul-
tiple receivers simultaneously, are studied in [174]–[176]. In
these existing works, it is assumed that the receivers can either
decode information or harvest RF energy. By following the time

switching protocol, a novel mode switching method is pro-
posed based on random beamforming techniques, and it can
achieve better power and information transfer performance, as
compared with a periodic receiver mode switching method. An
MIMO multicast system, consisting of one source node and two
subsets of destination nodes referred to as information decoders
and energy harvesters, is studied in [174]. The source precoder
and the information decoders are jointly designed according to
two criteria. One is to minimize the worst mean square error
under source transmit power and harvested energy constraints.
The other is to maximize the total harvested energy at the
energy harvesters under source transmit power and worst mean
square error constraints.

The work [175] extends the design to the case when there
exists an eavesdropper. With channel uncertainties, a robust
secure transmission scheme is proposed to maximize the worst-
case secrecy rate under transmit power and harvested energy
constraints. In [176], two problems are investigated to address
a physical-layer security issue that information sent to the infor-
mation receivers can be eavesdropped by the energy receivers.
In the first problem, the secrecy rate for the information receiver
is maximized subject to individual harvested energy constraints
at energy receivers, while in the second problem, the weighted
sum of harvested energy is maximized subject to a secrecy rate
constraint at the information receivers.

4) Multi-User Interference Channels: The works [177] and
[178] attempt to design energy harvesting transmission schemes
in two-user interference channels. In [177], a short-term sum-
throughput maximization problem is investigated with two
transmitters which harvest energy from ambient energy sources.
The optimal power allocation is found by iteratively execut-
ing modified versions of single-user directional water-filling
algorithm. Examples of interference channels with known sum
capacities such as asymmetric interference channels and very
strong interference channels are examined. In [178], consider-
ing an MIMO interference channel, each receiver can either
decode information or harvest RF energy. According to the
receiving modes, the optimal transmission strategies and the
performance, in terms of maximum achievable rate and energy
or rate-energy tradeoff, are studied for four scenarios. Some
works extend the design to K -user interference channels. The
aim of [179] is to minimize the total transmit power by jointly
optimizing user beamforming and power splitting under both
SINR and energy harvesting constraints, and a decentralized
algorithm is proposed based on second-order cone program-
ming relaxation.

In addition to the existing power splitting, the authors in
[180] propose several time splitting schemes such as time-
division mode switching to maximize the system throughput
of multi-antenna interference channels subject to power and
energy harvesting constraints. In [181] and [31], interference
is recycled to replenish the battery. To achieve this goal, the
idea of interference alignment and receive antenna selection
is exploited in [181] to divide the received signals into two
orthogonal subspaces of signal and interference which are used
to decode information and harvest energy, respectively. Also
the rate-energy region is characterized for a random selection
scheme in this work. Wireless energy harvesting in multi-user
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interference alignment networks is studied in [31], where a
power-to-rate ratio-based user selection scheme is designed to
schedule the energy harvesting priority among users. Moreover,
a joint transmit power allocation and receiver power split-
ting scheme is proposed to further enhance the achievable
rate-energy region.

Concluding remark: In this subsection, various energy har-
vesting design issues are reviewed for multi-user interference
networks, including multiple access channels, broadcast chan-
nels, multicast channels, and multi-user interference channels.
For multiple access channels, energy scheduling and data trans-
mission problems for K communication nodes which could be
energy harvesting nodes or conventional nodes are introduced.
Moreover, a scenario that uplink transmission is supplied by
downlink energy transfer is discussed. For broadcast channels,
directional water-filling is extended to K downlink users, and
the design issues of fairness, precoders, rate allocation, and ded-
icated RF energy harvesting are addressed. Both beamforming
and security issues are reviewed for multicast channels. Energy
scheduling for two-user interference channels is reviewed, and
an idea of recycling interference is introduced by applying
interference alignment techniques.

D. Energy Harvesting Cellular Networks

The explosive growth of wireless multimedia services is
anticipated to tremendously increase energy consumption in
cellular networks. In response to the trend of reducing the car-
bon footprint and the operation cost of cellular networks, clean
and sustainable energy sources have been deemed to be an alter-
native source, other than the conventional power grid, to power
cellular systems. In particular, to meet future traffic demands,
a very dense deployment of small cells which have smaller
cell coverage and require less transmit power makes it realistic
to enable self-powered base stations. In conventional cellular
networks, e.g., macrocell, the energy consumption from power
grid can be effectively reduced by equipping base stations with
energy harvesting modules. To gain these benefits, it is essen-
tial to develop intelligent mechanisms, e.g., resource allocation,
user scheduling, cell planning, etc., which can adapt to energy
harvesting capabilities at base stations. Besides, there is a dou-
bly near-far problem for energy harvesting cellular users at the
cell edge who can harvest less energy in downlink but require
higher transmit power in uplink [32]. This phenomenon makes
the fairness among users challenging. We will discuss the rele-
vant issues, including resource allocation, user scheduling and
cell planning, for designing energy harvesting cellular networks
in this subsection.

1) Resource Allocation and User Scheduling: The authors
in [66] investigate resource allocation strategies, in which the
transmitter can access a hybrid energy supply system consist-
ing of an energy harvester and a conventional power grid. They
seek to minimize the total energy cost at the transmitter, instead
of energy consumption, subject to an outage constraint, and the
problem is cast as mixed integer programming. The authors in
[112] investigate energy harvesting broadband communications
with multiple flat-faded subcarriers by considering both trans-
mission and processing energy. Convex optimization problems

as well as the properties of the corresponding optimal solu-
tions are formulated with three different objectives, including
maximization of data throughput by a deadline, maximization
of residual energy in the battery by a deadline, and minimiza-
tion of transmission completion time for a given amount of
data.

In [182], power and subcarrier allocation algorithms are
designed for an OFDMA downlink network with a hybrid
energy harvesting base station. By taking into account circuit
energy consumption, a finite energy storage capacity, and a
minimum required data rate, an offline problem is formulated
to maximize the weighted energy efficiency of the network and
solved by using Dinkelbach method. A suboptimal event-driven
algorithm which is triggered by the changes of channel fad-
ing and energy arrival is proposed by utilizing the statistical
average of the time duration of each event. With the knowl-
edge of data traffic and energy harvesting profiles, a grid power
minimization problem for a downlink cellular network is con-
sidered in [183] by turning off some base stations and assigning
resource block. A blocking probability is derived and served as
the QoS constraint for the problem, and a two-stage dynamic
programming which in turn determines the on-off state and the
resource allocation of the base stations is proposed to reduce
the computational complexity.

The authors in [184] consider delay-optimal transmission
control and user scheduling for downlink coordinated MIMO
systems with energy harvesting capability. The transmission
control is operated with a longer timescale, while the user
scheduling is adaptive with a shorter timescale. The consid-
ered problem is modeled as a POMDP framework, and a
distributed method is proposed to reduce the implementation
complexity by exploiting approximate dynamic programming
and distributed stochastic learning. RF energy harvesting is also
applied in cellular networks to sustain the data transmission of
mobile users. The authors in [185] study a multiple access sys-
tem in which a base station broadcasts RF energy to recharge
the batteries of multiple uplink energy harvesting users. The
information and energy transmission can be implemented either
in time division duplex or frequency division duplex, and online
rate and power allocation strategies are proposed to maximize
the achievable rates.

The idea of energy cooperation has also been applied for
cellular networks in [63], in which energy transfer is allowed
between two base stations to help compensate for the energy
deficiency problem one another due to either lower genera-
tion of renewable energy or higher traffic demand of users. A
paradigm of joint energy and information cooperation is found
in [186], and base stations in coordinated multi-point systems
can share their energy powered by hybrid power supplies to
cooperatively transmit data signals to mobile terminals.

2) Cell Planning: A cellular network planning problem is
discussed in [187] by considering the use of renewable energy
sources and the concept of energy balancing. The design frame-
work aims at maximizing the total cost of installation, connec-
tion, and consumed power from electric grid, subject to the
constraints of a minimum QoS requirement and a power outage
probability. The authors propose a heuristic two-phase plan-
ning approach, namely, QoS-aware base station deployment
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and energy balancing connection, for this NP-hard problem. In
[33], the authors elaborate on how to deploy renewable energy
harvesters for a group of base stations by jointly considering the
dynamics of harvested energy and power consumption. Based
on the predicted availability of harvested energy, data traffic
service is shaped to maximize the operation periods of base
stations, while the degradation of users’ quality-of-experience
is minimized. The problems of cell deployment and power
allocation are jointly studied in [188] to improve the energy sus-
tainability and efficiency for two-tier green cellular networks
which are composed of small cells and macrocells.

The authors in [189] consider heterogeneous cellular net-
works in which base stations, solely powered by self-sustained
energy harvesting modules, across tiers are associated with
different energy harvesting rates, energy storage capacity and
deployment densities. The availability, which is defined as the
fraction of time that a base station is turned on, is theoretically
analyzed using random walk theory and stochastic geometry.
In [190], an uplink cellular network is overlaid with randomly
deployed power stations for wirelessly recharging mobile users
via microwave radiation, and based on a stochastic geometry
model, the network deployment is investigated under an out-
age constraint of data links. The study in [34] pinpoints that
the combination of solar and wind, which complement to each
other in time, is a good hybrid energy source to power small cell
networks. The cell deployment guideline is provided by consid-
ering the tradeoffs between the outage probability, grid power
consumption and base station density.

Concluding remark: In this subsection, various resource
allocation issues, including power allocation, subcarrier allo-
cation and user scheduling, are reviewed for energy harvesting
cellular systems, e.g., OFDMA. With ambient energy sources,
grid power minimization and energy cooperation problems for
base stations are studied. Moreover, cell planning and power
station deployment issues are addressed to maintain the net-
work performance, while reducing the dependence on the grid
power.

VII. APPLICATION SYSTEMS

1) Internet of Things: Driven by the vision of smart cities
and homes, IoT is an emerging technology to add ubiquitous
internet capability to every objective which not only collects
data from the surrounding environments and interacts with the
physical world but also provides services to exchange data
with other objectives for autonomous reasoning and decision
making. Things in the IoT can refer to a wide variety of
heterogeneous objectives such as home appliances, sensors,
machines, portable devices, etc. There are many applications
of IoT, which can be divided into the following domains:
transportation and logistics, healthcare, smart environments,
and personal and social applications [191]. For example, by
using IoT, goods in supermarkets can automatically contact its
provider for logistics management.

As another example, the deployment of sensors can monitor
the environmental pollution or emergency events and improve
the automation by taking an immediate action according to real-
time data aggregation in the IoT. One can thus expect that a

plethora of objectives will be connected together to form a huge
intelligent network in an IoT system.

In addition to the problems of transmitting, storing, and
processing mass information, how to power these IoT nodes
is another challenging problem that needs to be addressed.
In many applications, nodes are placed in hard-to-reach, haz-
ardous or toxic areas, and thus, they cannot be connected to grid
power. Even if these nodes can be powered by batteries, battery
replacement may be difficult and expensive. Energy harvesting
techniques should be good alternatives to prolong the lifetime
of IoT systems. In fact, if the node’s energy requirement is low
enough [192], it is possible for IoT nodes to exclusively rely on
power harvested from ambient energy sources like solar, indoor
light, wind, vibration, motion, RF signals, etc. for perpetual
operation. Referring to [193], energy harvesting can increase
the lifetime of low-power sensor nodes by ∼110 and ∼510
percent in uniformly distributed ring topology and randomly
distributed multi-hop topology, respectively.

2) Green Cellular Infrastructures and Systems: With the
maturing of standardization and the on-going deployment for
the fourth-generation wireless networks, research communi-
ties in both academic and industry are now on the tracks of
envisioning and developing the fifth-generation (5G) wireless
technologies. One of the typical and commonly accepted con-
cepts in 5G systems is “Green”. Green means not only to
improve the network energy efficiency but also to decrease
the dependency on electric grid. Energy harvesting techniques
can be applied to 5G cellular networks with several potential
advantages.

First, in conventional cellular networks, eighty percent of
energy is consumed at the base stations, and network operators
can reduce the grid power and ramp up more clean and renew-
able energy sources like solar and wind. The use of green sites
can also lower the carbon footprint and electricity bill of run-
ning cellular networks. Second, solar and wind-powered base
stations can speed up the revolution of mobile communications
in developing counties like Africa and India, especially in some
rural areas which lack power grid infrastructures for base sta-
tions to connect. The new base stations can use solar panels
to generate and store solar power during the daytime, with the
support of battery or backup wind turbine at night. It is esti-
mated that twelve solar panels are enough to run an off-grid
base station and even occasionally transfer redundant power to
the electric grid [194]. By 2014, the percentage of these off-
grid base stations in developing countries is around 8% and a
growing demand for non-diesel-based mobile communications
infrastructures is foreseen in the near future [194].

Pike Research stated that more than 390,000 green base sta-
tions will be deployed from 2012 to 2020 worldwide [195].
Many network operators and providers have engaged in study-
ing and deploying green base stations over the past few years.
Sony Ericsson and Motorola have considered the use of solar
energy for rural base stations several years ago [196]. In Africa,
more than a quarter of Vodacom’s base stations in Lesotho are
now powered through a combination of solar and wind energy
[197]. Telekom has started operations of the first wind turbine-
powered base station in Eibesthal in Lower Austria [198].
After the great Japan earthquake, NTT DOCOMO has started
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field testing for disaster-proof, environmentally friendly base
stations which are equipped with solar panels, high-capacity
rechargeable batteries and green power controllers [199]. In
particular, these base stations can still be run with renewable
energy if the commercial power gird is destroyed during a
disaster.

VIII. FUTURE RESEARCH DIRECTIONS

Many research efforts have been devoted to the development
of energy harvesting communications and networks. In the pre-
vious sections, we have given a comprehensive overview on
the energy harvesting problems and the pertinent cutting-edge
approaches proposed by various researchers. In this section, we
discuss the future research directions which require research
community to pay attention to in order to design more advanced
and reliable energy harvesting communication systems.

1) Fundamental Limits of Energy Harvesting Channel
Capacity: Currently, channel capacity with energy harvesting
transmitters is known for AWGN channels with unlimited-
size battery and binary channels with a unit-sized battery. The
energy harvesting channel capacity in general noisy channels
for any finite-size battery remains an open research problem.
Besides, the channel capacities with various ESI side informa-
tion about the transmitter at the receiver side and the effect of
energy harvesting receivers on the capacities are still open [23].
Further research is necessary for characterizing the fundamen-
tal performance limits of energy harvesting communications
and networks from the information-theoretic aspect.

2) Energy Harvesting at Receiver Side: So far in the lit-
erature, most of the energy scheduling problems are studied
for energy harvesting transmitters, and signal processing at the
receivers is assumed to be powered by constant batteries or
cost-free. To realize fully self-sustained communication sys-
tems, new design frameworks are needed to further embrace
energy consumption at the receiver sides which apply energy
harvesting for signal reception and decoding. One work along
this line is [200], which investigates threshold policies to
minimize the outage probability for energy harvesting trans-
mitters and receivers. Packet sampling and decoding policies
are studied in [201] for energy harvesting receivers. Moreover,
communications between any two nodes are two-way, rather
than one-way, in most wireless applications. In such a scenario,
each node can act as either a transmitter or a receiver, depend-
ing on the allocated resource, in order to exchange messages
with each other over the same physical medium. To alleviate the
energy outage problems, energy usage for the two nodes should
be balanced, for example, by transferring energy from one
node to the other or appropriately scheduling the transmission
and sleeping periods. It is interesting to study the receiver-side
energy harvesting and its impact on the network performance.

3) Energy Harvesting Models and Combination of
Heterogeneous Energy Sources: Energy harvesting mod-
els are essential to the implementation of energy scheduling for
communication nodes. While a wide variety of models have
been adopted in the existing works, there is a need to investigate
models which are carefully verified through experiments and
specific to each kind of energy sources, since distinct energy

sources may posses very different energy arrival characteris-
tics. Besides, the recharge process can deviate from an i.i.d.
assumption and its average recharge rate is time-varying for a
long time duration. A practical model that integrates several
heterogeneous energy sources is another worthwhile research
direction because energy harvesting-based communication
nodes may rely on multiple energy sources for simultaneously
recharging the battery, e.g., solar and vibrational sources for
wearable devices.

4) Robust Designs with Imperfect Knowledge: In most of
existing works, the knowledge of ESI and CSI, which could
be presented in terms of data profiles in deterministic models
or parameters in stochastic models, is assumed to be perfectly
known to energy harvesting-based communication systems.
However, in practice, the ESI knowledge is time-varying, and
it is difficult to predict and estimate because of the dynamic
activities of energy sources or the mobility of nodes. Although
the CSI can be acquired by performing channel estimation,
frequent estimation is not allowed due to the limited energy
resource. Other knowledge in the networks includes primary
user’s activity in cognitive radio, battery storage conditions
among nodes, etc. Undoubtedly, imperfect knowledge at nodes
will degrade the achievable performance, and the degrada-
tion should be seriously taken care of in the design of energy
scheduling, particularly when the time duration is long [203],
[204]. Hence, robust designs are needed to deal with the
possible imperfection in energy harvesting networks.

5) Multiple Antennas Techniques: In many applications,
the transmit power level of wireless energy harvesting nodes
is low due to the limited amount of harvested energy, and
it necessitates energy-efficient transmission schemes which
can effectively compensate for path loss and channel fading
in wireless environments. Multiple antenna technologies like
beamforming, space-time coding, distributed antennas, mas-
sive MIMO, can be exploited to save energy consumption at
nodes. Furthermore, in RF energy harvesting, multiple anten-
nas can be utilized to improve the transfer efficiency and
distance in capturing RF energy when the energy is trans-
ferred from one node to another, and high-resolution beams
can also be used to achieve information security [202]. More
recently, multiple antennas have been advocated to relieve
the loop-interference problem in full-duplex techniques, antici-
pating significant performance improvement for simultaneous
information and power transfer [205]. A massive distributed
antenna system has been shown as a promising network archi-
tecture to overcome the doubly near-far problem because the
distance from antenna units to user equipments is geograph-
ically averaged [206]. The inclusion of multiple antennas in
energy harvesting networks provides new research dimensions
and opportunities in energy optimization problems.

6) Security in RF Energy Harvesting: In RF energy har-
vesting networks, the operating power sensitivity of energy
receivers is typically much larger than that of information
receivers. Hence, only the receivers which are in close prox-
imity to the transmitter are scheduled for RF energy harvest-
ing, and there may be situations that energy receivers act as
eavesdroppers to overhear the messages sent to information
receivers. This near-far problem gives rise to a challenging
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physical-layer security issue, and further research is needed to
reach a compromise among the performance metrics of energy
harvesting requirement, transmission secrecy and QoS [207],
[208]. In addition, the existing transmission protocols such
as time switching and power splitting are primarily designed
for the tradeoff of information extraction and energy harvest-
ing, we need more investigation on new transmission protocols
to properly incorporate the security concern, for example, by
introducing artificial noise in the transmitted signals or sending
extra jamming signals.

7) Energy Harvesting Networks with Multiple Nodes:
Although extensive studies have been carried out on energy har-
vesting communications, there are still some challenges when
attempting to optimize the performance of an entire network
consisting of multiple energy harvesting nodes. Research issues
that are needed to be further explored in this direction include
(a) routing, (b) multi-hop relaying, (c) relay selection, (d) coop-
erative spectrum sensing and sharing, (e) energy, spectrum
and information cooperation from game-theoretic perspective,
(f) multi-user interference mitigation and management, (g) dis-
tributed energy scheduling, (h) device-to-device communica-
tions, (i) machine-to-machine communications, (j) cross-layer
optimization, (k) deployment of green small cells, etc.

8) Energy Harvesting for Activity Recognition: Recently,
some researchers have opened a new research direction in
energy harvesting computing and communication, where the
non-uniform property of energy harvesting power signals can
be used as the source for activity recognition, further reducing
the energy demand of computing in devices [209]. For example,
in human activity recognition, different activities (e.g., walk-
ing and running) generate kinetic power signals with different
signatures (e.g., maximum values and auto-correlation values),
and these observations can be turned into a positive use for clas-
sifying human activities, instead of using accelerometers. This
is particularly attractive when the power consumption of the
recognition devices becomes a bottleneck due to a small amount
of power that can be harvested from the environment.

IX. CONCLUSIONS

Nowadays, the demand for power by wireless communica-
tions is continually rising due to the widespread applications
of wireless data services. Energy harvesting techniques have
been proposed as a revolutionary solution toward green com-
munications. In addition to being environmentally-friendly,
energy harvesting capabilities facilitate the implementation of
truly untethered mobile and ubiquitous communication sys-
tems. In this survey, we presented a comprehensive overview
of energy harvesting communications and networks. To this
end, characteristics of different energy sources, fundamental
concepts about energy scheduling approaches, various research
challenges and topics on energy harvesting communications
were discussed. Next, we provided detailed discussions about
the state-of-the-art research contributions in various network
architectures which exploit the concept of cooperation among
information, spectrum and energy domains, including coopera-
tive, cognitive radio, multi-user, and cellular networks. Finally,
possible application systems and several directions for future

research were pinpointed. The comprehensive overview pro-
vided in this survey hopefully can serve as guidelines for further
development of more realistic energy harvesting networks.
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