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Abstract—Users in a social network are usually confronted
with decision making under uncertain network state. While
there are some works in the social learning literature on how
to construct belief on an uncertain network state, few study
has been made on integrating learning with decision making
for the scenario where users are uncertain about the network
state and their decisions influence with each other. Moreover,
the population in a social network can be dynamic since users
may arrive at or leave the network at any time, which makes
the problem even more challenging. In this paper, we propose
a Dynamic Chinese Restaurant Game to study how a user in
a dynamic social network learns the uncertain network state
and make optimal decision by taking into account not only the
immediate utility but also subsequent users’ negative influence.
We introduce a Bayesian learning based method for users
to learn the network state, and propose a Multi-dimensional
Markov Decision Process based approach for users to achieve
the optimal decisions. Finally, we apply the Dynamic Chinese
Restaurant Game to cognitive radio networks and demonstrate
from simulations to verify the effectiveness and efficiency of the
proposed scheme.

Index Terms—Chinese restaurant game, Bayesian learning,
Markov decision process, cognitive radio, game theory.

I. INTRODUCTION

IN a social network [1], users are usually uncertain about
the network state when making decisions [2]. For ex-

ample, when choosing a cloud storage service, users may
not know exactly the reliability and effectiveness of each
service provider. Besides, users have to consider subsequent
others’ decisions since overwhelming users sharing one stor-
age service will inevitably increase the waiting time and
the blocking rate. Such a phenomenon is known as negative
network externality [3], i.e., the negative influence of other
users’ behaviors on one user’s reward, due to which users tend
to avoid making the same decisions with others to maximize
their own payoffs. Similar problems can be found when it
comes to selecting a deal on Groupon website or choosing
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a WiFi access point in a conference hall. Therefore, how
users in a social network learn the network state and make
best decisions by predicting the influence of others’ possible
decisions is an important research issue in the field of social
networking.

Although users in a social network only have limited
knowledge about the uncertain network state, they can learn
from some external information, e.g., other users’ experiences,
to construct a belief, which is mostly probabilistic, on the un-
certain network state. In the social learning literatures [4]-[7],
how a user constructs accurate belief through adopting differ-
ent kinds of learning rules was studied. However, the concept
of network externality has not been considered in those tradi-
tional social learning works, i.e., they mostly assumed that one
user’s reward is independent with the actions of subsequent
users. In such a case, a user’s decision making is purely
based on his/her belief without taking into account other
users’ decisions. As discussed above, the negative network
externality is a common phenomenon in social networking and
can influence users’ rewards and decisions to a large extent.
When combining the negative network externality with social
learning, users’ decision making will inevitably involve the
game-theoretic analysis, which analyzes how users’ decisions
influence each other [8].

In our previous work [9], we proposed a new game called
“Chinese Restaurant Game” to study how to involve the
strategic decision making into the social learning for the social
networking problems with negative network externality. This
game concept is originated from Chinese Restaurant Process
[10], which is applied in non-parameter learning methods of
machine learning to construct the parameters for modeling
unknown distributions. In the Chinese Restaurant Game, there
are finite tables with different sizes and finite customers
sequentially requesting tables for meal. Since customers do not
know the exact size of each table, they have to learn the table
sizes according to some external information. Moreover, when
requesting one table, each customer should take into account
the following customers’ selections due to the limited dining
space in each table, i.e., the negative network externality.
Through studying such a Chinese Restaurant Game model, we
provided a new general framework for analyzing the strategic
learning and predicting behaviors of rational users in a social
network. In [11], the applications of Chinese Restaurant Game
in various research fields are also discussed.

One assumption in the Chinese Restaurant Game is the fixed
population setting, i.e., there is a finite number of customers
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choosing the tables sequentially [9]. However, in many real
applications, customers may arrive and leave at any time,
which results in the dynamic population setting. In such a
case, the utilities of customers will change from time to
time due to the dynamic number of customers on each table.
Considering these problems, in this paper, we extend the
Chinese Restaurant Game to the dynamic population setting,
where we consider the scenario that customers arrive at and
leave the restaurant with a random process. In such a case,
each new coming customer not only learns the system state
according to the information received and revealed by former
customers, but also predicts the following customers’ decisions
during his/her meal time in order to maximize the utility.
With such a dynamic model, our Chinese Restaurant Game
framework becomes more general and practical.

The Dynamic Chinese Restaurant Game can be applied
to many different fields, such as storage service selection
in cloud computing, deal selection on Groupon website in
online social networking and WiFi access point selection
in wireless networking as discussed at the beginning. In
this paper, we will focus on the application to cognitive
radio networks [12]. Recently, dynamic spectrum access in
cognitive radio networks has been shown to be able to improve
the spectrum utilization efficiency, where cognitive devices,
called as Secondary Users (SUs), can dynamically access the
licensed spectrum, under the condition that the interference
to the Primary User (PU) is minimized [13]. In dynamic
spectrum access, SUs need to perform spectrum sensing to
learn the state of primary channel, and share the available
primary channel with other SUs. The more SUs access the
same channel, the less throughput can be obtained by each
individual SU, i.e., there exists negative network externality.
Therefore, the proposed Dynamic Chinese Restaurant Game
is an ideal tool for the dynamic spectrum access problems to
analyze how SUs learn the state of primary channels and how
to access the primary channels by predicting the influence of
subsequent SUs’ decisions.

The main contributions of this paper are summarized as
follows.

1) We propose a Dynamic Chinese Restaurant Game
framework to study the social learning problem with
negative network externality. Such a framework studies
how users in a social network learn the uncertain system
state according to the external information and make
best decisions to maximize their own expected utilities
by considering other users’ decisions, which is very
general and can be applied to many research areas.

2) Since tables in a restaurant can be reserved, customers
have to estimate the table state in order to avoid selecting
the reserved tables. We introduce a table state learning
method based on Bayesian learning rule, where each
customer constructs his/her own belief on the system
state according to his/her own signal and the former
customer’s belief information.

3) When selecting one table for meal, customers not only
need to consider immediate utility, but also need to take
into account the utility in the future, i.e., considering
the subsequent customers’ decisions. We formulate the
table selection problem as a Multi-dimensional Markov

Decision Process (M-MDP) and design a modified value
iteration algorithm to find the best strategies.

4) We apply the proposed Dynamic Chinese Restaurant
Game to cognitive radio networks and design a Bayesian
channel sensing method and M-MDP based channel
access scheme. We prove theoretically that there is a
threshold structure in the optimal strategy profile for
the two primary channel scenario. For multiple primary
channel scenario, we propose a fast algorithm with
much lower computational complexity while achieving
comparable performance.

The rest of this paper is organized as follows. Firstly, the
Dynamic Chinese Restaurant Game is formulated in Section
II, in which we discuss the Bayesian learning based restaurant
state estimation, and introduce an M-MDP model to solve
the table selection problem. Then, the application to cognitive
radio networks is discussed in details in Section III. Finally, we
show simulation results in Section IV and draw conclusions
in Section V.

II. DYNAMIC CHINESE RESTAURANT GAME

In this section, we will introduce the proposed Dynamic
Chinese Restaurant Game in details. Specifically, we first dis-
cuss how customers learn the restaurant state using Bayesian
learning rule, and then focus on how customers make table
selection according to the learning result, so as to maximize
their own expected utilities during the meal time.

A. System Model

We consider a Chinese restaurant with N independent tables
numbered 1, 2, ..., N , where each table has finite L seats that
can serve finite customers. In our model, all tables in the
restaurant are of the same size, i.e. with the same number
of seats. The customers are consider as arriving and leaving
by Bernoulli process [14], where a single customer arrives
with probability λ or a single customer leaves with probability
μ in each time slot. As shown in Fig. 1, when arriving at
the restaurant, each customer requests for one table to have
a meal. Once a customer chooses one specific table, he/she
will stay at that table throughout his/her meal time. Moreover,
the tables may be reserved in advance and such reserved
tables cannot be used to serve new coming customers until
the reservation is canceled. We here define the restaurant state
θ = (θ1, θ2, ..., θN ) (all the subscripts mean the table number
index in the paper), where θi ∈ {H0,H1} denotes the state of
table i, H0 means the table is available while H1 means the
table is already reserved. Notice that the state of each table
θi is time-varying since customers may reserve the table or
cancel the reservation at any time.

The proposed Dynamic Chinese Restaurant Game is to
formulate the problem that how a new arriving customer
selects a table. For each customer, his/her action set is
A = {1, 2, ..., N}, i.e., choosing one table from all N tables.
Note that we only consider pure strategies in this paper. Let
us define the grouping state when the jth customer arrives,
Gj = (gj1, g

j
2, ..., g

j
N ) (all the superscripts mean the customer

index in the paper), where gji ∈ {0, 1, . . . , L} stands for
the number of customers in table i. Assuming that the jth
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Fig. 1. System model of the Chinese Restaurant Game.

customer finally chooses table i, his/her utility function can be
given by U

(
θji , g

j
i

)
, where θji denotes the state of table i and

gji denotes the number of customers choosing table i during
the jth customer’s meal time in table i. Note that the utility
function is a decreasing function in terms of gji , which can be
regarded as the characteristic of negative network externality
since the more subsequent customers join table i, the less
utility the jth customer can achieve.

As discussed above, the restaurant state θ is changing with
time. For the jth new arriving customer, he/she may not
know the exact reservation state of each table θji . Neverthe-
less, customers can estimate the state through some external
information such as advertisement and reviews. Therefore,
we assume that the customers may have an initial prior
distribution of the state θi for each table, which is denoted
as b0 = {b0i |b0i = Pr(θi = H0), ∀i ∈ 1, 2, ..., N}. Moreover,
each customer can receive a signal sj = {sji , ∀i ∈ 1, 2, .., N}
generated from a predefined distribution f(si|θi). Such sig-
nals can be regarded as the observation (estimation) of the
restaurant state by customers. Note that not all the customers
necessarily have the initial belief since they can observe the
previous customer’s belief as the initial belief. Moreover, since
the customers do not exactly know the reservation state of each
table, they may select the tables which are already reserved
and only receive 0 utility.

B. Bayesian Learning for the Restaurant State

In this subsection, we discuss how customers estimate the
restaurant state with some external information. Since the
restaurant state θ is time-varying, customers have to learn
each θi before making table selection to avoid the reserved
tables. As discussed above, each customer receives a signal
about the restaurant state. Besides, customers also receive
former customers’ reviews about the restaurant, i.e., previous
customer’s belief. With these collected information, we can
use Bayesian learning model to update the belief on the current
restaurant state.

Here, we first introduce the concept of belief to describe
customers’ uncertainty about the state of the tables. The belief
bji denotes jth customer’s belief on the state of table i. It
is assumed that each customer reveals his/her beliefs after
making the table selection. Unlike the previous static Chinese
Restaurant Game model where signals are revealed instead
of beliefs, the restaurant state θ is changing with time in
this dynamic model. In such a case, for customer j, signals
sj−2, sj−3, . . . are of less and less use for him/her to construct
belief. Moreover, belief bj−1 contains more information than
signal sj−1, which is more useful for the following customers’
beliefs calculation. Therefore, each customer’s belief on table
i is learned from former customer’s belief bj−1

i , his/her own
signal sji and the conditional distribution f(si|θi), which can
be defined as

bj={bji |bji =Pr(θji =H0|bj−1
i , sji , f), ∀i∈1, 2, ..., N}. (1)

From the definition above, we can see that the belief bji ∈
[0, 1] is a continuous parameter. In a practical system, it is
impossible for a customer to reveal his/her continuous belief
using infinite data bits. Therefore, we quantize the continuous
belief into M belief levels {B1,B2, ...,BM}, which means
that if we have bji ∈ [k−1

M , k
M ], then Bj

i = Bk. Since each
customer can only reveal and receive the quantized belief,
the former customer’s quantized belief Bj−1 is first mapped
into a belief b̂j−1 according to the rule that if Bj−1

i = Bk

then b̂j−1
i = 1

2

(
k−1
M + k

M

)
. Note that the mapping belief b̂j−1

i

here is not the former customer’s real continuous belief bj−1
i .

Then, b̂j−1 is combined with the signal sj to calculate the
continuous belief bj . Finally, bj is quantized into the belief
Bj . Thus, the learning process for the jth customer can be

summarized as Bj−1 Mapping−−−−→ b̂j−1 sj−→ bj
Quantize−−−−→ Bj .

In the learning process, the most important step is how to
calculate current belief bj according to current signal sj and
the former customer’s belief b̂j−1, which is a classical social
learning problem. Based on the approaches to belief forma-
tion, social learning can be classified as Bayesian learning
[5] and non-Bayesian learning [7]. Bayesian learning refers
that rational individuals use Bayes’ rule to form the best
estimation of the unknown parameters, such as the restaurant
state in our model, while non-Bayesian learning requires
individuals to follow some predefined rules to update their
beliefs, which inevitably limits the rational customers’ optimal
decision making. Since customers in our Dynamic Chinese
Restaurant Game are assumed to be fully rational, they will
adopt Bayesian learning rule to update their beliefs on the

Pr
(
θji = H0|b̂j−1

i

)
= Pr(θji = H0|θj−1

i = H0)b̂
j−1
i + Pr(θji = H0|θj−1

i = H1)(1 − b̂j−1
i ), (3)

Pr
(
θji = H1|b̂j−1

i

)
= Pr(θji = H1|θj−1

i = H0)b̂
j−1
i + Pr(θji = H1|θj−1

i = H1)(1 − b̂j−1
i ). (4)

bji =

(
Pr(θji = H0|θj−1

i = H0)b̂
j−1
i + Pr(θji = H0|θj−1

i = H1)(1− b̂j−1
i )

)
f(sji |θji = H0)∑1

l=0

(
Pr(θji = Hl|θj−1

i = H0)b̂
j−1
i + Pr(θji = Hl|θj−1

i = H1)(1 − b̂j−1
i )

)
f(sji |θji = Hl)

. (5)
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restaurant state bj = {bji} as

bji =
Pr
(
θji = H0|b̂j−1

i

)
f(sji |θji = H0)∑1

l=0 Pr
(
θji = Hl|b̂j−1

i

)
f(sji |θji = Hl)

, (2)

where Pr(..|̂bj−1
i ) stands for the probability given the belief

of the (j − 1)th customer. For example, Pr(θji = H0 |̂bj−1
i )

stands for, given the (j−1)th customer’s belief, i.e., Pr(θj−1
i =

H0) = b̂j−1
i , what the probability Pr(θji = H0) is. Note that

(2) is based on the fact that when given the exact state θji , the
signal observed by current customer, sji , is independent of the
last customer’s belief b̂j−i

i .
As discussed in the system model, the state of each table

is varying with time. Here, we define the state transition
probability as Pr(θji = H0|θj−1

i = H0), which represents
the probability that table i is currently available when the
jth customer arrives given the condition that table i was
available when the (j − 1)th customer arrived. Similarly, we
have Pr(θji = H1|θj−1

i = H0), Pr(θji = H0|θj−1
i = H1) and

Pr(θji = H1|θj−1
i = H1). In such a case, a customer can

calculate the items Pr
(
θji = H0|b̂j−1

i

)
and Pr

(
θji = H1|b̂j−1

i

)
in (2) using (3) and (4), where the four state transition
probabilities are as prior information for customers.

To summarize, for the jth customer, the belief updating

process for table i is Bj−1
i

Mapping−−−−→ b̂j−1
i

Bayesian+sji−−−−−−−→bji
Quantize−−−−→

Bj
i , where the Bayesian learning from b̂j−1

i and sji to bji is
(5).

C. Multi-dimensional MDP Based Table Selection

In this subsection, we investigate the table selection game
by modeling it as a Markov Decision Process (MDP) problem
[15]. In this game, each customer selects a table after restau-
rant state learning, with the objective of maximizing his/her
own expected utility during the meal time in the restaurant. To
achieve this goal, rational customers not only need to consider
the immediate utility, but also need to predict the following
customers’ selections. In our model, customers arrive by
Bernoulli process and make the table selection sequentially.
When making the decision, one customer is only confronted
with current grouping information Gj and belief information
Bj . In order to take into account customers’ expected utility in
the future, we use Bellman equation to formulate a customer’s
utility and use MDP model to formulate this table selection
problem. In the traditional MDP problem, a player can adjust
his/her decision when the system state changes. However, in
our system, once choosing a table, a customer cannot adjust
his/her decision even if the system state has already changed.
Therefore, traditional MDP cannot be directly applied here.
To solve this problem, we propose a Multi-dimensional MDP

(M-MDP) model, and a modified value iteration method to
derive the best response (strategy) for each customer.

1) System State: To construct the MDP model, we first
define the system state and verify the Markov property
of the state transition. Let the quantized belief B =
(B1, B2, ..., BN ) ∈ {1, 2, . . . ,M}N be the belief state. Thus,
we can define the system state S as the belief state B with
the grouping state G = (g1, g2, ..., gN) ∈ {0, 1, . . . , L}N ,
i.e., S = (B,G), where the finite state space is X =(
{1, 2, . . . ,M}N × {0, 1, . . . , L}N

)
. Note that the system

state is defined at each time slot. When the jth customer
arrives at the restaurant, the system state he/she encounters
is Sj = (Bj ,Gj). In such a case, with multiple customers
arriving sequentially, the system states at different arrival time
{S1, S2, ...Sj, ...} form a stochastic process. In our learning
rule, only the (j−1)th customer’s belief is used to update the
jth customer’s belief. Therefore, Bj depends only on Bj−1.
Moreover, since customers arrive by Bernoulli process, the
grouping state Gj is also memoryless. In such a case, we can
verify that {S1, S2, ...Sj , ...} is a Markov process.

2) Belief State Transitions: Note that a customer’s belief
transition is independent with his/her action, and is only re-
lated to the state of the tables, as well as the Bayesian learning
rule. Here, we define the belief state transition probability
as P

(
Bj |Bj−1

)
. Since all tables are independent with each

other, we have

P
(
Bj

∣∣Bj−1
)
=

N∏
i=1

P
(
Bj

i |Bj−1
i

)
, (6)

where P
(
Bj

i |Bj−1
i

)
is the belief state transition probability of

table i. In such a case, there is an M×M belief state transition
matrix for each table, which can be derived according to the
Bayesian learning rule. To find P

(
Bj

i = Bq|Bj−1
i = Bp

)
,

with the quantized belief Bj−1
i = Bp, we can calculate

the corresponding mapping belief b̂j−1
i = 1

2

(
p−1
M + p

M

)
.

Then, with Bj
i = Bq , we can have the value interval of

bji = [ q−1
M , q

M ]. Thus, the belief state transition probability
can be computed by

P
(
Bj

i = Bq|Bj−1
i = Bp

)
=

∫ q
M

q−1
M

P (bji |b̂j−1
i )dbji . (7)

where P (bji |b̂j−1
i ) can be calculated by (5).

3) Actions and System State Transitions: The finite action
set for customers is the N table set, i.e., A = {1, 2, ..., N}.
Let a ∈ A denote a new customer’s action under the system
state S = (B,G). Let P

(
S′ = (B′,G′)

∣∣S = (B,G), a
)

denote the probability that action a in state S will lead to state

P
(
G′ = (g1, g2, ..., gi + 1, ..., gN)|G = (g1, g2, ..., gi, ..., gN ), a = i

)
= λ, (9)

P
(
G′ = (g1, g2, ..., gj + 1, ..., gN)|G = (g1, g2, ..., gi, ..., gN ), a = i

)
= 0, (∀j �= i), (10)

P
(
G′ = (g1, g2, ..., gi − 1, ..., gN)|G = (g1, g2, ..., gi, ..., gN )

)
= giμ,

(∀i ∈ {1, 2, . . . , N}), (11)

P
(
G′ = G|G = (g1, g2, ..., gi, ..., gN )

)
= 1− λ−

N∑
i=1

giμ. (12)
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Fig. 2. Illustration of state transition.

S′. As shown in Fig. 2, since a customer’s belief transition is
independent with his/her action, we have

P
(
S′=(B′,G′)|S=(B,G), a

)
=P

(
B′|B)

P
(
G′|G, a

)
, (8)

where P
(
G′|G, a

)
is the system grouping state transition

probability. Suppose that current grouping state is G =
(g1, g2, ..., gN), since a new customer arrives with probability
λ, given the action of the arriving customer is table i, i.e.,
a = i, we have the arriving transition probabilities in (9) and
(10). When no customer arrives, but some customer leaves the
restaurant at state G, we have the leaving transition probability
in (11), where μ is the leaving probability of customers, λ
and μ are normalized such that λ + NLμ ≤ 1 since gi ≤ L
and λ +

∑N
i=1 giμ ≤ λ + NLμ ≤ 1 according to (12). In

such a case, the system state transition probabilities P (S′|S)
form an

(
M(L + 1)

)N

×
(
M(L + 1)

)N

state transition
matrix when given action a. Note that (9-12) are based
on the assumption that the system time is discretized into
small time slots and customers arrive and leave by Bernoulli
process. During each time slot, a single user arrives with
probability λ or a single user leaves with probability μ. There
is no multiple customers leaving the same table or multiple
customers leaving different tables. This model is also called
as “sampled-time approximation to a Markov process” as in
[14]. Under this model, the state transition from one time slot
to the next can only be increasing 1 customer, decreasing 1
customer, or keeping unchanged.

4) Expected Utility: The immediate utility of a customer
in table i at system state S is

Ui(S) = b̂i · Ri

(
gi
)
, (13)

where b̂i is the mapping belief of Bi and Ri is a decreasing
function with respect to the number of customers in table i, gi.
In general, each customer will stay at the selected table for a

period of time, during which the system state may change.
Therefore, when making the table selection, the customer
should not only consider the immediate utility, but also take
into account the future utilities. In the MDP model [15],
Bellman equation is defined as a user’s long-term expected
payoff with the form as

V (S0, a0) = max
{at}∞

t=0

U(S0, a0) +

∞∑
t=1

βtU(St, at), (14)

where the first term is the immediate utility of current state
S0, the second term is the expected utilities of the future states
beginning from the initial state S0, and βt is a discount factor
series which ensures the summation is bounded. Bellman
equation is usually written by a recursive form as follow

V (S) = max
aS

U(S, aS) + β
∑
S′∈X

P (S′|S, aS)V (S′), (15)

where S′ represents all possible next states of S and P (S′|S)
is the transition probability. From the definition of Bellman
equation, we can see that it not only considers the immediate
utility, but also takes into account the future utilities, which is
highly accord with the customer’s expected utility in our Chi-
nese Restaurant Game. Therefore, we can define a customer’s
expected utility at table i, Vi(S), based on Bellman equation
by

Vi(S) = Ui(S) + (1 − μ)
∑
S′∈X

Pi(S
′|S)Vi(S

′), (16)

where (1−μ) is the discount factor, which can be regarded as
the probability that the customer keeps staying at the selected
table since μ is the departure probability. Pi(S

′|S) is the state
transition probability defined as

Pi

(
S′ = (B′,G′)|S = (B,G)

)
=P

(
B′|B)

Pi

(
G′|G)

, (17)

where P
(
B′|B)

is the belief state transition probability, and
Pi

(
G′|G)

is the grouping state transition probability condi-
tioned on that customers in table i still stay at table i in the
next state S′, which is different with P

(
G′|G)

in (9-12). Note
that Pi

(
G′|G)

is closely related to the new arriving customer’s
action. Suppose that the new customer’s action aS = k, i.e.,
choosing table k at state S, we have the arriving transition
probability in (18). For the leaving transition probability, since
we have considered the discount factor (1 − μ) in the future
utility, i.e., the customer will not leave the restaurant, thus

Pi

(
G′ = (g1, g2, ..., gk + 1, ..., gN )|G = (g1, g2, ..., gk, ..., gN )

)
= λ. (18)

Pi

(
G′ = (g1, g2, ..., gi − 1, ..., gN)|G = (g1, g2, ..., gi, ..., gN )

)
= (gi − 1)μ, (19)

Pi

(
G′ = (g1, g2, ..., gi′ �=i − 1, ..., gN)|G = (g1, g2, ..., gi′ �=i, ..., gN )

)
= gi′μ,

(∀i′ ∈ {1, 2, . . . , N}), (20)

Pi

(
G′ = G|G = (g1, g2, ..., gN )

)
= 1− λ−

( N∑
i=1

gi − 1

)
μ. (21)

⎡⎢⎢⎢⎣
V1(S)
V2(S)

...
VN (S)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
U1(S)
U2(S)

...
UN (S)

⎤⎥⎥⎥⎦+ (1− μ)

⎡⎢⎢⎢⎣
P1(S

′|S) 0 . . . 0
0 P2(S

′|S) . . . 0
...

...
. . .

...
0 0 . . . PN (S′|S)

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
V1(S

′)
V2(S

′)
...

VN (S′)

⎤⎥⎥⎥⎦ . (22)
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Algorithm 1 Modified Value Iteration Algorithm for Multi-
dimensional MDP Problem.

1: • Given tolerance η1 and η2, set ε1 and ε2.
2: • Initialize {V (0)

i (S) = 0, ∀S ∈ X} and randomize
3: π = {aS ,∀S ∈ X}.
4: while ε1 > η1 or ε2 > η2 do
5: for all S ∈ X do
6: • Calculate Pi(S′|S),∀i ∈ {1, 2, . . . , N} using π and (17-21).
7: • Update V

(n+1)
i (S), ∀i ∈ {1, 2, . . . , N} using (22).

8: end for
9: for all S ∈ X do

10: • Update π� = {aS} using (23).
11: end for
12: • Update the parameter ε1 by ε1 = ‖π − π�‖2.
13: • Update the parameter ε2 by ε2 =

∥
∥V

(n+1)
i (S)−V

(n)
i (S)

∥
∥
2

.
14: • Update the strategy file π = π�.
15: end while
16: • The optimal strategy profile is π�.

we have (19) and (20), where the item (gi− 1) is because the
grouping at table i, gi, already includes this customer who will
not leave the table at state S′. (21) is the staying probability. In
such a case, we can have an multi-dimensional expected utility
function set as (22), where Pi(S

′|S) = [
Pi(S

′|S)|∀S′ ∈ X ]
and Vi(S

′|S) = [
Vi(S

′|S)|∀S′ ∈ X ]T
.

5) Best Strategy: The strategy profile π = {aS|∀S ∈ X}
is a mapping from the state space to the action space, i.e.,
π : X → A. Due to the selfish nature, each customer will
choose the best strategy to maximize his/her own expected
utility. Here, we first give the definition of Nash equilibrium
in the Dynamic Chinese Restaurant Game.

Definition 1: A strategy profile π� is a Nash equilibrium of
the Dynamic Chinese Restaurant Game, if and only if, when all
customers adopt π�, for each new arriving customer, his/her
utility of adopting any other strategy profile π �= π� is always
no more than that of adopting π�.

From Definition 1, we can see that the utility of each
customer can be damaged if he/she unilaterally deviates
from the Nash equilibrium. Suppose that one customer ar-
rives at the restaurant with system state S =

(
B,G =

(g1, g2, ..., gi, ..., gN )
)
, his/her best strategy can be defined as

aS = argmax
i∈{1,2,...,N}

{
Vi

(
B,G = (g1, ..., gi + 1, ..., gN)

)}
.

(23)
Since the strategy profile satisfying (22) and (23), denoted by
π�, maximizes every arriving customer’s utility, π� is a Nash
equilibrium of the proposed game.

6) Modified Value Iteration Algorithm: As discussed at the
beginning of Section II-C, although the table selection problem
of Chinese Restaurant Game can be modeled as an MDP
problem, it is different from the traditional MDP problem
that the customer cannot adjust action even if the system
state changes. In traditional MDP problem, there is only one
Bellman equation associated with each system state, and the
optimal strategy is directly obtained by optimizing the Bell-
man equation. In our Multi-dimensional MDP problem, there
is a set of Bellman equations as shown in (22) and the optimal
strategy profile should satisfy (22) and (23) simultaneously.
Therefore, the traditional dynamic programming method in
[16] cannot be directly applied. To solve this problem, we
design a modified value iteration algorithm.

Primary 
Network

Channel 1

Channel N

Channel 2

Secondary
Users

Fig. 3. System model of the cognitive radio network.

Given an initial strategy profile π, the conditional state
transition probability Pi(S

′|S) can be calculated by (17-21),
and thus the conditional expected utility Vi(S) can be found
by (22). Then, with Vi(S), the strategy profile π can be
updated again using (23). Through such an iterative way, we
can finally find the optimal strategy π�. In Algorithm 1, we
summarize the proposed modified value iteration algorithm for
the Multi-dimensional MDP problem.

III. APPLICATION TO COGNITIVE RADIO NETWORKS

In this section, we study the application of the proposed Dy-
namic Chinese Restaurant Game in cognitive radio networks.
In a cognitive radio network, SUs can opportunistically utilize
the PU’s licensed spectrum bands without harmful interference
to the PU. The SUs who intend to access the primary channel
should first perform spectrum sensing to check whether the
PU is absent, which is known as “Listen-before-Talk” [17].
In order to counter the channel fading and shadowing prob-
lem, cooperative spectrum sensing technology was proposed
recently, in which SUs share their spectrum sensing results
with each other [18]. After spectrum sensing, each SU chooses
one primary channel to access for data transmission. However,
traditional cooperative sensing schemes simply combine all
SUs’ sensing results while ignoring the structure of sequential
decision making [19], especially in a dynamic scenario where
SUs arrive and leave stochastically. Moreover, the negative
network externality has not been considered in the previous
channel access methods [20].

The spectrum sensing and access in cognitive radio net-
works can be ideally modeled as a Dynamic Chinese Restau-
rant Game, where the tables are the primary channels which
may be reserved by the PU, and customers are the SUs who
are seeking available channel. With the proposed Dynamic
Chinese Restaurant Game, how a SU utilizes other SUs’
sensing results to learn the primary channel state can be
regarded as how a customer learns the table state, while how
a SU chooses a channel to access by predicting subsequent
SUs’ decisions can be formulated as how a customer selects
a table. Although the spectrum sensing and access problem
has also been modeled using game theory as in [21]-[23], the
SUs’ sequential decision making structure has not been well
investigated. In the following, we will discuss in details how
to apply the proposed Dynamic Chinese Restaurant Game to
cognitive radio networks.
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ON State OFF State

TON TOFF

Fig. 4. ON-OFF primary channel.

A. System Model

1) Network Entity: As shown in Fig. 3, we consider a
primary network with N independent primary channels. The
PU has priority to occupy the channels at any time, while SUs
are allowed to access the channel under the condition that the
PU’s communication QoS is guaranteed. Mixed underlay and
overlay spectrum sharing are adopted in our model, which
means SUs should detect PUs’ existences and interference to
the PUs should also be minimized [24]. We denote the primary
channel state as θ = {θ1, θ2, ..., θN} and θi ∈ {H0,H1},
where H0 is the hypothesis that the PU is absent and H1

means the PU is present.
For the secondary network, SUs arrive and depart by

Bernoulli process with probability λ and μ, respectively. All
SUs can independently perform spectrum sensing using energy
detection method. Here, we use a simple binary model on
the spectrum sensing result, where sji = 1 if the jth SU
detects some activity on channel i and sji = 0 if no activity
is detected on channel i. In such a case, the detection and
false-alarm probability of channel i can be expressed as
P d
i = Pr(si = 1|θi = H1) and P f

i = Pr(si = 1|θi = H0),
which are considered as common priors for all SUs. Moreover,
we assume that there is a log-file in the server of the secondary
network, which records each SU’s channel belief and channel
selection result. Through querying this log-file, the new com-
ing SU can obtain current grouping state information, i.e., the
number of SUs in each primary channel, as well as the former
SU’s belief on the channel state.

2) ON-OFF Primary Channel Model: For the PU’s be-
havior in the primary channel, we model it as a general
alternating ON-OFF renewal process. The ON state means
the channel is occupied by the PU, while the OFF state is
the “spectrum hole” which can be freely accessed by SUs, as
shown in Fig. 4. This general ON-OFF switch model can be
applied in the scenario when SUs have no knowledge about the
PU’s exact communication mechanism [25]. Let TON and TOFF

denote the length of the ON state and OFF state, respectively.
According to different types of the primary services (e.g.,
digital TV broadcasting or cellular communication), TON and
TOFF statistically satisfy different types of distributions. Here
we assume that TON and TOFF are independent and satisfy ex-
ponential distributions with parameter r1 and r0, respectively
[26], denoted by fON(t) and fOFF(t) as follows:{

TON ∼ fON (t) =
1
r1
e−t/r1 ,

TOFF ∼ fOFF(t) =
1
r0
e−t/r0 .

(24)

In such a case, the expected lengths of the ON state and
OFF state are r1 and r0 accordingly. These two parameters r1
and r0 can be effectively estimated by a maximum likelihood
estimator [27]. Such an ON-OFF behavior of the PU is a
combination of two Poisson process, which is a renewal
process [28]. The renewal interval is Tp = TON + TOFF and
the distribution of Tp, denoted by fp(t), is

fp(t) = fON(t) ∗ fOFF(t), (25)

where the symbol “∗” represents the convolution operation.

B. Bayesian Channel Sensing

In this subsection, we discuss how SUs estimate the primary
channel state using Bayesian learning rule. Let us define
the continuous belief of the jth SU on the state of channel
i as bji = Pr(θji = H0), and the quantized belief as
Bj

i ∈ {B1,B2, ...,BM}, where Bj
i = Bk if bji ∈ [

k−1
M , k

M

]
.

Since all primary channels are assumed to be independent,
the learning processes of these channels are also independent.
In such a case, for channel i, the jth SU can receive the
belief of former SU choosing channel i, Bj−1

i , and his/her own
sensing result, sji . As discussed in Section II-B, the learning

process is Bj−1
i

Mapping−−−−→ b̂j−1
i

Bayesian+sji−−−−−−−→ bji
Quantize−−−−→ Bj

i ,
where b̂j−1

i =
(

1
k−1 +

1
k

)/
2 when Bj−1

i = Bk , and bji can be
derived according to (5) using Bayesian learning rule as (26).

To compute belief bji , we need to first derive the primary
channel state transition probabilities in (26). Since the primary
channel is modeled as an ON-OFF process, the channel state
transition probability depends on the time interval between
the (j − 1)th and jth SUs’ arrival time, tj . Note that the
tj can be directly obtained from the log-file in the server.
For notation simplicity, in the following, we will use P00(t

j),
P01(t

j), P10(t
j) and P11(t

j) to denote Pr(θji = H0|θj−1
i =

H0), Pr(θji = H1|θj−1
i = H0), Pr(θji = H0|θj−1

i = H1)
and Pr(θji = H1|θj−1

i = H1), respectively, where P01(t
j) =

1− P00(t
j) and P11(t

j) = 1− P10(t
j).

The close-form expression for P01(t
j) can be derived using

the renewal theory as follow [29]

P01(t
j) =

r1
r0 + r1

(
1− e

− r0+r1
r0r1

tj
)
. (27)

Thus, we can have P00(t
j) as

P00(t
j) = 1− P01(t

j) =
r1

r0 + r1

(r0
r1

+ e−
r0+r1
r0r1

tj
)
. (28)

Similarly, the close-form expression for P11(t
j) can also be

obtained by the renewal theory as follows.
Lemma 1: P11(t) satisfies the renewal equation given by

P11(t) = r1fON(t) +

∫ t

0

P11(t− w)fp(w)dw, (29)

where fON(t) is the probability density function (p.d.f ) of the
ON state’s length given in (24) and fp(t) is the p.d.f of the
PU’s renewal interval given in (25).

bji =

(
Pr(θji = H0|θj−1

i = H0)b̂
j−1
i + Pr(θji = H0|θj−1

i = H1)(1− b̂j−1
i )

)
Pr(sji |θji = H0)∑1

l=0

(
Pr(θji = Hl|θj−1

i = H0)b̂
j−1
i + Pr(θji = Hl|θj−1

i = H1)(1 − b̂j−1
i )

)
Pr(sji |θji = Hl)

. (26)
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Proof: See Appendix A.
By solving (29) in Lemma 1, we can obtain the close-form

expression for P11(t
j) given by

P11(t
j) =

r0
r0 + r1

(r1
r0

+ e−
r0+r1
r0r1

tj
)
. (30)

Then, we can have P10(ti) as

P10(t
j) = 1− P11(t

j) =
r0

r0 + r1

(
1− e

− r0+r1
r0r1

tj
)
. (31)

By substituting (27-28) and (30-31) into (26), we can
calculate the jth SU’s belief bji with the corresponding sensing
results sji = 1 and sji = 0 by (32) and (33), respec-
tively. For simplicity, in the following, we denote (32) as
bji |sji=1 = φ(b̂j−1

i , ti, s
j
i = 1), and denote (33) as bji |sji=0 =

φ(b̂j−1
i , ti, s

j
i = 0) .

C. Belief State Transition Probability

In this subsection, we will discuss how to calculate the
belief state transition probability matrix of each channel,
i.e., Pr(Bj

i = Bq|Bj−1
i = Bp). The belief state transition

probability can be obtained according to the learning rules

Bj−1
i

Mapping−−−−→ b̂j−1
i

Bayesian+sji−−−−−−−→ bji
Quantize−−−−→ Bj

i . Note that
b̂j−1
i = 1

2

(
p−1
M + p

M

)
if Bj−1

i = Bp, and bji ∈ [ q−1
M , q

M ] if
Bj

i = Bq . In such a case, the belief state transition probability
can be calculated by

Pr(Bj
i = Bq|Bj−1

i = Bp)

=

∫ q
M

q−1
M

Pr

(
bji

∣∣∣b̂j−1
i =

1

2

(p− 1

M
+

p

M

))
dbji . (34)

According to (32) and (33), we have bji = φ
(
b̂j−1
i =

1
2

(
p−1
M + p

M

)
, tj , sji

)
. Therefore, the belief state transition

probability can be re-written by (35), where the second
equality follows the assumption that the arrival interval of
two SUs tj obeys exponential distribution with parameter

λ and is independent with the belief. To calculate (35), we
need to derive Pr(sji |b̂j−1

i ), which represents the distribution
of the jth SU’s received signal when given the (j − 1)th
SU’s belief. Note that given current channel state θji , signal
sji is independent with belief b̂j−1

i . Thus, Pr(sji |b̂j−1
i ) can be

calculated as follows:

Pr(sji |b̂j−1
i ) = f(sji |θji = H0)Pr(θji = H0|b̂j−1

i ) +

f(sji |θji = H1)Pr(θji = H1|b̂j−1
i ). (36)

Moreover, given the previous channel state θj−1
i , current state

θji is also independent with the former SU’s belief b̂j−1
i . In

such a case, Pr(θji = H0|b̂j−1
i ) in (36) can be obtained as:

Pr(θji = H0|b̂j−1
i ) = Pr(θji = H0|θj−1

i = H0)b̂
j−1
i +

Pr(θji = H0|θj−1
i = H1)(1 − b̂j−1

i ),

= P00(t
j)b̂j−1

i + P10(t
j)(1 − b̂j−1

i ).(37)

Similarly, for Pr(θji = H1|b̂j−1
i ), we have

Pr(θji = H1|b̂j−1
i ) = P01(t

j)b̂j−1
i + P11(t

j)(1− b̂j−1
i ). (38)

By substituting (37-38) into (36), the conditional distribution
of the signal can be obtained as (39) and (40).

Finally, with (39-40), we can calculate the belief transition
probability matrix using (35).

D. Channel Access: Two Primary Channels Case

In this subsection, we discuss the case where there are
two primary channels. In such a case, the system state
S = (B1, B2, g1, g2), where B1 and B2 are beliefs of two
channels, g1 and g2 are numbers of SUs in two channels. We
define the immediate utility of SUs in channel i, U(Bi, gi),
as

U(Bi, gi) = b̂iR(gi) = b̂i log

(
1+

SNR
(gi − 1)INR + 1

)
, (41)

where b̂i is the mapping of quantized belief Bi, SNR is the
average signal-noise-ratio of the SUs and INR is the average
interference-noise-ratio.

bji |sji=1 =

(
r0e

r0+r1
r0r1

tj − r0 + (r1 + r0)b̂
j−1
i

)
P f
i(

r0e
r0+r1
r0r1

tj − r0 + (r1 + r0)b̂
j−1
i

)
P f
i +

(
r1e

r0+r1
r0r1

tj + r0 − (r1 + r0)b̂
j−1
i

)
P d
i

, (32)

bji |sji=0 =

(
r0e

r0+r1
r0r1

tj − r0 + (r1 + r0)b̂
j−1
i

)
(1 − P f

i )(
r0e

r0+r1
r0r1

tj − r0 + (r1 + r0)b̂
j−1
i

)
(1− P f

i ) +
(
r1e

r0+r1
r0r1

tj + r0 − (r1 + r0)b̂
j−1
i

)
(1− P d

i )
. (33)

Pr(Bj
i = Bq|Bj−1

i = Bp) =

∫∫
q−1
M ≤φ

(
b̂j−1
i = 1

2 (
p−1
M + p

M ),tj ,sji

)
≤ q

M

Pr
(
tj , sji |b̂j−1

i

)
dtjdsj ,

=

∫
q−1
M ≤φ

(
b̂j−1
i = 1

2 (
p−1
M + p

M ),tj,sji=0
)
≤ q

M

λe−λtj Pr(sji = 0|b̂j−1
i )dtj+

∫
q−1
M ≤φ

(
b̂j−1
i = 1

2 (
p−1
M + p

M ),tj ,sji=1
)
≤ q

M

λe−λtj Pr(sji = 1|b̂j−1
i )dtj . (35)

Pr(sji = 0|b̂j−1
i ) =

(
1− P f

i

)(
P00(t

j)b̂j−1
i + P10(t

j)(1− b̂j−1
i )

)
+
(
1− P d

i

)(
P01(t

j)b̂j−1
i + P11(t

j)(1 − b̂j−1
i )

)
, (39)

Pr(sji = 1|b̂j−1
i ) = P f

i

(
P00(t

j)b̂j−1
i + P10(t

j)(1− b̂j−1
i )

)
+ P d

i

(
P01(t

j)b̂j−1
i + P11(t

j)(1 − b̂j−1
i )

)
. (40)
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According to (22), the expected utility functions of two
channels can be written as

V1(S) = U(B1, g1) + (1 − μ)
∑
S′∈X

P1(S
′|S)V1(S

′), (42)

V2(S) = U(B2, g2) + (1− μ)
∑
S′∈X

P2(S
′|S)V2(S

′), (43)

where P1 and P2 are the state transition probabilities condi-
tioned on the event that SUs stay in the channels they have
chosen. According to (17-21), we can summarize P1 and P2

as (44) and (45), where 1(aS) is an indicator function defined
by

1(aS) =

{
1 if aS = 1, i.e., selecting channnel 1,
0 if aS = 2, i.e., selecting channnel 2.

(46)

According to (23), we can have the best strategy aS for SUs
arriving with system state S = (B1, B2, g1, g2) as follows:

aS=

{
1, V1(B1,B2, g1+1, g2)≥V2(B1,B2, g1, g2+1),
2, V1(B1,B2, g1+1, g2)<V2(B1,B2, g1, g2+1).

(47)

Thus, with (41-47), we can find the optimal strategy profile
π� = {aS , ∀S ∈ X} using the modified value iteration method
in Algorithm 1. In the following, we will show that when given
the beliefs of two channel, there exists a threshold structure
in the optimal strategy profile π�.

Lemma 2: The value function V1 and V2 updated by
Algorithm 1 have the quality that for any g1 ≥ 0 and g2 ≥ 1,

V1(B1, B2, g1, g2) ≥ V1(B1, B2, g1 + 1, g2 − 1), (48)

V2(B1, B2, g1, g2) ≤ V2(B1, B2, g1 + 1, g2 − 1). (49)

Proof: See Appendix B.
Lemma 2 shows that given the beliefs of two channels, V1

is non-decreasing and V2 is non-increasing along the line of
g1+g2 = m, ∀m ∈ {0, 1, ..., 2L}. Based on Lemma 2, we will
show the threshold structure in the optimal strategy profile π�

by Theorem 1.
Theorem 1: For the two-channel case, given the belief state,

the optimal strategy profile π� = {aS} derived from the
modified value iteration algorithm has threshold structure as
follows:

If aS=(B1,B2,g1,g2) = 1, then aS=(B1,B2,g1−g′,g2+g′) = 1. (50)

If aS=(B1,B2,g1,g2) = 2, then aS=(B1,B2,g1+g′,g2−g′) = 2. (51)

Proof: According to Lemma 2, we can have

V1(B1, B2, g1 + 1, g2)− V2(B1, B2, g1, g2 + 1) ≥
V1(B1, B2, g1 + 2, g2 − 1)− V2(B1, B2, g1 + 1, g2), (52)

Algorithm 2 Fast Algorithm for the Multi-channel Case.
1: if N is even then
2: while N > 1 do
3: • Randomly divide the N primary channels into N/2 pairs.
4: for all N/2 pairs do
5: • Select one channel from each pair according to Algorithm 1.
6: end for
7: • N = N/2.
8: end while
9: end if

10: if N is odd then
11: while N > 1 do
12: • Randomly divide the N primary channels into
13: (N − 1)/2 pairs and one channel.
14: for all (N − 1)/2 pairs do
15: • Select one channel from each pair according to Algorithm 1.
16: end for
17: • N = (N − 1)/2 + 1.
18: end while
19: end if

which shows that the difference of V1 and V2 is non-
decreasing along g1 + g2 = m, ∀m ∈ {0, 1, ..., 2L}. In
such a case, on one hand, if V1(B1, B2, g1 + 1, g2) ≤
V2(B1, B2, g1, g2+1), i.e., aS=(B1,B2,g1,g2) = 2, then for any
g′ > 0, V1(B1, B2, g1 + g′ + 1, g2 − g′) ≤ V2(B1, B2, g1 +
g′, g2− g′+1), i.e., aS=(B1,B2,g1+g′,g2−g′) = 2. On the other
hand, if V1(B1, B2, g1 + 1, g2) ≥ V2(B1, B2, g1, g2 + 1), i.e.,
aS=(B1,B2,g1,g2) = 1, then for any g′ > 0, V1(B1, B2, g1 −
g′+1, g2+g′) ≥ V2(B1, B2, g1−g′, g2+g′+1) which means
aS=(B1,B2,g1−g′,g2+g′) = 1. Therefore, we can conclude that
if aS=(B1,B2,g1,g2) = 1, then the upper left of line g1+g2 = m
will be all 1, and if aS=(B1,B2,g1,g2) = 2, then the lower right
of line g1 + g2 = m will be all 2. Thus, there exists some
threshold on the line of g1 + g2 = m.

Note that the optimal strategy profile π� can be obtained
off-line and the profile can be stored in a table in advance. We
can see that for some fixed belief state, the number of system
states is (L+1)2, which means the corresponding strategy file
has (L + 1)2 strategies. With the proved threshold structure
on each line g1 + g2 = m, ∀m ∈ {0, 1, . . . , 2L}, we just need
to store the threshold point on each line. In such a case, the
storage of the strategy profile can be reduced from O(L2) to
O(2L).

E. Channel Access: Multiple Primary Channels Case

In this subsection, we discuss the case where there are
multiple primary channels. Although the optimal strategy
profile of the multi-channel case can also be obtained using

P1(S
′|S) = P

(
(B′

1, B
′
2)|(B1, B2)

)
·

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1(aS)λ if S′ = (B′

1, B
′
2, g1 + 1, g2),(

1− 1(aS)
)
λ if S′ = (B′

1, B
′
2, g1, g2 + 1),

(g1 − 1)μ if S′ = (B′
1, B

′
2, g1 − 1, g2),

g2μ if S′ = (B′
1, B

′
2, g1, g2 − 1),

1− λ− (g1 + g2 − 1)μ if S′ = (B′
1, B

′
2, g1, g2),

(44)

P2(S
′|S) = P

(
(B′

1, B
′
2)|(B1, B2)

)
·

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1(aS)λ if S′ = (B′

1, B
′
2, g1 + 1, g2),(

1− 1(aS)
)
λ if S′ = (B′

1, B
′
2, g1, g2 + 1),

g1μ if S′ = (B′
1, B

′
2, g1 − 1, g2),

(g2 − 1)μ if S′ = (B′
1, B

′
2, g1, g2 − 1),

1− λ− (g1 + g2 − 1)μ if S′ = (B′
1, B

′
2, g1, g2).

(45)
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Algorithm 1, the computation complexity grows exponentially
in terms of the number of primary channels N . Besides, the
storage and retrieval of the strategy profile are also challenging
when the number of system states exponentially increases with
N . Therefore, it is important to develop a fast algorithm for
the multi-channel case.

Suppose the channel number N is even, we can randomly
divide these N primary channels into N/2 pairs. For each
pair, SUs can choose one channel using the threshold strategy
in Theorem 1. Then, SUs can further divide the selected
N/2 channels into N/4 pairs and so on so forth. In such
a case, SUs can finally select one suboptimal channel to
access. On the other hand, if the channel number N is odd,
the suboptimal channel can be selected by a similar way.
With such an iterative dichotomy method, a SU can find
one suboptimal primary channel only by logN steps and the
complexity of each step is same with that of the two-channel
case. This fast algorithm is summarized in Algorithm 2. In
the simulation section, we will compare the performance of
this fast algorithm with the optimal algorithm using modified
value iteration.

F. Analysis of Interference to the PU

Since mixed underlay and overlay spectrum sharing are used
in this paper, it is crucial to compute the interference to the PU
and evaluate the impact on the PU’s data transmission. In our
system, the primary channel is based on ON-OFF model and
SUs cannot be synchronous with the PU. In such a case, they
may fail to discover the PU’s recurrence when transmitting
packets in the primary channel, which may cause interference
to the PU [30].

As long as there are SUs in the primary channel, interfer-
ence may occur to the PU. Therefore, we define the interfer-
ence probability of channel i, PIi, as the probability that the
number of SUs in this channel is non-zero. Given a strategy
profile π = {aS}, the system state transition probability
matrix Ps = {P (S′|S), ∀S′ ∈ X , ∀S ∈ X} can be obtained
according to (8-12). With Ps, we then can derive the stationary
distribution of the Markov chain, σ = {σ(B,G)}, by solving
σPs = σ. In such a case, the interference probability PIi can
be calculated by

PIi=1−
∑
B

∑
G\gi

σ
(
B,G=(g1, g2, ..., gi=0, ..., gN)

)
. (53)

If there is no interference from SUs, the PU’s instantaneous
rate is log(1 + SNRp), where SNRp is the Signal-to-Noise
Ratio of primary signal at the PU’s receiver. On the other
hand, if the interference occurs, the PU’s instantaneous rate is
log

(
1 +

SNRp

INRp+1

)
, where INRp is the Interference-to-Noise

Ratio of secondary signal received by the PU. Therefore, the
PU’s average data rate Ri in channel i can be calculated by

Rpi=
(
1−PIi

)
log

(
1+SNRp

)
+ PIi log

(
1+

SNRp

INRp+1

)
. (54)

IV. SIMULATION RESULTS

In this section, we conduct simulations to evaluate the
performance of proposed scheme in cognitive radio networks.

Fig. 5. Detection and false-alarm probability.

Specifically, we evaluate the performance of channel sensing
and access, as well as the interference to the PU.

A. Bayesian Channel Sensing

In this simulation, we evaluate the performance of channel
sensing with Bayesian learning. We first generate one primary
channel based on the ON-OFF model, and the channel param-
eters are set to be r0 = 55s and r1 = 50s, respectively. Then, a
number of SUs with some arrival rate λ sequentially sense the
primary channel and construct their own beliefs by combining
the sensing result with the former SU’s belief. In Fig. 5, we
compare the detection and false-alarm probabilities between
channel sensing with Bayesian learning based on continuous
belief, sensing with Bayesian learning based on quantized
belief (belief level M = 5 and 3), and sensing without
Bayesian learning under different arrival rate λ. Overall, the
detection probability is enhanced and false-alarm probability
decreases when the Bayesian learning is adopted. We can see
that there are some performance loss due to the quantization
operation of the beliefs and setting more belief levels can
achieve less loss. Moreover, we can see that with Bayesian
learning, the larger the arrival rate λ, the higher detection
probability and the lower the false-alarm probability. This is
because a larger λ means a shorter arrival interval between
two SUs, and thus the former SU’s belief information is more
useful for current SU’s belief construction.

B. Channel Access of Two Primary Channel Case

In this subsection, we evaluate the performance of the pro-
posed Multi-dimensional MDP model, as well as the modified
value iteration algorithm for the two-channel case. The param-
eters of the two primary channels are set to be: for channel 1,
r0 = 55s and r1 = 25s; for channel 2, r0 = 25s and r1 = 55s,
which means channel 1 is statistically better than channel 2.
In Fig. 6, we first show the convergence performance of the
proposed algorithm, where the X-axis is the iteration times
and the Y-axis is the mean-square differences of two adjacent
iterations, i.e., E(||π(t + 1) − π(t)||2). We can see that the
average iteration times are less than 20 iterations.

In the following simulations, our proposed strategy is com-
pared with centralized strategy, myopic strategy and random
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Fig. 6. Convergence performance of modified value iteration algorithm when
N = 3, M = 5 and L = 5.

strategy in terms of social welfare. We first define the social
welfare, W , when given a strategy profile π = {aS , ∀S ∈ X}
as

W =
∑
S∈X

σπ(S)
(
g1U(B1, g1) + g2U(B2, g2)

)
, (55)

where S = (B1, B2, g1, g2) in the two-channel case, and
σπ(S) is the stationary probability of state S. The four
strategies we test are defined as follows.

• Proposed strategy is obtained by our proposed value
iteration algorithm in Algorithm 1.

• Centralized strategy is obtained by exhaustively search-
ing all possible 2|X | strategy profiles to maximize the
social welfare, i.e., πc = argmax

π
Wπ, where the super-

script c means centralized strategy. We can see that the
complexity of finding the centralized strategy is NP-hard.

• Myopic strategy is to maximize the immediate utility,
i.e., to choose the channel with the largest immediate
reward by πm = {aS = argmax

i∈{1,2}
U(Bi, gi), ∀S ∈ X},

where the superscript m means myopic strategy.
• Random strategy is to randomly choose one chan-

nel with equal probability 0.5, i.e., πr = {aS =
rand(1, 2), ∀S ∈ X}, where the superscript r means
random strategy.

In the simulation, we use the myopic strategy as the com-
parison baseline and show the results by normalizing the
performance of each strategy by that of the myopic strategy.

In Fig. 7, we evaluate the social welfare performance of
different methods. Due to the extremely high complexity of
the centralized strategy, we consider the case with 2 belief
levels and maximally 2 SUs in each channel, i.e., M = 2
and L = 2. Note that if M = 2 and L = 3, there
are totally 22

2·(3+1)2 = 264 possible strategy profiles to
verify, which is computational intractable. Therefore, although
slightly outperforming our proposed strategy as shown in
Fig. 7, the centralized method is not applicable to the time-
varying primary channels. Moreover, we also compare the
proposed strategy with the myopic and random strategies
under the case with M = 5 and L = 5 in Fig. 8. We can
see that the proposed strategy performs the best among all the

Fig. 7. Social welfare comparison under 2-channel with M = 2 and L = 2.

Fig. 8. Social welfare comparison under 2-channel with M = 5 and L = 5.

Fig. 9. NE verification under 2-channel with M = 2 and L = 2.

strategies.
We verify that the proposed strategy is a Nash equilibrium

through simulating a new coming SU’s expected utility in
Fig. 9. The deviation probability in x-axis stands for the
probability that a new coming SU deviates from the proposed
strategy or centralized strategy. We can see that when there
is no deviation, our proposed strategy performs better than
the centralized strategy. Such a phenomenon is because the
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Fig. 10. Social welfare comparison under 3-channel case.

centralized strategy is to maximize the social welfare and thus
sacrifices the new coming SU’s expected utility. Moreover, we
can see that the expected utility of a new coming SU decreases
as the deviation probability increases, which verifies that the
proposed strategy is a Nash equilibrium. On the other hand, by
deviating from the centralized strategy, a new coming SU can
obtain higher utility, which means that the centralized strategy
is not a Nash equilibrium and SUs have incentive to deviate.

C. Fast Algorithm for Multiple Channel Access

In this simulation, we evaluate the performance of the pro-
posed fast algorithm for multi-channel case, which is denoted
as suboptimal strategy hereafter. In Fig. 10, the suboptimal
strategy is compared with the proposed strategy, myopic
strategy and random strategy in terms of social welfare under
3-channel case, where the channel parameters are set to be:
for channel 1, r0 = 55s and r1 = 25s; for channel 2, r0 = 45s
and r1 = 40s; for channel 3, r0 = 25s and r1 = 55s.
We can see that the suboptimal strategy achieves the social
welfare very close to that of the optimal one, i.e., the proposed
strategy using modified value iteration, and is still better than
the myopic and random strategies. Therefore, considering the
low complexity of the suboptimal strategy, it is more practical
to use the suboptimal strategy for the multi-channel case.

D. Interference Performance

Fig. 11 shows the simulation results of the PU’s average data
rate in each channel Rpi versus SUs’ departure rate μ under
the two-channel case, where we set SNRp = 5db and INRp =
3db. We can see that Rpi is an increasing function in terms
of μ. Such a phenomenon is because an increase of departure
rate μ means fewer SUs in the primary channels, which leads
to less interference to the PU. Suppose that the PU’s data
rate in each channel should be at least 0.5bps/Hz, μ should
be no smaller than the value indicated by the vertical dotted
line in Fig. 11, i.e., μ should be approximately larger than
0.07. Therefore, the secondary network should appropriately
control SUs’ departure rate μ, i.e., the average transmission
time, to control the interference and ensure the PU’s average
data rate.

Fig. 11. PU’s average data rate when M = 5 and L = 5.

V. CONCLUSION

In this paper, we extended the previous Chinese Restaurant
Game work [9] into the Dynamic Chinese Restaurant Game,
in which customers arrive and leave by Bernoulli process.
Based on the Bayesian learning rule, we introduced a table
state learning method for customers to estimate the table state.
In the learning method, we assume that all the customers
truthfully report their beliefs to others. How to ensure the
truthful reporting is not considered, which is one of our
on-going works. On one hand, truthful reporting can be
achieved by effective mechanism design. On the other hand,
an alternative scenario can be considered where each customer
does not reveal his/her belief information and only action
information can be observed. We modeled the table selection
problem as an MDP problem, proposed a Multi-dimensional
MDP model and a modified value iteration algorithm to find
the optimal strategy. We further discussed the application of
the Dynamic Chinese Restaurant Game into cognitive radio
networks. The simulation results show that compared with the
centralized approach that maximizes the social welfare with
an intractable computational complexity, the proposed scheme
achieves comparable social welfare performance with much
lower complexity, while compared with random strategy and
myopic strategy, the proposed scheme achieves much better
social welfare performance. Moreover, the proposed scheme
maximizes a new coming user’s expected utility and thus
achieves Nash equilibrium where no user has the incentive to
deviate. Such a Dynamic Chinese Restaurant Game provides
a a very general framework for analyzing the learning and
strategic decision making in a dynamic social network with
negative network externality.

APPENDIX

A. Proof of Lemma 1

According to Fig. 12, the recursive expression of P11(t) can
be written by

P11(t) =

⎧⎪⎪⎨⎪⎪⎩
1 t ≤ X,

0 X ≤ t ≤ X + Y,

P11(t−X − Y ) X + Y ≤ t.

(56)



1972 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 13, NO. 4, APRIL 2014

ON State

X Y

OFF State

P11(t)=1
P11(t)=0

P11(t)=P11(t-X-Y)

Fig. 12. Illustration of function P11(t).

where X denotes the length of the first ON state and Y
denotes the length of the first OFF state. Moreover, we have
X ∼ fON(x) = 1

r1
e−x/r1 and Y ∼ fOFF(y) = 1

r0
e−y/r0 .

Since X and Y are independent, their joint distribution
fXY (x, y) = fON(x)fOFF(y). In such a case, we can re-write
P11(t) as follows:

P11(t) =

∫
x≥t

fON(x)dx +

∫∫
x+y≤t

f11(t− x− y)fXY (x, y)dxdy,

= 1− FON(t) + P11(t) ∗ fp(t), (57)

where FON(t) =
∫ t

0 fON(x)dx = 1 − e−t/r1 is the cumulative
distribution function (c.d.f ) of the ON state’s length. By taking
Laplace transforms on the both sides of (57), we have

P11(s) =
1

s
− 1

s
FON(s) + P11(s)Fp(s),

= r1FON(s) + P11(s)Fp(s), (58)

where P11(s) is the Laplace transform of P11(t), FON(s) =
1

λ1s+1 is the Laplace transform of fON(t), and Fp(s) =
1

(λ1s+1)(λ0s+1) is the Laplace transform of fp(t). Then by
taking the inverse Laplace transform on (58), we have

P11(t) = r1fON(t) +

∫ t

0

P11(t− w)fp(w)dw. (59)

B. Proof of Lemma 2

We use induction method to prove that (48) and (49)
hold for all n ≥ 0. First, since V

(0)
1 (B1, B2, g1, g2) and

V
(0)
2 (B1, B2, g1, g2) are initialized by zeros in Algorithm 1,

(48) and (49) hold for n = 0. Second, we assume that (48)
and (49) hold for some n > 0, and check whether (48)
and (49) hold for (n + 1). For notation simplicity, we use

S1 = (B1, B2, g1, g2) and S2 = (B1, B2, g1 + 1, g2 − 1).
There are three cases for action a

(n)
S1

and action a
(n)
S2

:

• Case 1: V (n)
2 (S1) ≤ V

(n)
2 (S2) ≤ V

(n)
1 (S2) ≤ V

(n)
1 (S1),

we have a
(n)
S1

= a
(n)
S2

= 1;

• Case 2: V (n)
1 (S2) ≤ V

(n)
1 (S1) ≤ V

(n)
2 (S1) ≤ V

(n)
2 (S2),

we have a
(n)
S1

= a
(n)
S2

= 2;

• Case 3: V (n)
1 (S1) ≥ V

(n)
2 (S1) and V

(n)
1 (S2) ≤ V

(n)
2 (S2)

we have a
(n)
S1

= 1 and a
(n)
S2

= 2.

For Case 1, we have the difference of V1 and V2 in (60).
With the hypothesis that V (n)

1 (S1)−V
(n)
1 (S2) ≥ 0, we can see

that V (n+1)
1 (S1) − V

(n+1)
1 (S2) ≥ 0 holds according to (60).

For Case 2 and 3, same conclusions can be obtained by analyz-
ing the difference of V

(n+1)
1 (S1) and V

(n+1)
1 (S2). Thus, we

conclude that V1(S1) ≥ V1(S2). Similarly, V2(S1) ≤ V2(S2)
can be proved by induction. Here, due to page limitation, we
skip the detailed proof.
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