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Abstract—In a distributed cognitive radio network, due to
negative network externality, rational secondary users tend
to avoid accessing the same vacant primary channels with
others. Moreover, they usually need to make their channel
access decisions in a sequential manner to avoid collisions. The
characteristic of negative network externality and the structure
of sequential decision making make the multi-channel sensing
and access problem challenging, which has not been well studied
by the existing literatures. To solve these problems, in this
paper, we propose a multi-channel sensing and access game,
which not only considers the negative network externality in
secondary users’ decision making, but also takes into account
their sequential decision making structure. We solve the multi-
channel sensing problem using Bayesian learning method and
design a cooperative learning rule for secondary users to accu-
rately estimate the channel state. We study the multi-channel
access problem under two scenarios: with and without resource
constraint, respectively. For both scenarios, we design recursive
best response algorithms for secondary users to find the subgame
perfect Nash equilibria. Specifically, we analyze the homogenous
case of the scenario without resource constraint and find that the
Nash equilibrium profile exhibits a threshold structure. Finally,
we conduct simulations to validate the effectiveness and efficiency
of the proposed methods.

Index Terms—Cognitive radio, cooperative spectrum sensing,
dynamic spectrum access, Bayesian learning, game theory.

I. INTRODUCTION

RECENTLY, due to the emergence of various wireless
applications, electromagnetic radio spectrums are be-

coming more and more crowded. Under such circumstances,
dynamic spectrum access (DSA) schemes are proposed to
mitigate the problem of crowded electromagnetic radio spec-
trum [1]. Compared with static spectrum allocation, it has
been shown to be able to significantly enhance the utiliza-
tion efficiency of existing spectrum resources [2]. Cognitive
radio technology is considered as an effective approach to
implement such DSA schemes. In a cognitive radio network,
the unlicensed users, called as Secondary Users (SUs), can
opportunistically utilize the spectrum resources of licensed
users, called as Primary Users (PUs) under the constraint of
without harmful interference to the PUs [3].

Manuscript received July 5, 2013; revised October 15, 2013; accepted
December 23, 2013. The associate editor coordinating the review of this paper
and approving it for publication was W. Zhang.

C. Jiang is with the Department of Electronic Engineering, Tsinghua
University, Beijing 100084, P. R. China. This work was done during his visit
at the University of Maryland, College Park (e-mail: chx.jiang@gmail.com).

Y. Chen and K. J. R. Liu are with the Department of Electrical and
Computer Engineering, University of Maryland, College Park, MD 20742,
USA (e-mail: {yan, kjrliu}@umd.edu).

This work was partly funded by project 61371079 and 61271267 supported
by NSFC China, Postdoctoral Science Foundation funded project.

Digital Object Identifier 10.1109/TWC.2014.022014.131209

Two essential issues of dynamic spectrum access are spec-
trum sensing and channel access [4]. Due to the uncertainty
about the states of multiple primary channels, i.e., whether
the PUs are active, SUs need to first estimate the channel
state through spectrum sensing [5]. Spectrum sensing meth-
ods based on energy detection and waveform sensing were
proposed in [6] and [7], respectively. In order to counter the
channel fading and shadowing problem, cooperative spectrum
sensing technology was proposed, in which SUs share their
spectrum sensing results to improve the sensing performance
[8]. In [9], the authors proposed a multi-channel cooper-
ative sensing scheme, including slotted-time sensing and
continuous-time sensing. After multi-channel sensing, SUs ac-
cess primary channels for data transmission. Several spectrum
access methods based on different mathematical models have
been proposed, e.g., Markov decision process (MDP) based
approaches [10]-[11], queuing theoretic approaches [12]-[14],
and game theoretic approaches [15]-[17]. Moreover, the joint
spectrum sensing and channel access problems were studied
in [18]-[20].

When making channel access decision, each SU not only
should consider the channel quality, but also take into account
other SUs’ channel access decisions since the more SUs access
the same channel, the less throughput each SU can obtain.
Such a phenomenon is known as negative network externality
[21], i.e., the negative influence of other users’ behaviors on
one user’s reward, due to which each user tends to avoid
making the same decision with others to maximize his/her
own utility. Moreover, in a fully distributed cognitive radio
network, SUs usually need to make decision sequentially to
avoid collision, which makes the multiple SUs’ multi-channel
sensing and access problem even more challenging. Although
this is an important and practical issue, there is few work
in the literature considering both negative network externality
and sequentially decision making structure. In our previous
works [22]-[23], we proposed a Chinese Restaurant Game to
address the sequential decision making with negative network
externality. However, the underlying assumption of Chinese
Restaurant Game is that each SU can only access one primary
channel at each time slot [24]-[25], due to which it cannot
be directly applied to the multi-channel sensing and access
problem.

Recently, we proposed a new game, called Indian Buffet
Game [26], to study how users in a dynamic system make
multiple concurrent decisions on different objects/resources
when confronted with uncertain system state. In the Indian
Buffet Game, there are finite dishes with different dish qual-
ities and finite customers sequentially requesting multiple
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dishes for meal. Since customers do not know the exact dish
quality, i.e., the state of each dish, they have to learn the
dish state according to some external information. Moreover,
when requesting multiple dishes, a customer needs to take
into account the decisions of other customers, especially
those of subsequent customers, due to the negative network
externality. The multi-channel sensing and access problem
in cognitive radio networks can be ideally modeled by the
Indian Buffet Game [27], where the SUs can be regarded as
customers and the multiple primary channels can be regarded
as multiple dishes in the restaurant. Furthermore, how SUs
estimate the state of each primary channel can be regarded
as how customers learn the state of each dish, and how a SU
chooses multiple channels to access can be formulated as how
a customer requests multiple dishes for meal.

Based on the Indian Buffet Game model, in this paper,
we propose a multi-channel sensing and access game for
distributed cognitive radio network by considering both nega-
tive network externality and SU’s sequential decision making
structure. We analyze the proposed game under two scenarios:
multi-channel sensing and access with resource constraint and
without resource constraint, respectively, where the resource
constraint means that each SU can at most sense and access
a certain number of channels. For the multi-channel sensing
problem, we introduce a cooperative channel state learn-
ing method based on Bayesian learning. With this learning
scheme, SUs first cooperatively learn the channel utilization
ratio, i.e., the prior probability that primary channel is idle,
and then construct their belief regarding the channel state of
each time slot, i.e., the posterior probability, using both their
spectrum sensing results and the estimated channel utilization
ratio. For SUs’ multi-channel access problem without resource
constraint, we show that the multi-channel access game can be
decoupled into a series of independent single-channel access
game. We then design a recursive best response algorithm to
find the subgame perfect Nash equilibrium for SUs. Moreover,
we show that the Nash equilibrium under the homogeneous
setting exhibits a threshold structure. For the multi-channel
access problem with resource constraint, we also design a
recursive best response algorithm for SUs to find the subgame
perfect Nash equilibrium.

The rest of this paper is organized as follows. Firstly,
we introduce the proposed multi-channel sensing and access
framework in Section II. Then, we discuss how SUs learn the
primary channel state using Bayesian learning rule in Section
III. In Section VI and Section V, we analyze the multiple
SUs’ multi-channel access game without and with resource
constraint, respectively. Finally, we show simulation results in
Section VI and draw conclusions in Section VII.

II. MULTI-CHANNEL SENSING AND ACCESS FRAMEWORK

A. System Model

We consider a primary network with M independent pri-
mary channels denoted by {Ch1,Ch2, ...,ChM}, as shown in
Fig. 1. The PUs have priority to occupy these M channels
at any time, while SUs are allowed to access the channels
under the condition that the PUs’ communication QoS is
guaranteed [2]. The primary channels are assumed to be
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ChM
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=H _θ2
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Fig. 1. Primary channels model.

slotted, and there exist idle time slots, during which no PUs’
communication appears and SUs have opportunity to access.
We denote the primary channel state as θ = {θ1, θ2, ..., θM},
where θj ∈ {H−,H+}1 represents the state of channel Chj ,
H− means the channel is idle and H+ means the PUs are
active in the channel. Note that the channel state θ

(t)
j is time-

varying since PUs may appear at the primary channel at any
time. We assume that all primary channels are stationary,
which means that each channel has a steady channel utilization
ratio, denoted by λj , where{

Pr(θ(t)j = H−) = λj ,

Pr(θ(t)j = H+) = 1− λj ,
∀ j = 1, 2, ...,M. (1)

In our model, the state θ
(t)
j and the utilization ratio λj are

unknown to SUs.
For the secondary network, suppose that there are N SUs,

labeled by {1, 2, ..., N}, searching vacant primary channels
for data transmission. The communication in the secondary
network is also time slotted and synchronous with that of the
primary network. We assume that each SU can simultaneously
access multiple vacant primary channels during one time slot,
which can be implemented by Orthogonal Frequency Division
Multiplexing (OFDM) technology. All SUs are considered
as rational users in the sense that each SU makes multi-
channel access decision with the objective of maximizing
his/her own expected reward. Since SUs do not know exactly
the instantaneous channel state θ

(t)
j , they need to listen to

the primary channels for a while before channel access.
We consider such spectrum sensing as a prerequisite for all
secondary devices and each SU can independently perform
spectrum sensing using energy detection method [28].

B. SUs’ Time Slot Structure

As shown in Fig. 2, we illustrate the time slot structure in the
secondary network. At each time slot t ∈ {1, 2...}, there are
three phases: channel learning phase, access decision phase
and data transmission phase.

In the channel learning phase, SUs cooperatively learn the
channel state at current time slot. There are two steps in this
phase: utilization ratio learning and channel state learning.
In the first step, each SU independently performs spectrum

1In the paper, the bold symbols represent vectors, the bold capital symbols
represent matrixes, the subscript i means the SU index and subscript j means
the channel index, the superscript (t) means the time slot index.
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Fig. 2. SUs’ time slot structure.

sensing to obtain some observations on whether the primary
channels are vacant. Due to resource constraint, each SU is
assumed to be able to sense at most L (L ≤ M) primary
channels at one time slot. According to the observations, SUs
cooperatively learn the utilization ratio of each channel, λj ,
which can be regarded as the prior probability of channel state.
We assume that there is a narrow-band control channel in the
secondary network for SUs to exchange their spectrum sensing
information. In the second step, based on the observation from
spectrum sensing and the estimation of λj , SUs cooperatively
estimate the state of each primary channel at the current time
slot. Here, we introduce the concept of belief to describe SUs’
uncertainty about the current channel state, denoted by

p(t) =
{
p
(t)
j = Po(θ(t)j = H−), j = 1, 2, ..,M

}
, (2)

where p
(t)
j represents SUs’ estimation of the probability that

channel Chj is in idle state at time slot t after performing
channel sensing. Notice that p(t)j is the posterior probability

of θ
(t)
j = H−, which is different from the prior probability

λj = Pr(θj = H−). The details about the proposed coop-
erative channel learning scheme will be discussed in Section
III.

In the access decision phase, all SUs make decisions on
which channels to access to and broadcast their decisions to
others via the control channel. In order to avoid the collision,
we assume that SUs sequentially make and broadcast their
decisions according to a certain predefined order. As we will
see later, SUs’ behaviors and utilities highly depend on the
decision order. For the sake of fairness, we assume that the
decisions order is randomized and thus different at different
time slot, due to which SUs are uncertain about their future
decision orders and only care about the expected reward at
current time slot. To maximize the expected rewards, SUs
need to consider not only the channel state and previous SUs’
decisions, but also the subsequent SUs’ decisions. In Section
IV and V, we will discuss the best decision of each SU in this
multi-channel access problem.

In data transmission phase, after all SUs have made their
channel access decisions, each SU begins data transmission
on the corresponding channels. If the SUs access a primary
channel with active PUs, they will receive little throughput
due to the interference from PUs’ communications. On the
other hand, if SUs successfully access a vacant channel, they
will share the channel through Time Division Multiple Access
(TDMA) or Code Division Multiple Access (CDMA).

To summarize, we show in Algorithm 1 the proposed multi-
channel sensing and access framework.

Algorithm 1 Multi-Channel Sensing and Access Frame-
work

//******Channel Learning******//
1. for each primary channel Chj , j = 1, 2, ...,M

• //***Utilization Ratio Learning***//
• Each SU decides to sense the channel or not according

to his/her resource constraint.
• SUs who have sensed the channel can obtain an obser-

vation on whether the PUs are active based on spectrum
sensing results.

• SUs cooperatively learn the utilization ratio λj based
on the observations.

• //***Channel State Learning***//
• SUs cooperatively estimate the channel state of current

time slot according to the observations and estimated
channel utilization ratio.

//******Access Decision******//
2. for each SU (i = 1, 2, ..., N )

• Each SU sequentially decides which channels to access
to.

• Each SU broadcasts his/her decisions to other SUs.

//******Data Transmission******//
3. Each SU transmits his/her data in corresponding chan-
nels.

C. Multi-Channel Access Game Formulation

As discussed above, after channel learning phase, SUs begin
to sequentially make decisions on which channels to access
to. As rational users, SUs should take into account all possible
factors to maximize their expected payoffs, including channel
state, i.e., channel is vacant or occupied, as well as previous
and subsequent SUs’ decisions, i.e., the negative network
externality. In this paper, we formulate this multi-channel
access problem as a non-cooperative game and derive the
best response for each SU. Here, we first define the players,
strategies, utilities and best responses of the multi-channel
access game model as follows.

• Players: N rational SUs in the secondary network.
• Strategies: Since each SU can access multiple primary

channels, the strategy set can be defined as

X =
{
∅, {r1}, ..., {r1, r2}, ..., {r1, r2, ..., rM}

}
, (3)

where each strategy is a combination of channels and
∅ means no channel is accessed. Obviously, SUs’ entire
strategy set is finite with 2M elements. Let us denote
the strategy of the i-th SU at time slot t as d

(t)
i =(

d
(t)
i,1, d

(t)
i,2, ..., d

(t)
i,M

)′
, where d

(t)
i,j = 1 represents that the

i-th SU accesses channel Chj at time slot t and otherwise
we have di,j = 0. In such a case, the strategy profile of
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all SUs can be denoted by a M ×N matrix as follows:

D(t) = (d
(t)
1 ,d

(t)
2 , ...,d

(t)
N ),

=

⎡
⎢⎢⎢⎢⎣
d
(t)
1,1 d

(t)
2,1 · · · d

(t)
N,1

d
(t)
1,2 d

(t)
2,2 · · · d

(t)
N,2

...
...

. . .
...

d
(t)
1,M d

(t)
2,M · · · d

(t)
N,M

⎤
⎥⎥⎥⎥⎦ . (4)

• Utility function: Each SU can expect his/her transmission
data rate by the belief of the channel state and the number
of SUs who will share the same channel with him/her. As-
suming SUs share the primary channel through TDMA,
we can define the expected utility function of the i-th SU
accessing channel Chj at time slot t as

U
(t)
i,j =

p
(t)
j gi,j

N
(t)
j

− cj , (5)

where p
(t)
j is SUs’ belief of the state of channel Chj

at time slot t, gi,j is the i-th SU’s gain of accessing
channel Chj which depends on the channel gain, N (t)

j is
the total number of SUs sharing channel Chj at time slot
t and cj is the cost of accessing channel Chj . From (5),
we can see that the more accurate the belief, the better
the expected utility SUs can obtain. Moreover, the utility
function is a decreasing function in terms of Nj , which
can be regarded as the characteristic of negative network
externality since the more SUs access channel Chj , the
lower utility each SU can obtain.

• Best response: The best response of the i-th SU, d(t)∗
i =

(d
(t)∗
i,1 , d

(t)∗
i,2 , ..., d

(t)∗
i,M )′, is to maximize his/her expected

utility, which can be written as

d
(t)∗
i = argmax

d
(t)
i ∈{0,1}M

M∑
j=1

d
(t)
i,j · U (t)

i,j . (6)

Note that due to hardware limitation and/or power con-
straint, SUs may not be able to access all channels at
one time slot, i.e., there may be a resource constraint.
In this paper, we assume that each SU can at most
simultaneously access L channels at each time slot. In
such a case, SUs’ decisions are subject to the following
constraints:

M∑
j=1

d
(t)
i,j ≤ L, ∀ i = 1, 2, ..., N, (7)

A special case of (7) is L ≥M , which means there is no
resource constraint for SUs. In Section IV and V, we will
explicitly discuss the multi-channel access game under
two scenarios: without resource constraint (L ≥M ) and
with resource constraint (L < M ), respectively.

III. MULTI-CHANNEL SENSING WITH COOPERATIVE

CHANNEL STATE LEARNING

As mentioned above, the state of each primary channel
θ
(t)
j ∈ {H−,H+} is time-varying with a steady utilization

ratio λj , both θj and λj are unknown to all SUs but can
influence SUs’ behaviors and utilities to a large extent. From

(5), we can see that the more accurate channel state estimation,
the better channel access decision each SU can make and thus
the higher expected reward each SU can obtain. Therefore, it
is important to design an effective learning rule so that SUs
can gradually learn the true utilization ratio of each channel
and accurately estimate the channel state at every time slot. In
this subsection, we will discuss how SUs should estimate the
channel state in the multi-channel sensing problem. Specifi-
cally, we propose a cooperative channel state learning scheme
based on Bayesian social learning for SUs.

Although each SU can sense multiple channels during the
channel learning phase, they might not be able to sense all
channels due to various kinds of resource constraints, such as
hardware constraint, power constraint and/or spectrum sensing
time constraint. In such a case, each SU may not be able to
update his/her beliefs on some channels at every time slot,
which inevitably restricts his/her channels access decisions
in the following access decision phase. Thus multiple SUs’
cooperative channel state learning becomes highly necessary.

In our model, each SU first randomly selects L (L ≤ M)
channels for spectrum sensing, and then makes a binary
decision on the channel state individually. The binary decision
is a binary signal s ∈ {s+, s−}, where the positive signal s+
indicates that the channel is vacant, while the negative signal
s− stands for the channel is occupied by PUs. The binary
signal of each SU follows a distribution that

f(s|θ = H−) =
{

Pf , if s = s+;
1− Pf , if s = s−.

(8)

f(s|θ = H+) =

{
Pd, if s = s+;
1− Pd, if s = s−.

(9)

where Pd and Pf are SUs’ detection probability and false-
alarm probability, respectively. Note that the values of Pd and
Pf reflect the performance of spectrum sensing and depend
on SUs’ hardware configuration. In this paper, we assume that
Pd and Pf are known to each SU. After spectrum sensing, all
SUs exchange their signals with each other for cooperative
channel learning, i.e., hard decision fusion rule [8]. The
learning phase includes two steps: utilization ratio learning
and channel state learning, which will be discussed in details
in the following. Since the channel state learning processes
of different primary channels are independent of each other,
in the rest of this section, we omit the channel index j for
notation simplification.

A. Cooperative Channel Utilization Ratio Learning

The steady utilization ratio of the channel, λ, is an important
prior information for SUs to estimate current channel state.
As defined in (1), λ represents the prior probability that the
primary channel is in idle state. Suppose λ = Λk ∈ Λ, where
Λ is a finite set combining all possible K distributions. When
the secondary network is first established, a uniform prior is
used, i.e., P (0)(λ = Λk) = 1/K, ∀ Λk ∈ Λ. After SUs begin
to perform spectrum sensing, they can improve the estimation
of λ based on the spectrum sensing results, i.e., the observed
signals. Let us denote s(t) = {s(t)1 , s

(t)
2 , ..., s

(t)

N(t)} as the signal
set observed by N (t) SUs who have sensed the channel at time
slot t. Since all SUs share their signals with others, each SU
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can update the estimation of channel utilization ratio using
Bayesian learning rule [29] as

P (t)(λ = Λk) =
P (t−1)(λ = Λk)P (s(t)|λ = Λk)∑

Λk∈Λ

P (t−1)(λ = Λk)P (s(t)|λ = Λk)
,

(10)
where P (t)(λ = Λk) is the estimated probability that channel
utilization ratio is Λk given all observed signals up to time
slot t, i.e.,{s(1), s(2), ..., s(t)}, and P (s(t)|λ = Λk) is the con-
ditional probability of observing s(t) given channel utilization
ratio λ = Λk.

When given current channel state θ(t), the utilization ratio
λ and SUs’ observed signal s(t)i are independent of each other,
i.e.,

P (s(t), θ(t)|λ) = P (s(t)|θ(t))P (θ(t)|λ) (11)

In such a case, we have

P (s(t)|λ = Λk) =P (s(t), θ(t) = H+|λ = Λk)+

P (s(t), θ(t) = H−|λ = Λk)

=P (s(t)|θ(t) = H+)(1 − Λk)+

P (s(t)|θ(t) = H−)Λk. (12)

Since all SUs independently perform spectrum sensing, the
signals {s(t)1 , s

(t)
2 , ..., s

(t)

N(t)} observed by N (t) SUs are inde-
pendent of each other when given current channel state θ(t),
i.e.,

P (s(t)|θ(t)) =
N(t)∏
i=1

f(s
(t)
i |θ(t)). (13)

In such a case, we have

P (s(t)|θ(t) = H+) =

N
(t)
+∏

i=1

f(s
(t)
i = s+|θ(t) = H+)·

N
(t)
−∏

i=1

f(s
(t)
i = s−|θ(t) = H+)

=P
N

(t)
+

d (1− Pd)
N

(t)
− , (14)

where N
(t)
+ +N

(t)
− = N (t), and N

(t)
+ and N

(t)
− represent the

number of observed positive signals s+ and negative signals

s−, respectively. Similarly, we have

P (s(t)|θ(t) = H−) = P
N

(t)
+

f (1− Pf )
N

(t)
− . (15)

Combing (14), (15) and (12), we have

P (s(t)|λ = Λk) =(1 − Λk)P
N

(t)
+

d (1− Pd)
N

(t)
− +

ΛkP
N

(t)
+

f (1− Pf )
N

(t)
− . (16)

Finally, by substituting (16) into (10), we can summarize the
cooperative utilization ratio learning rule in (18).

B. Cooperative Channel State Learning

Channel utilization ratio λ is the probability that the primary
channel is vacant, which can be used to estimate the channel
state at current time slot, i.e., the posterior probability that the
channel is vacant. At the beginning of Section III, we have
defined the concept of belief to represent such a posterior
probability, which can be denoted by

p(t) = Po(θ(t) = H−) = P (θ(t) = H−|s(t), λ), (19)

From (19), we can see that when estimating channel state at
current time slot, SUs not only consider all signals observed
at current time slot s(t), but also implicitly take into account
the signals at all previous time slots through the estimated λ.
Suppose that the utilization ratio estimated by SUs λ = Λk,
we can derive SUs’ belief as follows:

p(t)|λ=Λk
= P (θ(t) = H−|s(t), λ = Λk)

=
P (s(t), θ(t) = H−|λ = Λk)

P (s(t)|λ = Λk)

=
ΛkP (s(t)|θ(t) = H−)

P (s(t)|λ = Λk)
, (20)

where the second equality is based on Bayes’ theorem [30]
and the third equality is due to the independence between λ
and s(t) when given θ(t). With p(t)|λ=Λk

, we can calculate
SUs’ belief at time slot t by

p(t) =
∑
Λk∈Λ

P (t)(λ = Λk) · p(t)|λ=Λk
, (21)

where P (t)(λ = Λk) is updated by (18). Combining (15), (16),
(20) and (21), we can summarize the cooperative channel state

Utilization ratio learning rule:

P (t)(λ = Λk) =

P (t−1)(λ = Λk)

[
(1 − Λk)P

N
(t)
+

d (1− Pd)
N

(t)
− + ΛkP

N
(t)
+

f (1− Pf )
N

(t)
−

]
∑

Λk∈Λ

P (t−1)(λ = Λk)

[
(1− Λk)P

N
(t)
+

d (1− Pd)
N

(t)
− + ΛkP

N
(t)
+

f (1 − Pf )
N

(t)
−

] , ∀ Λk ∈ Λ. (18)

Channel state learning rule:

p(t) =
∑
Λk∈Λ

P (t)(λ = Λk) ·
ΛkP

N
(t)
+

f (1− Pf )
N

(t)
−

(1 − Λk)P
N

(t)
+

d (1− Pd)
N

(t)
− + ΛkP

N
(t)
+

f (1− Pf )
N

(t)
−

. (22)
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learning rule in (22). In Section VI, we will conduct simulation
to evaluate the performance of proposed channel state learning
method.

IV. MULTI-CHANNEL ACCESS GAME WITHOUT

RESOURCE CONSTRAINT

In this section, we study the N SUs’ multi-channel access
game without resource constraint, which is corresponding to
the case where L ≥ M in (7). When there is no resource
constraint, SUs should access all the primary channels that
can give them positive expected utility to maximize their total
expected utilities. We will first show that without resource
constraint, whether to access one primary channel is indepen-
dent of other channels, i.e. the multi-channel access game can
be decoupled to a series of single-channel access games. Then
we present a recursive algorithm that characterize the subgame
perfect equilibrium of the N SUs’ multi-channel access game
without budge constraint. Finally, we discuss the homogeneous
case where SUs have the same form of utility function to gain
more insights. Note that since we discuss the multi-channel
access game in one time slot, the superscript (t) is omitted in
Section IV and V.

To show the independence among different channels,
we first analyze one SU’s best response given other
SUs’ channel access decisions. Let us define n−i =
{n−i,1, n−i,2, ..., n−i,M} with

n−i,j =
∑
ζ �=i

dζ,j (23)

being the number of SUs accessing channel Chj except the
i-th SU . Let p = {p1, p2, ..., pM}, where pj = Po(θj = H0)
is SUs’ belief regarding the state of channel Chj at current
time slot. Given p and n−i, according to (6), the i-th SU’s
best response, d∗

i = (d∗i,1, d
∗
i,2, ..., d

∗
i,M )′, can be written as

d∗
i = BRi(p,n−i) = argmax

di∈{0,1}M

M∑
j=1

di,j · Ui,j, (24)

where Ui,j is the i-th SU’s expected utility of accessing
channel Chj and given by (5).

Since there is no constraint for the optimization problem in
(24) and Ui,j is only related with di,j , we can re-write (24)
by

d∗
i = BRi(P,n−i) =

M∑
j=1

argmax
di∈{0,1}M

di,j · Ui,j , (25)

From (25), we can see that a SUs best decision on one channel
is irrelevant to his/her decisions on others, which leads to the
independence among different channels. In such a case, we
have

d∗i,j = argmax
di,j∈{0,1}

di,j · Ui,j . (26)

The independence property enables us to simplify our
analysis by breaking the origin multi-channel access game
into M single-channel access game. In the remaining of this
section, we will focus on the analysis of the N SUs’ single-
channel access game and drop the channel index j for notation

simplification. As a result, we can rewrite the best response
of the i-th SU as

d∗i = BRi(p, n−i) = argmax
di∈{0,1}

di · Ui (27)

=

{
1, if Ui =

pgi
n−i+1 − c > 0;

0, otherwise.
,

where p is SUs’ belief regarding the single channel state and
c is SUs’ single-channel access cost.

A. Recursive Best Response Algorithm

In this subsection, we study how to solve the best response
defined in (27) for each SU. From (27), we can see that the
i-th SU needs to know n−i to calculate the expected utility
Ui to decide whether to access the channel or not. Since all
SUs make decisions sequentially, the i-th SU needs to predict
the subsequent SUs’ decisions based on the belief and known
information.

Let mi denote the number of SUs that decide to access the
channel after the i-th SU, then we can write the recursive form
of mi as

mi = mi+1 + di+1. (28)

Let mi|di=0 and mi|di=1 represent mi under the condition of

di = 0 and di = 1, respectively. Denote by ni =
i−1∑
ζ=1

dζ , the

number of SUs choosing the channel before the i-th SU. Then,
the estimated number of SUs accessing the channel excluding
the i-th SU can be written as follows:

n̂−i|di=0 = ni +mi|di=0, (29)

n̂−i|di=1 = ni +mi|di=1. (30)

Note that n̂−i|di=0 and n̂−i|di=1 are different from n−i in
that the values of di+1, di+2, ..., dN are estimated instead of
true observations.

According to (30), we can compute the expected utility of
the i-th SU if accessing the channel, i.e., when di = 1, as

Ui|di=1 =
pgi

ni +mi|di=1 + 1
− c. (31)

Since the utility of the i-th SU is zero when di = 0, the best
response of the i-th SU can be obtained by

d∗i =

{
1, if Ui|di=1 > 0;
0, otherwise.

(32)

With (32), we can find the best response of the i-th SU
given belief p, current observation ni and predicted number
of subsequent SUs accessing the channel, mi|di=1. To predict
mi|di=1, the i-th SU needs to predict the decisions of all
SUs from i + 1 to N . When it comes to the N -th SU,
since he/she knows exactly the decisions of all the previous
SUs, he/she can find the best response without making any
prediction, i.e., mN = 0. Based on such an intuition, we
design a recursive algorithm to predict mi|di=1 by considering
all possible decisions of SUs from i + 1 to N and updating
mi = mi+1 + di+1. In Algorithm 2, we show the recursive
algorithm BR SCA(p, ni, i)

2 that describes how to predict

2SCA is abbreviation for single-channel access.
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mi|di=1 and find the best response di for the i-th SU, given
current belief p and observation ni. Note that the complexity
of Algorithm 2 is determined by the number of SUs N . Since
the first SU needs to predict all the subsequent SUs’ decisions,
he/she is with the highest complexity, which is at the order
of O(N2). In the following, we will prove that the action
profile specified in BR SCA(p, ni, i) is a subgame perfect
Nash equilibrium for the N SUs’ single-channel access game.

Algorithm 2 BR SCA(p, ni, i)

if SU i == N then
//******For the N -th SU******//
if UN = pgN

nN+1 − c > 0 then
dN ← 1

else
dN ← 0

end if
mN ← 0

else
//******For the {1, 2, ..., N − 1}-th SU******//
//***Predicting***//
(di+1,mi+1)← BR SCA(p, ni + 1, i+ 1)
mi ← mi+1 + di+1

//***Access decision***//
if Ui =

pgi
ni+mi+1 − c > 0 then

di ← 1
else
(di+1,mi+1)← BR SCA(p, ni, i+ 1)
mi ← mi+1 + di+1

di ← 0
end if

end if
return (di,mi)

B. Subgame Perfect Nash Equilibrium

In this subsection, we will show that Algorithm 2 leads
to the subgame perfect Nash equilibrium for the single-
channel access game. In the following, we first give the formal
definitions of Nash equilibrium, subgame and subgame perfect
Nash equilibrium as follows.

Definition 1: Given SUs’ belief p = Po(θ = H0), the
action profile d∗ = {d∗1, d∗2, ..., d∗N} is a Nash equilibrium
of the N SUs’ single-channel access game if and only if

∀ i ∈ {1, 2, ..., N}, d∗i = BRi

(
p,

∑
ζ �=i

d∗ζ

)
as given in (27).

Definition 2: A subgame of the N SUs’ single-channel
access game consists of the following three elements: 1) it
starts from the i-th SU with i = 1, 2, ..., N ; 2) it has the
belief at current time slot, p = Po(θ = H0); 3) it has current
observation, ni, which is the number of previous SUs who
decide to access the channel.

Definition 3: A Nash equilibrium is a subgame perfect
Nash equilibrium if and only if it is a Nash equilibrium for
every subgame.

With the above definitions, we show in the following
theorem that the action profile derived by Algorithm 2 is a

subgame perfect Nash equilibrium of the single-channel access
game.

Theorem 1: Given SUs’ belief p = Po(θ = H0), the action
profile d∗ = {d∗1, d∗2, ..., d∗N}, with d∗i being determined by

BR SCA(p, ni, i) and ni =
i−1∑
ζ=1

d∗ζ , is a subgame perfect Nash

equilibrium for the N SUs’ single-channel access game.
Proof: We first show that d∗ζ is the best response of the

ζ-th SU in the subgame starts from the i-th SU (∀ 1 ≤ i ≤
ζ ≤ N ).

If ζ = N , we can see that BR SCA(p, nN , N) assigns the
value of d∗N directly as

d∗N =

⎧⎨
⎩

1, if UN = pgN
nN+1 − c > 0;

0, otherwise.
(33)

Since nN = n−N , we have d∗ζ = BRζ(p, n−ζ) in the case of
ζ = N according to (27), i.e. d∗ζ is the ζ-th SU’s best response.

If ζ < N , suppose d∗ζ is the ζ-th SU’s best response derived
by BR SCA(p, nζ , ζ). If d∗ζ = 0, denoting d′ζ = 1 as the
contradiction, we can see from BR SCA(p, nζ , ζ) that

Uζ |d′
ζ=1 =

pgζ
nζ +mζ + 1

− c < 0 = Uζ |d∗
ζ=0, (34)

which means that the ζ-th SU has no incentive to deviate
from d∗ζ = 1 given the prediction of other SUs’ decisions. If
d∗ζ = 1, denoting d′ζ = 0 as the contradiction, we can see from
BR SCA(p, nζ , ζ) that

Uζ |d′
ζ=0 = 0 < Uζ |d∗

ζ=1 =
pgζ

nζ +mζ + 1
− c, (35)

which means that the ζ-th SU has no incentive to deviate
from d∗ζ = 0 given the prediction of other SUs’ decisions.
Therefore, d∗ζ = BR SCA(p, nζ , ζ) is the ζ-th SU’s best
response in the subgame of the single-channel access game
starting with the i-th SU. Moreover, since the statement is true
for ∀ ζ satisfying i ≤ ζ ≤ N , we know that {d∗i , d∗i+1, ..., d

∗
N}

is the Nash equilibrium for the subgame starting from the i-th
SU. Finally, according to the definition of subgame perfect
Nash equilibrium, we can conclude that Theorem 1 is true.

C. Homogeneous Case

From the previous subsection, we know that a recursive
procedure is needed to determine the best response profile of
the N SUs’ single-channel access game. This is due to the
fact that we need to predict the decisions of all subsequent
SUs in order to determine the best response of a certain SU.
In this subsection, we simplify the game with homogeneous
setting to derive more concise best response.

In the homogeneous case, we assume that all SUs have the
same form of expected utility function, i.e., gi = g, ∀i. Under
such a setting, the equilibrium can be characterized in a much
simpler way.

Lemma 1: In the N SUs’ single channel access game under
homogeneous settings, if d∗ = {d∗1, d∗2, ..., d∗N} is the Nash
equilibrium action profile specified by BR SCA(), then we

have d∗i = 1 if and only if 0 ≤ i ≤ n∗, where n∗ =
N∑

ζ=1

d∗ζ .
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Proof: Suppose the i-th SU’s best response, d∗i = 0. Then,
according to Algorithm 2, we have

Ui =
pg

ni +mi|di=1 + 1
− c ≤ 0. (36)

The prediction of mi under the condition of di = 1 relies
on the recursive estimations of all subsequent SUs’ channel
access decisions. In particular, we have mi|di=1 = di+1|di=1+
mi+1|di=1, where the value of di+1|di=1 can be computed as
follows:

di+1|di=1 =

{
1, if Ui+1|di=1 > 0;
0, otherwise,

(37)

with
Ui+1|di=1 =

pg

ni + 1 +mi+1|di=1 + 1
− c. (38)

Since 1 + mi+1|di=1 ≥ di+1|di=1 + mi+1|di=1 = mi|di=1,
according to (36) and (38), we have

Ui+1|di=1 ≤ Ui ≤ 0, (39)

which means di+1|di=1 = 0. Following the same argument,
we can show that dζ |di=1 = 0 for all ζ = i + 1, i+ 2, ..., N .
Therefore, we have

mi|di=1 =

N∑
ζ=i+1

dζ |di=1 = 0. (40)

Then, let us consider the (i + 1)-th SU’s best response,
which can be calculated by

d∗i+1 =

{
1, if Ui+1 > 0;
0, otherwise.

, (41)

where
Ui+1 =

pg

ni+1 +mi+1|di+1=1 + 1
− c. (42)

Since ni+1 = ni+ di, mi|di=1 = 0 and mi+1|di+1=1 ≥ 0, we
have ni+1+mi+1|di+1=1+1 ≥ ni+mi|di=1+1. Comparing
(36) and (42), we have d∗i+1 = 0.

Following the same argument, we can show that if d∗i = 0,
then d∗ζ = 0 for all ζ ∈ {i+1, i+2, ..., N}. Since all decisions
can take values of either 0 or 1, we have d∗i = 1 if and only

if 0 ≤ i ≤
N∑

ζ=1

d∗ζ . This completes the proof.

From Lemma 1, we can see that there exists a threshold
structure in the Nash equilibrium profile of single-channel ac-
cess game with homogeneous setting. The threshold structure
is embodied in the fact that if d∗i = 0, then d∗ζ = 0, ∀ ζ ∈
{i+1, i+2, ..., N}, which means that as long as the i-th SU
decides not to access the channel, then all subsequent SUs
will not access the channel. On the other hand, if d∗i = 1, then
d∗ζ = 1, ∀ ζ ∈ {1, 2, ...i− 1}, which means that as long as the
i-th SU decides to access the channel, then all previous SUs
also access the channel. Moreover, according to the expected
utility function definition in (5), the threshold can be illustrated
by

d∗i =

⎧⎨
⎩

1, ∀ i <
⌈
pg
c

⌉
;

0, ∀ i ≥ ⌈
pg
c

⌉
.
, (43)

where
⌈
pg
c

⌉
can be interpreted as the maximal number of SUs

that the channel can hold. This result can be easily extended

to the multi-channel access game without resource constraint
under the homogeneous setting as shown in the following
theorem.

Theorem 2: In the N SUs’ multi-channel access game
without resource constraint, if all the SUs have the same gain
function gi,j = gj , there exists a threshold structure in the
Nash equilibrium matrix D∗ denoted by (4), i.e., for any row
j ∈ {1, 2, ...,M} of D∗, it holds

d∗i,j =

⎧⎪⎪⎨
⎪⎪⎩

1, ∀ i <
⌈
pjgj
cj

⌉
;

0, ∀ i ≥
⌈
pjgj
cj

⌉
.

(44)

Proof: This theorem directly follows by extending Lemma
1 into M independent channels case.

V. MULTI-CHANNEL ACCESS GAME WITH RESOURCE

CONSTRAINT

In this section, we study the multi-channel access game
with resource constraint, which is corresponding to the case
with L < M in (7). Unlike previous case, when there is
resource constraint for each SU, the different channel accesses
are no longer independent but coupled with each other instead.
In the following, we will discuss a recursive algorithm that
can characterize the subgame perfect Nash equilibrium of the
multi-channel access game with resource constraint.

A. Recursive Best Response Algorithm

In the resource constraint case, we assume that each SU can
at most access L channels at each time slot with L < M . In
such a case, the i-th SU’s best channels access decision can
be found by the following optimization problem.

d∗
i = BRi(p,n−i) = argmax

di∈{0,1}M

M∑
j=1

di,j · Ui,j, (45)

s.t.
M∑
j=1

di,j ≤ L < M,

where p = {p1, p2, ..., pM} is SUs’ beliefs on the states of all
primary channels and Ui,j is given in (5). From (45), we can
see that the i-th SU’s decision on whether to access channel
Chj is coupled with the decisions on all other channels,
and thus (45) cannot be decomposed into M subproblems.
Nevertheless, we can still find the best response of each SU
by comparing all possible combinations of L channels. Let
Φ = {φ1,φ2, ...,φH} denote the set of all combinations
of l (1 ≤ l ≤ L) channels out of M channels, where

H =
L∑

l=1

Cl
M =

L∑
l=1

M !
l!(M−l)! and φh = (φh,1, φh,2, ..., φh,M )′

is one possible combination with φh,j representing whether
channel Chj is selected to access to, e.g.,

φh = (1, 1, ..., 1︸ ︷︷ ︸
l

, 0, 0, ..., 0︸ ︷︷ ︸
M−l

)′ (46)

means the SU accesses channel Ch1,Ch2, ...,Chl (1 ≤ l ≤ L).
In other words, Φ is the candidate strategy set of each SU with
resource constraint L.
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Let us define the i-th SU’s observation of previous SUs’
channel access decisions as

ni = {ni,1, ni,2, ..., ni,M}, (47)

where ni,j =
i−1∑
k=1

dk,j is the number of SUs deciding to access

channel Chj before the i-th SU. Let mi denote the subsequent
SUs’ decisions after the i-th SU, we have its recursive form
as

mi = mi+1 + di+1. (48)

Then, let

mi|di=φh
= {mi,1|di=φh

,mi,2|di=φh
, ...,mi,M |di=φh

},
(49)

with mi,j |di=φh
being the predicted number of subsequent

SUs who will access channel Chj under the condition of di =
φh, where di = (di,1, di,1, ..., di,M )′ and φh ∈ Φ. In such a
case, the predicted number of SUs accessing each primary
channel excluding the i-th SU is

n̂−i|di=φh
= ni +mi|di=φh

. (50)

According to above definitions, we can write the i-th SU’s
expected utility by accessing channel Chj when di = φh as

Ui,j|di=φh
=

pjgj
ni,j +mi,j |di=φh

+ φh,j
− cj , (51)

Then, the total expected utility the i-th SU can obtain with
di = φh is the sum of Ui,j |di=φh

over all M channels, i.e.,

Ui|di=φh
=

M∑
j=1

Ui,j |di=φh
. (52)

In such a case, we can find the optimal φ∗
h which maximizes

the i-th SU’s expected utility Ui|di=φh
as follows

φ∗
h = argmax

φh∈Φ
{Ui|di=φh

}. (53)

To obtain the best response in (53), each SU needs to
calculate the expected utilities defined in (51), which in turn
requires to predict mi,j |di=φh

, i.e., the number of SUs who
access channel Chj after the i-th SU. For the N -th SU who
has already known all previous SUs’ channel access decisions,
no prediction is required. Therefore, similar to Algorithm 2,
given belief p = {p1, p2, ..., pM} at current time slot and
current observation ni = {ni,1, ni,2, ..., ni,M}, we design
another recursive best response algorithm BR MCA(p,ni, i)

3

for solving the multi-channel access game with resource
constraint in Algorithm 3. As we can see, the N -th SU only
needs to compare the expected utilities of accessing all M
channels respectively and choose L or less than L channels
with highest positive expected utilities. Note that maxL means
finding the highest L values. For other SUs, each one needs
to first recursively predict the subsequent SUs’ decisions,
and then make his/her own decision based on the prediction
and current observations. We can see that the complexity of
Algorithm 3 is determined by both the number of SUs N
and the number of primary channels M . Since each SU needs
to run all the possible combinations φh and each combination

3MCA is abbreviation for multi-channel access.

complexity is polynomial with the number of primary channels
M , the total complexity of Algorithm 3 is at the order of

O(HN2), where H =
L∑

l=1

M !
l!(M−l)! is at the polynomial order

of M .

Algorithm 3 BR MCA(p,ni, i)

if SU i == N then
//******For the N -th SU******//
for j = 1 to M do
Ui,j =

pjgi,j
nN,j+1 − cj

end for
j = {j1, j2, ..., jL} ← argmaxL

j∈{1,2,...,M}
{Ui,j}

for j = 1 to M do
if (Ui,j > 0)&&(j ∈ j) then
dN,j ← 1

else
dN,j ← 0

end if
end for
mN = 0

else
//******For the {1, 2, ..., N − 1}-th SU******//
//***Predicting***//
for φh = φ1 to φH do
(di+1,mi+1)← BR MCA(p,ni + φh, i+ 1)
mi ←mi+1 + di+1

Ui(φh) =
M∑
j=1

pjgi,j
ni,j+mi,j+φh,j

− cj

end for
//***Making decision***//
φ∗

h ← argmax
φh∈Φ

{Ui(φh)}
(di+1,mi+1)← BR MCA(p,ni + φ∗

h, i+ 1)
di ← φ∗

h

mi ←mi+1 + di+1

end if
return (di,mi)

B. Subgame Perfect Nash Equilibrium

Similar to the single-channel access game, we first give
formal definitions of the Nash equilibrium and subgame of
multi-channel access game with resource constraint.

Definition 4: Given SUs’ belief p = {p1, p2, ..., pM} with
pj = Po(θj = H0), the action profile D∗ = {d∗

1,d
∗
2, ...,d

∗
N}

is a Nash equilibrium of the N SUs’ multi-channel access
game with resource constraint L, if and only if d∗

i =

BRi

(
p,

∑
ζ �=i

d∗
ζ

)
as defined in (45) for all i.

Definition 5: A subgame of the N SU’s multi-channel
access game with resource constraint L consists of the fol-
lowing three elements: 1) it starts from the i-th SU with
i = 1, 2, ..., N ; 2) it has the belief at current time slot,
p = {p1, p2, ..., pM} with pj = Po(θj = H0); 3) it has current
observation, ni, which is the number of previous SUs who
decide to access the channel.
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Based on Definition 3, 4 and 5, we show in the following
theorem that the action profile obtained by Algorithm 3 is a
subgame perfect Nash equilibrium of the multi-channel access
game with resource constraint.

Theorem 3: Given SUs’ belief p = {p1, p2, ..., pM} with
pj = Po(θj = H0), the action profile D∗ = {d∗

1,d
∗
2, ...,d

∗
N},

where d∗
i determined by BR MCA(p,ni, i) and ni =

i−1∑
ζ=1

d∗
ζ ,

is a subgame perfect Nash equilibrium for the N SUs’ multi-
channel access game.

Proof: The proof of this theorem is similar to that of
Theorem 1, the details of which are omitted due to page
limitation. The proof outline is to first show ∀ i, ζ, d∗

ζ is the
best response of the ζ-th SU in the subgame starting from the
i-th SU by analyzing two cases: ζ = N and ζ < N . Then,
we can show that {d∗

i ,d
∗
i+1, ...,d

∗
N} is the Nash equilibrium

for the subgame starting from the i-th SU. Finally, according
to the definition of subgame perfect Nash equilibrium, we can
conclude that Theorem 3 is true.

VI. SIMULATION RESULTS

In this section, we conduct simulation to verify the
performance of the proposed cooperative channel learning
method and recursive best response algorithms. We simulate
a primary network with five independent primary channels
{Ch1,Ch2,Ch3,Ch4,Ch5}. The utilization ratios set is as-
sumed to be finite as Λ = {Λ1 = 0.1,Λ2 = 0.3,Λ3 =
0.5,Λ4 = 0.7,Λ5 = 0.9}. SUs’ detection probability and false
alarm probability are set as Pd = 0.9 and Pf = 0.1, respec-
tively, which mean that after perform spectrum sensing, each
SU can observe a signal following conditional distribution of
f(s+|θ = H1) = 0.9 and f(s+|θ = H0) = 0.1.

A. Cooperative Channel Learning

In this subsection, we evaluate the performance of the
proposed cooperative channel learning method, including the
utilization ratio learning and channel state learning. In the
simulation, we set the number of SUs as N = 10 and the
utilization ratio of each primary channel as {λ1 = Λ1, λ2 =
Λ2, λ3 = Λ3, λ4 = Λ4, λ5 = Λ5}. In such a case, a correct
estimation of the utilization ratio means that

P ∗(λj = Λj) = 1, P ∗(λj �= Λj) = 0, ∀j. (54)

At the beginning of the simulation, we assign SUs’ initial
estimation of utilization ratio as P (0)(λj = Λk) = 0.2, ∀j,Λk.
At every time slot, after performing spectrum sensing, SUs
exchange their observed signals and cooperatively update the
estimation of the utilization ratio using learning rule in (18).
Fig. 3 shows the channel utilization ratio learning curves of
four cases: SUs at most sense L = {2, 3, 4, 5} channels. The
x-axis is the simulation time, and the y-axis is the difference
between SU’s estimation of utilization ratio at each time slot,
P (t), and the true utilization ratio P ∗, which can be calculated
by

Diff(t) =
1

5

5∑
j=1

5∑
k=1

[
P (t)(λj = Λk)− P ∗(λj = Λk)

]2
.

(55)

Fig. 3. Channel utilization ratio learning performance.

Fig. 4. Detection and false-alarm probabilities.

From the figure, we can see that the difference goes to zero
finally for all four cases, i.e., SUs can effectively learn the true
utilization ratio of each channel. Moreover, the case that each
SU can only sense 2 channels converges slower than other
cases, which is because fewer signals are observed by each
SU at every time slot when the resource constraint is L = 2.

At every time slot, after channel utilization ratio learning,
SUs also need to learn the current channel state based on the
observed signals and estimated channel utilization ratio. Fig. 4
shows the detection probability and false-alarm probability of
four cases L = {2, 3, 4, 5}, when SUs adopting our proposed
channel state learning rule in (22). For all four cases, the
detection probabilities are enhanced compared with single
SU’s Pd = 0.9 and the false-alarm probabilities decrease
compared with single SU’s Pf = 0.1. Specifically, when each
SU can sense 5 channels at every time slot, the detection
probability goes to 1 and false-alarm probability is nearly 0.
Moreover, similar to the performance of channel utilization
ratio learning, the case that each SU can only sense 2 channels
performs the worst due to the limited observed signals.
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TABLE I
NASH EQUILIBRIUM MATRIX D∗

1 2 3 4 5 6 7 8 9 10

Ch1 1 1 1 1 1 1 1 1 1 0
Ch2 1 1 1 1 0 0 0 0 0 0
Ch3 1 1 1 0 0 0 0 0 0 0
Ch4 1 1 0 0 0 0 0 0 0 0
Ch5 1 0 0 0 0 0 0 0 0 0

B. Multi-Channel Access Game without Resource Constraint

In this subsection, we evaluate the performance of the pro-
posed best response algorithm for multi-channel access game
without resource constraint. We first simulate the homogenous
case to verify the threshold property of the Nash equilibrium
matrix, i.e., Theorem 2, and the influence of different decision
making orders on SUs’ utilities, i.e., making decisions earlier
may have advantage. Then, we compare the performance
of the proposed best response algorithm, i.e., Algorithm 2,
with the performances of other algorithms under heterogenous
settings.

For the homogenous case, we set all SUs’ gain function
as gi,j = 1. At each time slot, we let SUs sequentially
make decisions based on their estimated state of each channel
according to Algorithm 2. In the first simulation, we set the
SU number as N = 10 to specifically verify the threshold
structure of Nash equilibrium matrix. Moreover, in order
to verify different threshold structures for different channel
parameters as illustrated in Theorem 2, we set the costs of
accessing five primary channels as {c1 = 0.1, c2 = 0.2, c3 =
0.3, c4 = 0.4, c5 = 0.5}, respectively. Under such settings,
we can see that when all primary channels are in idle state,
the access thresholds for five channels should be {9, 4, 3, 2, 1}
according to Theorem 2, e.g., the threshold 9 means only the
(1 ∼ 9)-th SUs should access channel Ch1. Table I shows the
Nash equilibrium matrix D∗ derived by Algorithm 2 when
all primary channels are in idle state, where each column
contains one SU’s decisions {di,j , ∀j} and each row contains
all SUs’ access decisions on one specific channel Chj , i.e.,
{di,j , ∀i}. From Table I, we can see that once a SU does not
access some specific channels, all the subsequent SUs will not
access that channel, which is consistent with the conclusion
in Theorem 2. Moreover, the access thresholds of all five
channels exactly match the theoretical value {9, 4, 3, 2, 1},
which further verifies the correctness of Theorem 2.

From Table I, we can further see that SUs who make
decisions earlier have advantage, e.g., the first SU can access
all channels while the last SU fails to access any channel.
Therefore, in the second simulation of the homogenous case,
we dynamically adjust the order of decision making to ensure
the fairness, and set the SU number as N = 5 to specif-
ically show each SU’s utility. In Fig. 5, we show all SUs’
utilities along with the simulation time, where the order of
decision making changes every 100 time slots. In the first
100 time slots, during which the order of decision making
is 1 → 2 → 3 → 4 → 5, we can see that the first SU
obtains the highest utility while the last SU obtains the lowest

Fig. 5. Each SU’s utility in homogenous case without resource constraint.

utility since he/she can only access 1 primary channel. In the
second 100 time slots, we reverse the decision making order
as 5 → 4 → 3 → 2 → 1, which leads to that the first SU
receives the lowest utility. Therefore, by periodically changing
the order of decision making, we can expect that the utilities
of all SUs will tend to be the same after a period of time.
Note that in the heterogenous case, by putting the SU who
has higher gain coefficient gi,j at the lower order can increase
the social welfare. In such a case, the order that can maximize
the social welfare will be the descending order of the SUs’
gain coefficients gi,j .

For the heterogenous case, we randomize each SU’s gain
function gi,j between 0 and 1 and set their prior belief
as {p(0)j = 0.5, ∀j}. In this simulation, we compare the
performance in terms of SUs’ social welfare, which is defined
as the total utilities of all SUs, among different kinds of
algorithms listed as follows:

• Best Response: The proposed recursive best response
algorithm in Algorithm 2 with cooperative channel state
learning.

• Myopic: At each time slot, the i-th SU selects chan-
nels only according to his/her current observation ni =
{ni,j , ∀j} without channel learning.

• Learning: At each time slot, each SU selects channels
only according to the belief p(t)j updated by cooperative
channel learning without considering the negative net-
work externality.

• Random: Each SU randomly accesses channels.

For the myopic and learning strategies, the i-th SU’s expected
utility of accessing channel Chj can be calculated by

Um
i,j = p

(0)
j

gi,j
ni,j + di,j

− cj, (56)

U l
i,j = p

(t)
j

gi,j
di,j
− cj . (57)

With these expected utilities, both myopic and learning algo-
rithm can be derived by (24). We can see that the myopic
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Fig. 6. Social welfare comparison without resource constraint.

strategy is without social learning and the learning strategy
is without consideration of negative network externality. In
the simulation, in order to verify the influence of channel
utilization ratio on SUs’ social welfare, we set the utilization
ratios of all five primary channels as the same and adjust λ
from 0.1 to 0.9, i.e., from very busy primary channel to very
idle primary channel.

Fig. 6 shows the performance comparison result, where the
x-axis is the channel utilization ratio λ and y-axis is the social
welfare averaged over hundred of time slots. From the figure,
we can see with the increase of λ, the social welfare keeps
increasing for all algorithms and our best response algorithm
performs the best. When λ ≤ 0.7, the learning algorithm
performs better than myopic and random algorithms. This
is because, when PUs occupy the channel with a relatively
high probability, by adopting learning algorithm, although SUs
do not consider the negative network externality, they can
accurately estimate the channel state of each time slot and
avoid to access the time slots when PUs are active. Moreover,
when λ ≥ 0.8, we can see that the learning algorithm performs
the worst, which is because when the primary channels are
very idle, considering other SUs’ decisions, i.e., negative
network externality, plays a more important role than channel
state learning.

C. Multi-Channel Access Game with Resource Constraint

In this subsection, we evaluate the performance of the
proposed best response algorithm for multi-channel access
game with resource constraint L = 3. Similar to the het-
erogenous case of the without-resource-constraint scenario,
we randomize each SU’s gain gi,j within [0, 1] and compare
the performance of our proposed best response algorithm, i.e.,
Algorithm 3, with myopic, learning and random algorithms
in terms of SUs’ social welfare. For the myopic, learning
and random algorithms, same resource constraint is adopted,
i.e., each SU can at most access 3 channels. Fig. 7 shows the
performance comparison result, from which we can see the
phenomenon is similar to the case without resource constraint
where our best response algorithm performs the best.

Fig. 7. Social welfare comparison with resource constraint.

VII. CONCLUSION

In this paper, we proposed and studied the multiple SUs’
multi-channel sensing and access game. For the multi-channel
sensing problem, we designed a cooperative channel state
learning method based on Bayesian learning rule. For the
multi-channel access problem, we analyzed two scenarios:
without resource constraint and with resource constraint, re-
spectively, and designed two recursive best response algo-
rithms for both scenarios to find the subgame perfect Nash
equilibrium. Moreover, we also discussed the homogenous
case of the scenario without resource constraint. Simulation
results show that our proposed channel learning rule not only
can effectively help SUs learn the channel utilization ratio,
but also can enhance SUs’ detection probability and decrease
their false-alarm probability. Moreover, our proposed best
response algorithms outperform myopic, learning and random
algorithms in terms of social welfare.

REFERENCES

[1] Y.-C. Liang, K.-C. Chen, G. Y. Li, and P. Mahonen, “Cognitive
radio networking and communications: an overview,” IEEE Trans. Veh.
Technol., vol. 60, no. 7, pp. 3386–3407, 2011.

[2] B. Wang and K. J. R. Liu, “Advances in cognitive radios: a survey,”
IEEE J. Sel. Topics Signal Process., vol. 5, no. 1, pp. 5–23, 2011.

[3] K. J. R. Liu and B. Wang, Cognitive Radio Networking and Security:
A Game Theoretical View. Cambridge University Press, 2010.

[4] S. Haykin, “Cognitive radio: brain-empowered wireless communica-
tions,” IEEE J. Sel. Areas Commun., vol. 23, no. 2, pp. 201–220, 2005.

[5] B. Wang, Y. Wu, and K. J. R. Liu, “Game theory for cognitive radio
networks: an overview,” Comput. Netw., vol. 54, no. 14, pp. 2537–2561,
2010.

[6] S. Shankar, C. Cordeiro, and K. Challapali, “Spectrum agile radios:
utilization and sensing architectures,” in Proc. 2005 IEEE DySPAN, pp.
160–169.

[7] H. Tang, “Some physical layer issues of wide-band cognitive radio
systems,” in Proc. 2005 IEEE DySPAN, pp. 151–159.

[8] I. F. Akyildiz, B. F. Lo, and R. Balakrishnan, “Cooperative spectrum
sensing in cognitive radio networks: a survey,” Physical Commun.,
vol. 4, no. 3, pp. 40–62, 2011.

[9] R. Fan and H. Jiang, “Optimal multi-channel cooperative sensing in
cognitive radio networks,” IEEE Trans. Wireless Commun., vol. 9, no. 3,
pp. 1128–1138, 2010.

[10] Q. Zhao, L. Tong, A. Swami, and Y. Chen, “Decentralized cognitive
MAC for opportunistic spectrum access in ad hoc networks: a POMDP
framework,” IEEE J. Sel. Areas Commun., vol. 25, no. 3, pp. 589–600,
2007.



2188 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 13, NO. 4, APRIL 2014

[11] J. Unnikrishnan and V. V. Veeravalli, “Algorithms for dynamic spectrum
access with learning for cognitive radio,” IEEE Trans. Signal Process.,
vol. 58, no. 2, pp. 750–760, 2010.

[12] A. K. Sadek, K. J. R. Liu, and A. Ephremides, “Cognitive multiple
access via cooperation: protocol design and stability analysis,” IEEE
Trans. Inf. Theory, vol. 53, no. 10, pp. 3677–3696, 2007.

[13] A. A. El-Sherif, A. Kwasinski, A. Sadek, and K. J. R. Liu, “Content-
aware cognitive multiple access protocol for cooperative packet speech
communications,” IEEE Trans. Wireless Commun., vol. 8, no. 2, pp.
995–1005, 2009.

[14] A. A. El-Sherif, A. K. Sadek, and K. J. R. Liu, “Opportunistic multiple
access for cognitive radio networks,” IEEE J. Sel. Areas Commun.,
vol. 29, no. 4, pp. 704–715, 2011.

[15] Y. Wu, B. Wang, K. J. R. Liu, and T. C. Clancy, “A scalable collusion-
resistant multi-winner cognitive spectrum auction game,” IEEE Trans.
Wireless Commun., vol. 57, no. 12, pp. 3805–3816, 2009.

[16] Z. Ji and K. J. R. Liu, “Dynamic spectrum sharing: a game theoretical
overview,” IEEE Commun. Mag., vol. 45, no. 5, pp. 88–94, 2010.

[17] D. Li, Y. Xu, X. Wang, and M. Guizani, “Coalitional game theoretic
approach for secondary spectrum access in cooperative cognitive radio
networks,” IEEE Trans. Wireless Commun., vol. 10, no. 3, pp. 844–856,
2011.

[18] Y.-C. Liang, Y. Zeng, E. C. Peh, and A. T. Hoang, “Sensing-throughput
tradeoff for cognitive radio networks,” IEEE Trans. Wireless Commun.,
vol. 7, no. 4, pp. 1326–1337, 2008.

[19] A. A. El-Sherif and K. J. R. Liu, “Joint design of spectrum sensing
and channel access in cognitive radio networks,” IEEE Trans. Wireless
Commun., vol. 10, no. 6, pp. 1743–1753, 2011.

[20] C. Jiang, Y. Chen, Y. Gao, and K. J. R. Liu, “Joint spectrum sensing
and access evolutionary game in cognitive radio networks,” IEEE Trans.
Wireless Commun., vol. 12, no. 5, pp. 2470–2483, 2013.

[21] W. H. Sandholm, “Negative externalities and evolutionary implementa-
tion,” Rev. Economic Studies, vol. 72, no. 3, pp. 885–915, 2005.

[22] C.-Y. Wang, Y. Chen, and K. J. R. Liu., “Chinese restaurant game,”
IEEE Signal Process. Lett., vol. 19, no. 12, pp. 898–901, 2012.

[23] C.-Y. Wang, Y. Chen, and K. J. R. Liu, “Sequential chinese restaurant
game,” IEEE Trans. Signal Process., vol. 61, no. 3, pp. 571–584, 2013.

[24] B. Zhang, Y. Chen, C.-Y. Wang, and K. J. R. Liu, “Learning and decision
making with negative externality for opportunistic spectrum access,” in
Proc. 2012 IEEE Globecom, pp. 1404–1409.

[25] C. Jiang, Y. Chen, Y.-H. Yang, C.-Y. Wang, and K. J. R. Liu, “Dynamic
Chinese restaurant game in cognitive radio networks,” in Proc. 2013
IEEE INFOCOM, pp. 1–9.

[26] C. Jiang, Y. Chen, Y. Gao, and K. J. R. Liu, “Indian buffet game with
non-bayesian social learning,” in Proc. 2013 IEEE Globesip.

[27] ——, “Indian buffet game with negative network externality and non-
bayesian social learning.” Available: http://arxiv.org/abs/1309.2922.

[28] I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, “Next
generation/dynamic spectrum access/cognitive radio wireless networks:
a survey,” Comput. Netw., vol. 50, no. 9, pp. 2127–2159, 2006.

[29] D. Gale and S. Kariv, “Bayesian learning in social networks,” Games
Economic Behavior, vol. 45, no. 11, pp. 329–346, 2003.

[30] R. Swinburne, Bayes’s Theorem. Oxford University Press, 2002.

Chunxiao Jiang (S’09-M’13) received his B.S.
degree in information engineering from Beijing Uni-
versity of Aeronautics and Astronautics (Beihang
University) in 2008 and the Ph.D. degree from Ts-
inghua University (THU), Beijing in 2013, both with
the highest honors. During 2011-2012, he visited the
Signals and Information Group (SIG) at Department
of Electrical & Computer Engineering (ECE) of
University of Maryland (UMD), supported by China
Scholarship Council (CSC) for one year.

Dr. Jiang is currently a research associate in ECE
department of UMD with Prof. K. J. Ray Liu, and also a post-doctor in EE
department of THU with Prof. Yong Ren. His research interests include the
applications of game theory and queuing theory in wireless communication
and networking and social networks.

Dr. Jiang received Best Paper Award from IEEE GLOBECOM in 2013, the
Beijing Distinguished Graduated Student Award, Chinese National Fellowship
and Tsinghua Outstanding Distinguished Doctoral Dissertation in 2013.

Yan Chen (S’06-M’11) received the Bachelors de-
gree from University of Science and Technology of
China in 2004, the M. Phil degree from Hong Kong
University of Science and Technology (HKUST)
in 2007, and the Ph.D. degree from University of
Maryland College Park in 2011. His current research
interests are in data science, network science, game
theory, social learning and networking, as well as
signal processing and wireless communications.

Dr. Chen is the recipient of multiple honors
and awards including best paper award from IEEE

GLOBECOM in 2013, Future Faculty Fellowship and Distinguished Dis-
sertation Fellowship Honorable Mention from Department of Electrical and
Computer Engineering in 2010 and 2011, respectively, Finalist of Deans
Doctoral Research Award from A. James Clark School of Engineering at
the University of Maryland in 2011, and Chinese Government Award for
outstanding students abroad in 2011.

K. J. Ray Liu (F’03) was named a Distinguished
Scholar-Teacher of University of Maryland, Col-
lege Park, in 2007, where he is Christine Kim
Eminent Professor of Information Technology. He
leads the Maryland Signals and Information Group
conducting research encompassing broad areas of
signal processing and communications with recent
focus on cooperative and cognitive communications,
social learning and network science, information
forensics and security, and green information and
communications technology.

Dr. Liu is the recipient of numerous honors and awards including IEEE
Signal Processing Society Technical Achievement Award and Distinguished
Lecturer. He also received various teaching and research recognitions from
University of Maryland including university-level Invention of the Year
Award; and Poole and Kent Senior Faculty Teaching Award, Outstanding
Faculty Research Award, and Outstanding Faculty Service Award, all from
A. James Clark School of Engineering. An ISI Highly Cited Author, Dr. Liu
is a Fellow of IEEE and AAAS.

Dr. Liu is Past President of IEEE Signal Processing Society where he
has served as Vice President Publications and Board of Governor. He was
the Editor-in-Chief of IEEE Signal Processing Magazine and the founding
Editor-in-Chief of EURASIP Journal on Advances in Signal Processing.


