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Abstract—In a dynamic system, how to perform learning and
make decisions are becoming more and more important for users.
Although there are some works in social learning-related litera-
ture regarding how to construct belief for an uncertain system
state, few studies have been conducted on incorporating social
learning with decision making. Moreover, users may have mul-
tiple concurrent options on different objects/resources and their
decisions usually negatively influence each other’s utility, which
makes the problem even more challenging. In this paper, we pro-
pose an Indian Buffet Game to study how users in a dynamic
system learn about the uncertain system state and make multiple
concurrent decisions by not only considering the current myopic
utility, but also the influence of subsequent users’ decisions. We
analyze the proposed Indian Buffet Game under two different
scenarios: 1) on customers requesting multiple dishes without
budget constraint and 2) with budget constraint. For both cases,
we design recursive best response algorithms to find the subgame
perfect Nash equilibrium (NE) for customers and characterize
special properties of the NE profile under homogeneous setting.
Moreover, we introduce a non-Bayesian social learning algorithm
for customers to learn the system state, and theoretically prove
its convergence. Finally, we conduct simulations to validate the
effectiveness and efficiency of the proposed algorithms.

Index Terms—Decision making, game theory, Indian Buffet
Game, negative network externality, non-Bayesian social learning.

I. INTRODUCTION

IN A dynamic system, users are usually confronted with
uncertainty about the system state when making decisions.

For example, in the field of wireless communications, when
choosing channels to access, users may not know exactly the
channel capacity and quality. Besides, users have to consider
others’ decisions since a large number of users sharing a same
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channel will inevitably decrease the average data rate and
increase the end-to-end delay. Such phenomenon is known as
negative network externality [1], [2], i.e., the negative influ-
ence of other users’ behaviors on one user’s reward, due to
which users tend to avoid making the same decisions with oth-
ers to maximize their own utilities. Similar phenomenon can
be found in our daily life such as selecting online cloud stor-
age service and choosing WiFi access point [3]. Therefore,
how users in a dynamic system learn the system state and
make best decisions by considering the influence of oth-
ers’ decisions becomes an important research issue in many
fields [4]–[7].

Although users in a dynamic system may only have limited
knowledge about the uncertain system state, they can con-
struct a probabilistic belief regarding the system state through
social learning. In the social learning literature [8]–[13], dif-
ferent kinds of learning rules were studied where the essential
objective is to learn the true system state eventually. In most
of these existing works, the learning problem is typically for-
mulated as a dynamic game with incomplete information and
the main focus is to study whether users can learn the true sys-
tem state at the equilibria. However, all of the previous works
assumed that users’ utility functions are independent of each
other, i.e., they did not consider the concept of network exter-
nality, which is indeed a common phenomenon in dynamic
systems and can influence users’ utilities and decisions to a
large extent.

To study the social learning problem with negative net-
work externality, in [14]–[16], we have proposed a general
framework called Chinese Restaurant Game. The concept is
originated from Chinese Restaurant Process [17], which is
used to model unknown distributions in the nonparametric
learning methods in the field of machine learning. In the
Chinese Restaurant Game, there are finite tables with different
sizes and finite customers sequentially requesting tables to be
seated. Since customers do not know the exact size of each
table, which affects each other’s utility, they have to learn the
table sizes according to some external information. Moreover,
when requesting one table, each customer should take into
account the subsequent customers’ decisions due to the limited
dining space in each table, i.e., the negative network exter-
nality. Then, the Chinese Restaurant Game is extended to a
dynamic population setting in [18], where customers arrive
at and leave the restaurant with a Poisson process. With the
general Chinese Restaurant Game theoretic framework, one
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is able to analyze the social learning and strategic decision
making of rational users in a network.

One underlying assumption in the Chinese Restaurant Game
is that each customer can only choose one table. However,
in many real applications, users can have multiple concur-
rent selections, e.g., mobile terminals can access multiple
channels at once and users can have multiple cloud storage
services. To tackle such a challenge, similar to the Chinese
Restaurant Game which introduced the strategic behaviors into
the nonstrategic Chinese Restaurant Process, in this paper, we
propose a new game called Indian Buffet Game, which intro-
duces strategic behaviors into the nonstrategic Indian Buffet
Process [19]. In the Indian Buffet Process, there exist an
infinite number of dishes and each customer can order a num-
ber of dishes following Poisson process. Such a stochastic
process defines a probability distribution for use as a prior
in probabilistic models. By incorporating customers’ rational
behaviors, we extend the Indian Buffet Process into the Indian
Buffet Game and study what is the customers’ optimal deci-
sions when choosing the dishes in a sequential manner. The
proposed Indian Buffet game is an ideal framework to study
the multiple dishes selection problem by integrating social
learning and strategic decision making with negative network
externality. While lots of works have been done regarding the
simultaneous decision making problem [7], [20], the sequen-
tial decision making problem has not been well investigated
in the literature, whereas a user has to consider both the
previous users’ decisions and predict the subsequent users’
decisions. Furthermore, in practice, the sequential decision
making scenarios are even more prevailing, especially in the
field of wireless communication where synchronization among
all users is quite difficult. Therefore, in this paper, we focus
on sequential decision making analysis and try to provide
some insights and results on this problem. We will discuss two
cases: Indian Buffet Game without budget constraint and with
budget constraint, where, “with budget constraint” means the
number of dishes each customer can require is limited, and,
“without budget constraint” means no limitation. The main
contributions of this paper can be summarized as follows.

1) We propose a general framework, Indian Buffet Game,
to study how users make multiple concurrent selections
under uncertain system states. Specifically, such a frame-
work can reveal how users learn the uncertain system
state through social learning and make optimal decisions
to maximize their own expected utilities by considering
negative network externality.

2) In the learning stage of the Indian Buffet Game,
we propose a non-Bayesian social learning algorithm
for customers to learn the dish states. Moreover, we
prove theoretically the convergence of the proposed
non-Bayesian social learning algorithm to the true belief
and show with simulations the fast convergence rate.

3) For the case without budget constraint, we show that
the multiple concurrent dishes selection problem can be
decoupled into a series of independent Indian Buffet
Games. We then design a recursive best response algo-
rithm to find the subgame perfect Nash equilibrium (NE)
of the elementary Indian Buffet Game. We show that,
under the homogeneous setting, the NE profile exhibits
a threshold structure.

4) For the case with budget constraint, we design a recur-
sive best response algorithm to find the corresponding
subgame perfect NE. We then show that, under the
homogeneous setting, the NE profile exhibits an equal-
sharing property.

The rest of this paper is organized as follows. The sys-
tem model is described in Section II. While, the Indian Buffet
Game without and with budget constraint are discussed in
details in Sections III and IV, respectively. In Section V,
we give the theoretical proof of the convergence of the pro-
posed non-Bayesian learning rule. Finally, we show simulation
results in Section VI and draw the conclusion in Section VII.

II. SYSTEM MODEL

A. Indian Buffet Game Formulation

Let us consider an Indian buffet restaurant which provides
M dishes denoted by r1, r2, . . . , rM . There are N customers
labeled with 1, 2, . . . , N sequentially requesting dishes for a
meal. Each dish can be shared among multiple customers and
each customer can select multiple dishes. We assume that all
N customers are rational in the sense that they will select
dishes which can maximize their own utilities. In such a case,
the multiple dishes selection problem can be formulated to be
a noncooperative game, called Indian Buffet Game, as follows.

1) Players: N rational customers in the restaurant.
2) Strategies: Since each customer can request multiple

dishes, the strategy set can be defined as

X = {∅, {r1}, . . . , {r1, r2}, . . . , {r1, r2, . . . , rM}} (1)

where each strategy is a combination of dishes and
∅ means no dish is requested. Obviously, customers’
strategy set is finite with 2M elements. We denote the
strategy of customer i as di = (di,1, di,2, . . . , di,M)′,
where di,j = 1 represents customer i requests dish rj
and otherwise we have di,j = 0. The strategy profile
of all customers can be denoted by a M × N matrix as
follows1:

D= (d1, d2, . . . , dN)=

⎡
⎢⎢⎢⎣

d1,1 d2,1 · · · dN,1
d1,2 d2,2 · · · dN,2
...

...
. . .

...

d1,M d2,M · · · dN,M

⎤
⎥⎥⎥⎦. (2)

3) Utility Function: The utility of each customer is deter-
mined by both the quality of the dish and the number of
customers who share the same dish due to the negative
network externality. The quality of one dish can be inter-
preted as the deliciousness or the size. Let qj ∈ Q denote
the quality of dish rj where Q is the quality space, and Nj
denote the total number of customers requesting dish rj.
Then, we can define the utility function of customer i
requesting dish rj as

ui,j
(
qj, Nj

) = gi,j
(
qj, Nj

)− ci,j
(
qj, Nj

)
(3)

where gi,j(·) is the gain function and ci,j(·) is the cost
function. Note that the utility function is an increasing

1In this paper, the bold symbols represent vectors, the bold capital symbols
represent matrixes, the subscript i denotes the customer index, subscript j
denotes the dish index, and the superscript (t) denotes time slot index.
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function in terms of qj, and a decreasing function in
terms of Nj, which can be regarded as the characteristic
of negative network externality since the more customers
request dish rj, the less utility customer i can obtain.
Note that if no dish is requested, the utility is zero for
a customer.

We hereby define the dish state θ = {θ1, θ2, . . . , θM}, where
θj ∈ � denotes the state of dish rj. The dish state can be inter-
preted as how good the ingredient or cooking is. � is the set
of all possible states, which is assumed to be finite. The dish
state keeps unchanged along with time until the whole Indian
buffet restaurant is remodeled. The aforementioned quality of
dish rj, qj, is assumed to be a random variable following the
distribution fj(·|θj), which means that the state of the dish θj
determines the distribution of the dish quality qj. Note that
the dish quality is the same for all users in a certain time
slot, which follows distribution fj(·|θj) and there is a realiza-
tion in each time slot. The dish state θ ∈ �M is unknown to
all customers, e.g., they do not know exactly whether the dish
is delicious or not before requesting and tasting. Nevertheless,
they may have received some advertisements or gathered some
reviews about the restaurant. Such information can be regarded
as some kinds of signals related to the true state of the
restaurant. In such a case, customers can estimate θ through
those available information, i.e., the information they know in
advance and/or gather from other customers.

In the Indian Buffet Game model, we divide the system
time into time slots and assume that the dish quality qj
with j = 1, 2, . . . , M varies independently from time slot to
time slot following the corresponding conditional distributions
fj(·|θj). In each time slot, customers make sequential decisions
on which dishes to request. There are mainly two issues to be
addressed in the Indian Buffet Game. First, since the states
are unknown, it is very important to design an effective social
learning rule for customers to learn from others and their pre-
vious outcomes. Second, given customers’ knowledge about
the state, we should characterize the equilibrium that ratio-
nal customers will adopt in each time slot. In this paper, to
ensure fairness among customers, we assume that customers
have different orders of selecting dishes at different time slots.
In the sequel, the customer index 1, 2, . . . , N means the dish
request order of them, i.e., customer i means the ith customer.
In such a case, it is sufficient for customers to only consider the
expected utilities at current time slot. Moreover, although each
customer can request more than one dish, the total number of
requests is subject to the following budget constraint:

M∑
j=1

di,j ≤ L, ∀ i = 1, 2, . . . , N. (4)

A special case of (4) is that L ≥ M, which is equivalent
to the case without budget constraint where customers can
request as many dishes as possible. In Sections III and IV,
we will discuss the Indian Buffet Game under two scenarios:
without budget constraint (L≥M) and with budget constraint
(L < M), respectively.

B. Time Slot Structure of Indian Buffet Game

Since the dish state θ ∈ �M is unknown to customers, we
introduce the concept of belief to describe their uncertainty

Fig. 1. Time slot structure of the Indian Buffet Game.

about the state [22]. Let us denote the belief as P(t) = {p(t)
j ,

j = 1, 2, . . . , M}, where p(t)
j = {p(t)

j (θ), θ ∈ �} repre-
sents customers’ estimation about the probability distribution
regarding the state of dish rj at time slot t. Since cus-
tomers can obtain some prior information about the dish
state, we assume that all customers start with a prior belief
p(0)

i,j (θ) for every state θ ∈ �. Note that the prior beliefs
of all customers can be different, however, since all cus-
tomers share their belief information with each other, they
will have the same belief after the first belief updating. In this
section, we will discuss the proposed social learning algo-
rithm, i.e., how customers update their belief P(t) at each time
slot, and leave the convergence and performance analysis in
Section V.

In Fig. 1, we illustrate the time slot structure of the proposed
Indian Buffet Game. At each time slot t ∈ {1, 2 . . .}, there are
three phases: 1) decision-making phase; 2) dish sharing phase;
and 3) social learning phase.

1) Phase 1—Decision Making: In this phase, customers
sequentially make decisions on which dishes to request and
broadcast their decisions to others, or simply put, everyone
knows what others are getting. For customer i, his/her deci-
sion is to maximize his/her expected utility at current time
slot, based on the belief at current time slot P(t), the deci-
sions of the previous (i − 1) customers {d1, d2, . . . , di−1},
and his/her predictions of the subsequent (N − i) customers’
decisions.

2) Phase 2—Dish Sharing: In the second phase, each
customer requests his/her desired dishes, receives a utility
ui,j(qj, Nj) according to the dish quality qj and the number of
customers Nj sharing the same dish as defined in (3). Notice
that since Nj is known to all customers after the decision mak-
ing phase, the customers who requested dish rj at time slot t
can infer the dish quality qj from the received utility. Let us
denote such inferred information as s(t)

i,j ∈ Q, si,j ∼ fj(·|θj),
which serves as the signal in the learning procedure. On the
other hand, the customers who have not requested rj at time
slot t, cannot infer the dish quality qj and thus have no inferred
signal by themselves. Such an asymmetric structure, i.e., not
every customer infers signals, makes the learning problem dif-
ferent from the traditional social learning settings and thus
poses more challenges on learning the true state.

3) Phase 3—Social Learning: According to the observed/
inferred signals in the second phase, customers can update
the belief through the proposed non-Bayesian social learning
rule. As illustrated in Fig. 2, there are mainly two steps in
the proposed social learning rule. In the first step, each cus-
tomer updates his/her local intermediate belief on θj, μ

(t)
i,j , and

then reveals this intermediate belief to others. Since sharing the
belief can help each customer to get more information and thus
enhance the learning performance, we assume the customers
have the incentive to do so. In the second step, each customer
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Fig. 2. Non-Bayesian learning rule for each dish.

combines his/her intermediate belief with other customers’
intermediate beliefs in a linear manner.2 Based on the Bayes’
theorem [23], the customer is intermediate belief on the state
of dish rj, μ

(t)
i,j = {μ(t)

i,j (θ), θ ∈ �}, can be calculated by

μ
(t)
i,j (θ) =

fj
(

s(t)
i,j |θ

)
p(t−1)

j (θ)

∑
�

fj
(

s(t)
i,j |θ

)
p(t−1)

j (θ)
, ∀ θ ∈ �. (5)

From (5), we can see that when customer i has requested rj
at time slot t, he/she will incorporate the corresponding signal
into his/her intermediate belief μ

(t)
i,j . Otherwise, he/she will

use the previous belief p(t−1)
j . Then, each customer linearly

combines his/her intermediate belief with others customers’
intermediate beliefs as follows:

p(t)
j (θ) = 1

N

N∑
i=1

[
d(t)

i,j μ
(t)
i,j (θ)+

(
1− d(t)

i,j

)
p(t−1)

j (θ)
]

∀ θ ∈ �, and j = 1, 2, . . . , M (6)

where d(t)
i,j is the strategy of customer i at time slot t.

One may have already noticed that, different from the
Chinese Restaurant Game where each customer can only
choose one table [16], customers in the Indian Buffet Game
can request multiple dishes concurrently. Moreover, there are
another two significant differences between those two games.
One difference is that each customer in the Chinese Restaurant
Game can only make decision once while customers in the
Indian Buffet Game can make decisions repeatedly, i.e., one-
shot game versus repeated game, due to which customers
in the Indian Buffet Game can learn from their previous
experiences and an effective learning rule that can guarantee
convergence is required. The other difference is the learning
rule. In the Chinese Restaurant Game, customers sequentially
make decisions and then reveal their signals to subsequent
customers, where the Bayesian social learning rule is used for
customers to combine the signals from previous customers.
However, in the Indian Buffet Game, instead of revealing sig-
nals, customers only reveal their intermediate belief and the
non-Bayesian social learning rule is applied to generate the
final belief.

2Note that the state learning processes, i.e., the belief update, of all dishes
are independent.

III. INDIAN BUFFET GAME WITHOUT

BUDGET CONSTRAINT

In this section, we study the Indian Buffet Game without
budget constraint, which is corresponding to the case where
L ≥ M in (4). When there is no budget constraint, customers
should request all dishes that can give them positive expected
utility to maximize their total expected utilities. We will first
show that without budget constraint, the decision of whether to
request one dish or not is independent from other dishes, i.e.,
the Indian Buffet Game that selects multiple concurrent dishes
is decoupled into a series of elementary Indian Buffet Games
that select a single dish. Although in elementary Indian Buffet
Game each customer can only choose one dish, which is simi-
lar to the Chinese Restaurant Game model [14], the difference
is that all customers cooperatively estimate the dish state in
the Indian Buffet Game model, instead of sequential learning
in the Chinese Restaurant Game model. We present a recursive
algorithm that characterizes the subgame perfect equilibrium
of the Indian Buffet Game without budget constraint. Finally,
we also discuss the homogeneous case where customers have
the same form of utility function to gain more insights.

To show the independence among different dishes, we first
define the best response of a customer given other customers’
actions. Let us define n−i = {n−i,1, n−i,2, . . . , n−i,M} with

n−i,j =
∑
k 
=i

dk,j (7)

being the number of customers except customer i choosing rj.
Let P = {p1, p2, . . . , pM}, where pj = {pj(θ), θ ∈ �} is
the customer’s belief regarding the state of dish rj at current
time slot.3 Given P and n−i, the best response of customer i,
d∗i = (d∗i,1, d∗i,2, . . . , d∗i,M)′, can be written as

d∗i = BRi(P, n−i) = arg max
di∈{0,1}M

M∑
j=1

di,j · Ui,j (8)

where Ui,j is customer is expected utility of requesting dish rj
given belief P, which can be calculated by

Ui,j =
∑
�

∑
Q

ui,j
(
qj, n−i,j + di,j

)
fj
(
qj|θj

)
pj
(
θj
)

(9)

where Q is the quality/signal set and qj ∈ Q.
Since there is no constraint for the optimization problem

in (8) and Ui,j is only related with di,j, we can rewrite (8) by

d∗i = BRi(P, n−i) =
M∑

j=1

arg max
di∈{0,1}M

di,j · Ui,j. (10)

From (10), we can see that the optimal decision on one
dish is irrelevant to the decisions on others, which leads to the
independence among different dishes. In such a case, we have

d∗i,j = arg max
di,j∈{0,1}

di,j · Ui,j. (11)

The independence property enables us to simplify the
analysis by decoupling the origin Indian Buffet Game into
M elementary Indian Buffet Games. The elementary Indian

3Since we discuss the Indian Buffet Game in one time slot, the superscript
(t) is omitted in Sections III and IV.
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Buffet Game is defined as the case when there is only one dish
for the customers, and thus, the decision for each customer is
binary, i.e., to request or not to request. In the remaining of
this section, we will focus on the analysis of the elementary
Indian Buffet Game and discard the dish index j for notational
simplification. As a result, we can rewrite the best response
of customer i based on the latest belief information p(θ) as
follows:

d∗i = BRi(p, n−i) = arg max
di∈{0,1}

di · Ui (12)

=
{

1, if Ui=∑�

∑
Q ui(q, n−i + 1)f (q|θ)p(θ)>0

0, otherwise.

A. Recursive Best Response Algorithm

In this section, we study how to solve the best response
defined in (12) for each customer. From (12), we can see
that customer i needs to know n−i to calculate the expected
utility Ui in order to decide whether to request the dish
or not. However, since the customers make their decisions
sequentially, customer i does not know the decisions of those
who are after him/her and thus needs to predict the subse-
quent customers’ decisions based on the belief and known
information.

Let mi denote the number of customers who will request the
dish after customer i, then we can write the recursive form of
mi as

mi = mi+1 + di+1. (13)

Let mi|di=0 and mi|di=1 represent mi under the condition of
di = 0 and di = 1, respectively. Denoted by ni =∑i−1

k=1 dk is
the number of customers choosing the dish before customer i.
Then, the estimated number of customers choosing the dish
excluding customer i can be written as follows:

n̂−i|di=0 = ni + mi|di=0 (14)

n̂−i|di=1 = ni + mi|di=1. (15)

Note that n̂−i|di=0 and n̂−i|di=1 are different from n−i since
the values of di+1, di+2, . . . , dN are estimated instead of true
observations.

According to (15), we can compute the expected utility of
customer i when di = 1 as

Ui|di=1 =
∑
�

∑
Q

ui(q, ni + mi|di=1 + 1)f (q|θ)p(θ). (16)

Since the utility of customer i is zero when di = 0, the best
response of customer i can be obtained as

d∗i =
{

1, if Ui|di=1 > 0
0, otherwise.

(17)

With (17), we can find the best response of customer i
given belief p, current observation ni and predicted number
of subsequent customers choosing the dish, mi|di=1. To pre-
dict mi|di=1, customer i needs to predict the decisions of all
customers from i + 1 to N. When it comes to customer N,
since he/she knows exactly the decisions of all the previous
customers, he/she can find the best response without making
any prediction, i.e., mN = 0. Along this line, it is intuitive to
design a recursive algorithm to predict mi|di=1 by considering

Algorithm 1 BR_EIBG(p, ni, i)
if Customer i == N then

//******For customer N******//
if UN =∑�

∑
Q uN(q, nN + 1)f (q|θ)p(θ) > 0 then

dN ← 1
else

dN ← 0
end if
mN ← 0

else
//******For customer 1, 2, . . . , N − 1******//
//***Predicting***//
(di+1, mi+1)← BR_EIBG(p, ni + 1, i+ 1)
mi ← mi+1 + di+1
//***Making decision***//
if Ui =∑�

∑
Q ui(q, ni + mi + 1)f (q|θ)p(θ) > 0 then

di ← 1
else

(di+1, mi+1)← BR_EIBG(p, ni, i+ 1)
mi ← mi+1 + di+1
di ← 0

end if
end if
return (di, mi)

all possible decisions of customers from i+ 1 to N and sequen-
tially updating mi = mi+1 + di+1. In Algorithm 1, we show
the recursive algorithm BR_EIBG(p, ni, i) that describes how
to predict mi|di=1 and find the best response di for customer i,
given current belief p and observation ni. Moreover, in order
to obtain a correct prediction of mi in the recursion procedure,
we calculate and return mi|di=0 when the best response of cus-
tomer i is 0. Note that in Algorithm 1, we have assumed that
the functional form of the utilities of all users are known by
each other. In case that the utility function forms are unknown,
users can take expectation over the types of users based on
some empirical user-type distribution, which is not the focus
of this paper. Moreover, as for the complexity of Algorithm 1,
it enumerates all possible combinations of the choices made by
customers in a dynamic programming manner. Different from
the exhaustive search with the complexity order of O(2N),
Algorithm 1 is with order O(N2), where N is the total number
of customers. In the following, we will prove that the action
profile specified in BR_EIBG(p, ni, i) is a subgame perfect
NE for the elementary Indian Buffet Game.

B. Subgame Perfect NE

In this section, we will show that Algorithm 1 leads to a
subgame perfect NE for the elementary Indian Buffet Game.
In the following, we first give the formal definitions of NE,
subgame, and subgame perfect NE.

Definition 1: Given the belief p = {p(θ), θ ∈ �}, the action
profile d∗ = {d∗1, d∗2, . . . , d∗N} is a NE of the N-customer ele-
mentary Indian Buffet Game if and only if ∀ i ∈ {1, 2, . . . , N},
d∗i = BRi(p,

∑
k 
=i d∗k ) as given in (12).

Definition 2: A subgame of the N-customer elementary
Indian Buffet Game consists of the following three elements:
1) it starts from customer i with i = 1, 2, . . . , N; 2) it has
the belief p at the current time slot; and 3) it has the cur-
rent observation, ni, which is the decisions of the previous
customers.
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Definition 3: A NE is a subgame perfect NE if and only if
it is a NE for every subgame.

According to the above definitions, we show in the follow-
ing theorem that the action profile derived by Algorithm 1 is
a subgame perfect NE of the elementary Indian Buffet Game.

Theorem 1: Given the belief p = {p(θ), θ ∈ �}, the action
profile d∗ = {d∗1, d∗2, . . . , d∗N}, with d∗i being determined by
BR_EIBG(p, ni, i) and ni = ∑i−1

k=1 d∗k , is a subgame perfect
NE for the elementary Indian Buffet Game.

Proof: We first show that d∗k is the best response of customer
k in the subgame starting from customer i,∀ 1 ≤ i ≤ k ≤ N.

If k = N, we can see that BR_EIBG(p, nN, N) assigns the
value of d∗N directly as

d∗N =
{

1, if UN=∑�

∑
Q uN(q, nN + 1)f (q|θ)p(θ)>0

0, otherwise.
(18)

Since nN = n−N , we have d∗k = BRk(p, n−k) in the case
of k = N according to (12), i.e., d∗k is the best response of
customer k.

If k < N, suppose d∗k is the best response of customer k
derived by BR_EIBG(p, nk, k). If d∗k = 0, denoting d′k = 1 as
the contradiction, we can see from BR_EIBG(p, nk, k) that

Uk|d′k=1 =
∑
�

∑
Q

uk(q, nk + mk + 1) f (q|θ)p(θ)

< 0 = Uk|d∗k=0 (19)

which means customer k has no incentive to deviate from
d∗k = 1 given the prediction of other customers’ decisions.
If d∗k = 1, denoting d′k = 0 as the contradiction, we can see
from BR_EIBG(p, nk, k) that

Uk|d′k=0 = 0 < Uk|d∗k=1

=
∑
�

∑
Q

uk(q, nk + mk + 1)f (q|θ)p(θ) (20)

which means that customer k has no incentive to deviate from
d∗k = 0 given the prediction of other customers’ decisions.
Therefore, d∗k = BR_EIBG(p, nk, k) is the best response of
customer k in the subgame of the elementary Indian Buffet
Game starting with customer i. Moreover, since the state-
ment is true for ∀ k satisfying i ≤ k ≤ N, we know that
{d∗i , d∗i+1, . . . , d∗N} is the NE for the subgame starting from
customer i. Therefore, according to the definition of subgame
perfect NE, we can conclude that Theorem 1 is true.

C. Homogeneous Case

From the previous section, we know that a recursive pro-
cedure is required to determine the best responses of the
elementary Indian Buffet Game. This is due to the fact that one
customer needs to predict the decisions of all subsequent cus-
tomers to determine the best response of a certain customer.
In this section, we simplify the game with a homogeneous
setting to derive a more concise best response.

In the homogeneous case, we assume that all customers
have the same form of utility function, i.e., ui(q, n) = u(q, n),
for all i, q, n. Under such a setting, the equilibrium can be
characterized in a much simpler way as shown in the following
lemma.

Lemma 1: In the N-customer elementary Indian Buffet
Game under a homogeneous setting, if d∗ = {d∗1, d∗2, . . . , d∗N}
is the NE action profile specified by BR_EIBG(), then we have
d∗i = 1 if and only if 0 ≤ i ≤ n∗, where n∗ =∑N

k=1 d∗k .
Proof: Suppose the best response of customer i, d∗i = 0.

Then, according to Algorithm 1, we have

Ui =
∑
�

∑
Q

u(q, ni + mi|di=1 + 1)f (q|θ)p(θ) ≤ 0. (21)

The prediction of mi under the condition of di = 1 relies on
the recursive estimations of all subsequent customers’ deci-
sions. In particular, we have mi|di=1 = di+1|di=1 + mi+1|di=1,
where the value of di+1|di=1 can be computed as follows:

di+1|di=1 =
{

1, if Ui+1|di=1 > 0
0, otherwise

(22)

with

Ui+1|di=1 =
∑
�

∑
Q

u(q, ni + 1+ mi+1|di=1 + 1)f (q|θ)p(θ).

(23)

Since ni+ 1+mi+1|di=1+ 1 ≥ ni+mi|di=1+ 1 and u(q, n)

is a decreasing function in terms of n, we have di+1|di=1 = 0
according to (21) and (23). Following the same argument, we
can show that dk|di=1 = 0 for all k = i + 1, i + 2, . . . , N.
Therefore, we have

mi|di=1 =
N∑

k=i+1

dk|di=1 = 0. (24)

Then, let us consider the best response of customer i + 1,
which can be calculated by

d∗i+1 =
{

1, if Ui+1 > 0
0, otherwise

(25)

where

Ui+1 =
∑
�

∑
Q

u(q, ni+1 + mi+1|di+1=1 + 1)f (q|θ)p(θ). (26)

Since ni+1 = ni + di, mi|di=1 = 0 and mi+1|di+1=1 ≥ 0,
we have ni+1+mi+1|di+1=1+ 1 ≥ ni+mi|di=1+ 1. According
to (21) and (26), and the decreasing property of utility function
in terms of the number of customers sharing the same dish,
we have d∗i+1 = 0.

Following the same argument, we can show that if d∗i = 0,
then d∗k = 0 for all k ∈ {i+1, i+2, . . . , N}. Since all decisions
can take values of either 0 or 1, we have d∗i = 1 if and only
if 0 ≤ i ≤∑N

k=1 d∗k . This completes the proof.
From Lemma 1, we can see that there is a threshold struc-

ture in the NE of the elementary India Buffet Game with the
homogeneous setting. The threshold structure is embodied in
the fact that if d∗i = 0, then d∗k = 0,∀ k ∈ {i+1, i+2, . . . , N},
and if d∗i = 1, then d∗k = 1,∀ k ∈ {1, 2, . . . , i− 1}. The result
can be easily extended to the Indian Buffet Game without bud-
get constraint under the homogeneous setting as shown in the
following theorem.

Theorem 2: In the M-dish and N-customer Indian Buffet
Game without budget constraint, if all the customers have the
same utility functions, there is a threshold structure in the NE
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matrix D∗ denoted by (2), i.e., for any row j ∈ {1, 2, . . . , M}
of D∗, there is a Tj ∈ {1, 2, . . . , N} satisfying that

d∗i,j =
{

1, ∀ i < Tj
0, ∀ i ≥ Tj.

(27)

Proof: This theorem directly follows by extending Lemma 1
into M independent dishes case.

IV. INDIAN BUFFET GAME WITH BUDGET CONSTRAINT

In this section, we study the Indian Buffet Game with bud-
get constraint, which is corresponding to the case with L < M
in (4). Unlike the previous case, when there is a budget con-
straint for each customer, the selection among different dishes
is no longer independent but coupled. In the following, we
will first discuss a recursive algorithm that can character-
ize the subgame perfect NE of the Indian Buffet Game with
budget constraint. Then, we discuss a simplified case with a
homogeneous setting to gain more insights.

A. Recursive Best Response Algorithm

In the budget constraint case, we assume that each customer
can at most request L dishes at each time slot with L < M. In
such a case, the best response of customer i can be found by
the following optimization problem:

d∗i = BRi(P, n−i) = arg max
di∈{0,1}M

M∑
j=1

di,j · Ui,j

s.t.
M∑

j=1

di,j ≤ L < M (28)

where

Ui,j =
∑
�

∑
Q

ui,j(qj, n−i,j + di,j)fj(qj|θj)pj(θj). (29)

From (28), we can see that customer is decision on dish
rj is coupled with all other dishes, and thus (28) cannot be
decomposed into M subproblems. Nevertheless, we can still
find the best response of each customer by comparing all pos-
sible combinations of L dishes. Let � = {φ1,φ2, . . . ,φH}
denote the set of all combinations of l (1 ≤ l ≤ L) dishes out
of M dishes, where H =∑L

l=1 Cl
M =

∑L
l=1 M!/l!(M − l)! and

φh = (φh,1, φh,2, . . . , φh,M)′ is one possible combination with
φh,j representing whether dish rj is requested, that is

φh = (1, 1, . . . , 1︸ ︷︷ ︸
l

, 0, 0, . . . , 0︸ ︷︷ ︸
M−l

)′ (30)

means the customer requests dishes r1, r2, . . . , rl (1 ≤ l ≤ L).
In other words, � is the candidate strategy set of each
customer with constraint L.

Let us define customer is observation of previous customers’
decisions as

ni = {ni,1, ni,2, . . . , ni,M} (31)

where ni,j = ∑i−1
k=1 dk,j is the number of customers choos-

ing dish rj before customer i. Let mi denote the subsequent
customers’ decisions after customer i, we have its recursive
form as

mi = mi+1 + di+1. (32)

Then, let

mi|di=φh
= {mi,1|di=φh

, mi,2|di=φh
, . . . , mi,M|di=φh

}
(33)

with mi,j|di=φh
be the predicted number of subsequent cus-

tomers who will request dish rj under the condition that
di = φh, where di = (di,1, di,1, . . . , di,M)′ and φh ∈ �. In such
a case, the predicted number of customers choosing different
dishes excluding customer i is

n̂−i|di=φh
= ni +mi|di=φh

. (34)

According to the definitions above, we can get customer is
expected utility by obtaining dish rj when di = φh as

Ui,j|di=φh
= φh,j

∑
�

∑
Q

ui,j(qj, ni,j + mi,j|di=φh
+ φh,j)

× fj
(
qj|θj

)
pj
(
θj
)
. (35)

Then, the total expected utility customer i can obtain with
di = φh is the sum of Ui,j|di=φh

over all M dishes, that is

Ui|di=φh
=

M∑
j=1

Ui,j|di=φh
. (36)

In such a case, we can find the optimal φ∗h which maximizes
customer is expected utility Ui|di=φh

as follows:

φ∗h = arg max
φh∈�

{Ui|di=φh
} (37)

which is the best response of customer i.
To obtain the best response in (37), each customer needs

to calculate the expected utilities defined in (35), which in
turn requires to predict mi,j|di=φh

, i.e., the number of cus-
tomers who choose dish rj after customer i. When it comes
to customer N who has already known all the previous cus-
tomers’ decisions, no prediction is required. Therefore, similar
to Algorithm 1, given belief P = {p1, p2, . . . , pM} at current
time slot and the current observation ni = {ni,1, ni,2, . . . , ni,M},
we can design another recursive best response algorithm
BR_IBG(p, ni, i) for solving the Indian Buffet Game with
budget constraint in Algorithm 2. As one can see, customer
N only needs to compare the expected utilities of requesting
all M dishes and choose L or less than L dishes with highest
positive expected utilities. Note that maxL means finding the
highest L values. For other customers, each one of them needs
to first recursively predict the following customers’ decisions,
and then makes his/her own decision based on the prediction
and the current observations.

B. Subgame Perfect NE

Similar to the elementary Indian Buffet Game, we first give
the formal definitions of NE and subgame of the Indian Buffet
Game with budget constraint.

Definition 4: Given the belief P = {p1, p2, . . . , pM}, the
action profile D∗ = {d∗1, d∗2, . . . , d∗N} is a NE of the M-dish
and N-customer Indian Buffet Game with budget constraint
L, if and only if d∗i = BRi(P,

∑
k 
=i d∗k) as defined in (28)

for all i.
Definition 5: A subgame of the M-dish and N-customer

Indian Buffet Game with budget constraint L consists of the
following three elements: 1) it starts from customer i with
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Algorithm 2 BR_IBG(P, ni, i)
if Customer i == N then

//******For customer N******//
for j = 1 to M do

Ui,j =∑�

∑
Q uN,j(qj, nN,j + 1)fj(qj|θj)pj(θj)

end for
j = {j1, j2, . . . , jL} ← arg maxL

j∈{1,2,...,M}
{Ui,j}

for j = 1 to M do
if (Ui,j > 0)&&(j ∈ j) then

dN,j ← 1
else

dN,j ← 0
end if

end for
mN = 0

else
//******For customer 1, 2, . . . , N − 1******//
//***Predicting***//
for φh = φ1 to φH do

(di+1, mi+1)← BR_IBG(P, ni + φh, i+ 1)
mi ← mi+1 + di+1
Ui(φh) =∑M φh,j

∑
�

∑
Q ui,j(qj, ni,j + mi,j + φh,j)

·fj(qj|θj)pj(θj)
end for
//***Making decision***//
φ∗h ← arg max

φh∈�
{Ui(φh)}

(di+1, mi+1)← BR_IBG(P, ni + φ∗h, i+ 1)
di ← φ∗h
mi ← mi+1 + di+1

end if
return (di, mi)

i = 1, 2, . . . , N; 2) it has the belief P at current time slot; and
3) it has the current observation, ni, which comes from the
decisions of the previous customers.

Based on Definitions 3–5, we show in the following the-
orem that the action profile obtained by Algorithm 2 is a
subgame perfect NE of the Indian Buffet Game with budget
constraint.

Theorem 3: Given the belief P = {p1, p2, . . . , pM}, the
action profile D∗ = {d∗1, d∗2, . . . , d∗N}, where d∗i determined

by BR_IBG(P, ni, i) and ni =∑i−1
k=1 d∗k , is a subgame perfect

NE for the Indian Buffet Game.
Proof: The proof of this theorem is similar to that of

Theorem 1, the details of which are omitted due to the page
limitation. The proof outline is that first to show ∀ i, k such
that 1 ≤ i ≤ N and i ≤ k ≤ N, d∗k is the best response
of customer k in the subgame starting from customer i by
analyzing two cases: k = N and k < N. Then, we can
know that {d∗i , d∗i+1, . . . , d∗N} is the NE for the subgame
starting from customer i. Finally, according to the definition
of subgame perfect NE, we can conclude that Theorem 3
is true.

C. Homogenous Case

In the homogenous case, we assume that all customers’
utility functions are the same, i.e., ui,j(q, n) = u(q, n);
and all dishes are in the same state, i.e., the dish state
θ = {θ, θ, . . . , θ}. Under such circumstances, we can find
some special properties in the NE action profile D∗ of the
Indian Buffet Game with budget constraint. First, let us define

a parameter nT which satisfies⎧⎪⎨
⎪⎩

∑
�

∑
Q

u(q, n)f (q|θ)p(θ) > 0, if n ≤ nT

∑
�

∑
Q

u(q, n)f (q|θ)p(θ) ≤ 0, if n > nT .
(38)

From (38), we can see that nT is the critical value such that
the utility of nT customers sharing a certain dish is positive but
becomes nonpositive with one extra customer, i.e., each dish
can be requested by at most nT customers. In the following
theorem, we will show that, under the homogeneous setting, all
dishes will be requested by nearly equal number of customers,
i.e., the equal-sharing is achieved.

Theorem 4: In the M-dish and N-customer Indian Buffet
Game with budget constraint L, if all M dishes are in the
same states and all N customers have the same utility function,
the NE matrix D∗ denoted by (2) satisfies that, for all dishes
{rj, j = 1, 2, . . . , M}

N∑
i=1

d∗i,j =
⎧⎨
⎩

nT , if nT ≤
⌊NL

M

⌋

⌊NL
M

⌋
or
⌈NL

M

⌉
, if nT ≥

⌈NL
M

⌉
.

(39)

Proof: We prove this theorem by contradiction as follows.
Case 1: nT ≤ NL/M�.
Suppose that there exists a NE D∗ that contradicts (39).

That is, there is a dish rj′ such that
∑N

i=1 d∗i,j′ > nT or∑N
i=1 d∗i,j′ < nT . From (38), we know that each dish can be

requested by at most nT customers, which means that only∑N
i=1 d∗i,j′ < nT may hold. If

∑N
i=1 d∗i,j′ < nT ≤ NL/M�,

we have
∑M

j=1
∑N

i=1 d∗i,j < NL, which means that there exists
at least one customer i′ who requests less than L dishes,
i.e.,

∑M
j=1 d∗i′j < L. However, according to (38), we have∑

�

∑
Q u(q,

∑N
i=1 d∗i,j′ + 1)f (q|θ)p(θ) > 0, which means that

the utility of customer i′ can increase if he/she requests dish rj′ ,
i.e., his/her utility is not maximized unless D∗ is not a NE. This
contradicts our assumption. Therefore, we have

∑N
i=1 d∗i,j = nT

for all dishes when nT ≤ NL/M�.
Case 2: nT ≥ �NL/M�.
Similar to the arguments in Case 1, we can-

not have
∑M

j=1
∑N

i=1 d∗i,j < NL, which means that∑M
j=1

∑N
i=1 d∗i,j = NL. Let us assume that there exists a

NE D∗ that contradicts (39). Since
∑M

j=1
∑N

i=1 d∗i,j = NL,

there is a dish rj1 with
∑N

i=1 d∗i,j1 <
⌊NL

M

⌋
and a dish

rj2 with
∑N

i=1 d∗i,j2 > �NL/M�. In such a case, we have∑N
i=1 d∗i,j2 >

∑N
i=1 d∗i,j1 + 1, which leads to

∑
�

∑
Q

u

(
q,

N∑
i=1

d∗i,j1 + 1

)
f (q|θ)p(θ)

>
∑
�

∑
Q

u

(
q,

N∑
i=1

d∗i,j2

)
f (q|θ)p(θ). (40)

From (40), we can see that the customer who has requested
dish rj2 can obtain higher utility by unilaterally deviating
his/her decision by requesting dish rj1 . Therefore, D∗ is not
a NE of the Indian Buffet Game with budget constraint L,
and thus we have

∑N
i=1 d∗i,j = NL/M� or �NL/M�, when

nT ≥ �NL/M�. This completes the proof of the theorem.
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V. NON-BAYESIAN SOCIAL LEARNING

In the previous two sections, we have analyzed the proposed
Indian Buffet Game and characterized the corresponding equi-
librium. From the analysis, we can see that the equilibrium
highly depends on customers’ belief P = {pj, j = 1, 2, . . . , M},
i.e., the estimated distribution of the dish state θ = {θj,
j = 1, 2, . . . , M}. The more accurate the belief is, the better
best response customers can make and thus the better util-
ity customers can obtain. Therefore, it is very important for
customers to improve their belief by exploiting their inferred
signals. In this section, we will discuss the learning process
in the proposed Indian Buffet Game. Specifically, we pro-
pose an effective non-Bayesian social learning algorithm that
can guarantee customers to learn the true system state. In
social learning, the users’ rationality and the way they pro-
cess signal information is the essential difference between
non-Bayesian learning and Bayesian learning, while the imple-
mentation difference between them is that customers exchange
their signal information in Bayesian learning rule instead of
exchanging the intermediate belief information in our pro-
posed non-Bayesian learning rule. The motivation of designing
the non-Bayesian learning rule is that customers can first dis-
tributedly process their own signals and then cooperatively
estimate the belief regarding the dish state, which can greatly
decrease the computational cost of each customer. Note that
since the learning process of one dish state θj are independent
of others, in the rest of this section, we omit the dish index j
for notation simplification.

Suppose the true dish state is θ∗, given customers’ belief at
time slot t, p(t) = {p(t)(θ),∀ θ ∈ �}, their belief at time slot
t + 1, p(t+1) = {p(t+1)(θ),∀ θ ∈ �}, can be updated by

p(t+1)(θ) = 1

N

N∑
i=1

[
d(t+1)

i μ
(t+1)
i (θ)+

(
1− d(t+1)

i

)
p(t)(θ)

]

(41)

where d(t+1)
i = 1 or 0 is customer is decision, and μ

(t+1)
i (θ) is

the intermediate belief updated by the Bayesian learning rule
for customers who have requested the dish and inferred some
signal s(t+1)

i ∼ f (·|θ∗), that is

μ
(t+1)
i (θ) = f (s(t+1)

i |θ)p(t)(θ)∑
� f (s(t+1)

i |θ)p(t)(θ)
, ∀ θ ∈ �. (42)

Definition 6: A learning rule has the strong convergence
property if and only if the learning rule can learn the true
state in probability such that{

p(t)(θ∗)→ 1,

p(t)(∀ θ 
= θ∗)→ 0,
as t→∞. (43)

By reorganizing some terms, we can rewrite the
non-Bayesian learning rule in (41) as

p(t+1)(θ)=p(t)(θ)+ 1

N

N∑
i=1

d(t+1)
i

⎛
⎝ f

(
s(t+1)

i |θ
)

λ
(

s(t+1)
i

) − 1

⎞
⎠p(t)(θ)

(44)

with

λ
(

s(t+1)
i

)
=
∑
�

f
(

s(t+1)
i |θ

)
p(t)(θ). (45)

From (45), we can see that λ(s(t+1)
i ) is the estimation of the

probability distribution of the signal s(t+1)
i at the next time slot.

With λ(s(t+1)
i ), we can define a weak convergence, compared

with the strong convergence in (43), as follows.
Definition 7: A learning rule has the weak convergence

property if and only if the learning rule can learn the true
state in probability such that

λ(s) =
∑
�

f (s|θ)p(t)(θ)→ f (s|θ∗),∀ s ∈ Q, as t→∞. (46)

Notice that the weak convergence is sufficient for the pro-
posed Indian Buffet Game since the objective of learning is to
find an accurate estimate of the expected utilities of customers
and thus derive the true best response. According to (9), we
can see that the signal distribution

∑
� fj(qj|θj)pj(θj) is a suf-

ficient statistic of the expected utility function. Therefore, if
it can be shown that the proposed social learning algorithm
has the weak convergence property, then we are able to derive
the true best response for customers in the proposed Indian
Buffet Game. In the following theorem, we will show and
prove that the proposed learning algorithm in (41) indeed has
the weak convergence property. We will also show with sim-
ulation that the proposed learning algorithm in (41) has the
strong convergence property.

Theorem 5: In the Indian Buffet Game, suppose that the
true dish state is θ∗, all customers update their belief p using
(41) and their prior belief p(0) satisfies p(0)(θ∗) > 0, then, the
belief sequence {p(t)(θ)} ensures a weak convergence, i.e., for
∀ s ∈ Q

λ(s) =
∑
�

f (s|θ)p(t)(θ)→ f (s|θ∗), as t→∞. (47)

Proof: See the Appendix.

VI. SIMULATION RESULTS

In this section, we conduct simulations to verify the per-
formance of the proposed non-Bayesian social learning rule
and recursive best response algorithms. We simulate an Indian
Buffet restaurant with five dishes {r1, r2, r3, r4, r5} and five
possible dish states θj ∈ {1, 2, 3, 4, 5}. Each dish is randomly
assigned with a state. After requesting a specific dish rj,
customer i can infer the quality of the dish and a signal
si,j ∈ {1, 2, 3, 4, 5} obeying the conditional distribution that

fj(si,j|θj) =
{

w, if si,j = θj
(1− w)/4, if si,j 
= θj.

(48)

The parameter w can be interpreted as the quality of the
signal or customers’ detection probability. When the signal
quality w is close to 1, the customers’ inferred signal is more
likely to reflect the true dish state. Note that w must sat-
isfy w ≥ 1/5; otherwise, the true state can never be learned
correctly. With the signals, customers can update their belief
P cooperatively at the next time slot and then make their
decisions sequentially. Once the ith customer makes the dish
selection, he/she reveals his/her decisions to other customers.
After all customers make their decisions, they begin to share
the corresponding dishes they have requested. The customer
is utility of requesting dish rj is given by

ui,j = γi
si,jR

Nj
− cj (49)
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TABLE I
NE MATRIX D∗

where γi is the utility coefficient for customer i since different
customers may have different utilities regarding same reward,
si,j is a realization of dish quality, as well as the signal inferred
by customer i, R is the basis award of requesting each dish
as R = 10, Nj is the overall number of customers requesting
dish rj and cj is the cost of requesting dish rj as {cj = 1,∀j}.
From (48) and (49), we can see that by requesting dish with
higher level of state, e.g., θj = 5, customers can obtain higher
utilities. However, the dish state is unknown to customers and
they have to estimate it through social learning. On the other
hand, we can also see that the more customers requesting a
same dish, the less utility each customer can obtain, which
manifests the negative network externality.

A. Indian Buffet Game Without Budget Constraint

In this section, we evaluate the performance of the proposed
best response algorithm for Indian Buffet Game without bud-
get constraint. We first simulate the homogenous case to verify
the threshold property of the NE matrix, i.e., Theorem 2, and
the impact of different decision making orders on customers’
utilities, i.e., making decisions earlier may have advantage.
Then, we compare the performance of the proposed best
response algorithm, i.e., Algorithm 1, with the performance
of other algorithms in heterogeneous settings.

For the homogenous case, we set all customers’ util-
ity coefficients as γi = 1. The customers’ prior belief
regarding the dish state starts with a uniform distribution,
i.e., {p(0)

j (θ) = 0.2,∀j, θ}. The dish state is set as � =
[1, 2, 3, 4, 5], i.e., θj = j, in order to verify different threshold
structures for different dish states as illustrated in Theorem
2. At each time slot, we let customers sequentially make
decisions according to Algorithm 1 and then update their
belief according to the non-Bayesian learning rule. The game
is played time slot by time slot until customers’ belief P(t)

converges. In the first simulation, we set the number of cus-
tomers as N = 10 to specifically verify the threshold structure
of NE matrix. Table I shows the NE matrix D∗ derived by
Algorithm 1 after customers’ belief P(t) converges, where each
column contains one customer’s decisions {di,j,∀j} and each
row contains all customers’ decisions on one specific dish rj,
i.e., {di,j,∀i}. From the table, we can see that once a customer
does not request some specific dish, all the subsequent cus-
tomers will not request that dish, which is consistent with the
conclusion in Theorem 2. Moreover, since requesting the dish
with higher level of state, e.g., θ5 = 5, can obtain more utili-
ties, we can see that most customers decided to request dish r5.
From Table I, we can see that customers who make decisions
early have advantage, e.g., customer 1 can request all dishes
while customer 8 can only request one dish. Therefore, in the

Fig. 3. Each customer’s utility in homogenous case without budget constraint.

second simulation of the homogenous case, we dynamically
adjust the order of decision making to ensure the fairness.
In this simulation, we assume that there are five customers
with a common utility coefficient γi = 0.4. In Fig. 3, we show
all customers’ utilities along with the simulation, where the
order of decision making changes every 100 time slots. In
the first 100 time slots, where the order of decision making is
1→ 2→ 3→ 4→ 5, we can see that customer 1 obtains the
highest utility and customer 4 and 5 receive 0 utility since they
have not requested any dish. In the second 100 time slots, we
reverse the decision making order to 5→ 4→ 3→ 2→ 1,
which results customer 1 and 2 receiving 0 utility. Therefore,
by periodically changing the order of decision making, we
can infer that the expected utilities of all customers will be
the same after a period of time.

For the heterogeneous case, we randomize each customer’s
utility coefficient γi between 0 and 1 and set their prior belief
as {p(0)

j (θ) = 0.2,∀j, θ}. In this simulation, we compare the
performance in terms of customers’ social welfare, which is
defined as the total utilities of all customers, among different
kinds of algorithms listed as follows.

1) Best Response: The proposed recursive best response
algorithm in Algorithm 1 with non-Bayesian learning.

2) Myopic: At each time slot, customer i requests dishes
according to current observation ni = {ni,j,∀j} without
social learning.

3) Learning: At each time slot, each customer requests
dishes purely based on the updated belief P(t) using
non-Bayesian learning rule without considering the neg-
ative network externality.

4) Random: Each customer randomly requests dishes.
For the myopic and learning strategies, customer is expected

utility of requesting dish rj can be calculated by

Um
i,j =

∑
�

∑
Q

ui,j(qj, ni,j + di,j)fj(qj|θj)p
(0)
j (θj) (50)

Ul
i,j =

∑
�

∑
Q

ui,j(qj, di,j)fj(qj|θj)p
(t)
j (θj). (51)
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Fig. 4. Social welfare comparison without budget constraint.

With these expected utilities, both myopic and learning algo-
rithms can be derived by (8). We can see that the myopic
strategy does not take into account social learning while the
learning strategy does not involve negative network exter-
nality. In the simulation, we average these four algorithms
over hundreds of realizations. Fig. 4 shows the performance
comparison result, where the x-axis is the signal quality w
varying from 0.5 to 0.95 and y-axis is the social welfare
averaged over hundreds of time slots. From the figure, we
can see with the increase of signal quality, the social wel-
fare keeps increasing for all algorithms. Moreover, we can
also see that our best response algorithm performs the best
while the learning algorithm performs the worst. This is
because, with the learning algorithm, customers can gradually
learn the true dish states and then request the dish with-
out considering other customers’ decisions. In such a case,
too many customers may request the same dishes and each
customer’s utility is dramatically decreased due to the nega-
tive network externality. For the myopic algorithm, although
customers can not learn the true dish states, by considering
other customers’ decisions, each customer can avoid request-
ing dishes which have been over-requested. Therefore, we can
conclude that our proposed best response algorithm achieves
the best performance through considering the negative net-
work externality and using social learning to estimate the
dish state.

B. Indian Buffet Game With Budget Constraint

In this section, we evaluate the performance of the proposed
best response algorithm for Indian Buffet Game with budget
constraint L = 3. Similar to the previous section, we start
from the homogenous case, where all customers’ utility coef-
ficients are set as γi = 1. In the first simulation, we set all
dish states as θj = 5 to verify the property of the NE matrix
illustrated in Theorem 4. Table II shows the NE matrix D∗
derived by Algorithm 2. We can see that each dish has been
requested by N ∗ L/M = 10 ∗ 3/5 = 6 customers, which is
consistent with the conclusion in Theorem 4. In the second
simulation, we dynamically change the order of customers’
sequential decision making and illustrate each customer’s util-
ity along with simulation in Fig. 5, from which we can see

TABLE II
NE MATRIX D∗

Fig. 5. Each customer’s utility in homogenous case with budget constraint.

similar phenomenon to the Indian Buffet Game without budget
constraint.

For the heterogeneous case, we randomize each customer’s
utility coefficient γi within [0, 1] and compare the performance
of our proposed best response algorithm, i.e., Algorithm 2,
with myopic, learning and random algorithms in terms of
customers’ social welfare. For the myopic, learning and ran-
dom algorithms, same budget constraint is adopted, i.e., each
customer can at most request 3 dishes. Fig. 6 shows the per-
formance comparison result, from which we can see that our
best response algorithm performs the best while the learning
algorithm performs the worst.

C. Non-Bayesian Social Learning Performance

In this section, we evaluate the performance of the pro-
posed non-Bayesian social learning rule. At the beginning
of the simulation, we randomize the states of five dishes
and assign customers’ prior belief regarding each dish state
with uniform distribution, i.e., {pj(θ = 0.2),∀j, θ}. After
requesting the chosen dishes, each customer can infer sig-
nals following the conditional distribution defined in (48)
with signal quality w = 0.6. Fig. 7 shows the learning
curve of the Indian Buffet Game with and without budget
constraint, respectively. The y-axis is the difference between
customers’ belief at each time slot P(t) and the true belief
Po = {pj = (pj(θ

∗
j ) = 1, pj(θj 
= θ∗j ) = 0),∀j}, which can be

calculated by ||P(t) − Po||2. From the figure, we can see that
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Fig. 6. Social welfare comparison with budget constraint.

Fig. 7. Performance of the non-Bayesian social learning rule.

customers can learn the true dish states within 15 time slots.
Moreover, the convergence rate of the case without budget
constraint is faster than that of the case with budget constraint.
This is because, due to the budget constraint, each customer
requests fewer dishes at each time slot and thus can infer fewer
signals regarding the dish state, which will inevitably slow
down the customers’ learning speed.

D. Application in Relay Selection of
Cooperative Communication

In this section, we discuss an application of the Indian
Buffet Game in the relay selection of cooperative
communications. In the application, we consider a wire-
less network with N source nodes or users, which aim at
sending their messages to the destination nodes. There are M
potential relay nodes with different relay capabilities, given
the different channel conditions, transmission power, and
processing speed constraints. Each source node can select at
most L relays in each time slot that help them relay their
messages to the destination node. All the source nodes are
assumed to be rational, i.e., each of them selects the relays
that can maximize its own expected data rate. First, the more
source nodes select the same relay in one time slot, the less

Fig. 8. Social welfare comparison in the application of relay selection.

throughput can be obtained by each source node, i.e., the
negative externality. Second, since the source nodes may not
exactly know the capacity of each relay node, they need
to estimate the relay state by learning from the history and
the current signals that reflect the relay properties. Third,
the source nodes are not necessarily synchronized, which
means that they may make the relay selection in a sequential
manner. Considering these three properties, we can see that
the proposed Indian Buffet Game is an ideal tool to formulate
the relay selection problem, where the source nodes are the
players and the relay nodes are corresponding to the dishes
in the restaurant.

In the simulation, we set five source nodes and five relay
nodes with five possible relay state θj ∈ {1, 2, 3, 4, 5}. Each
source node can receive a signal on the capacity of the selected
relay nodes after data transmission, which obeys the distribu-
tion fj(si,j|θj) as in (48). Assuming that the source nodes share
the same relay in a time-division manner, we can define the
utility of the ith source node selecting relay node j as

ui,j = si,jḡi,j

Nj
− cj (52)

where ḡi,j is the gain of the ith source node by selecting relay
j which depends on the channel gain, Nj is the total number
of source nodes sharing relay j and cj is the cost of selecting
relay j which can be considered as the price of relay service.
With the utility definition, we can conduct simulation to evalu-
ate the performance of relay selection with Indian Buffet Game
and compare it with that of myopic strategy, random strategy
and learning strategy. Fig. 8 shows the social welfare com-
parison results, including two cases: budget-constraint case
where each source node can at most select L = 3 relays and
without-constraint-case where each source node can at most
select L = 5 relays. From the figure, we can see that, similar
to the previous comparison results, our best response algo-
rithm has the best performance in both cases. Therefore, our
proposed Indian Buffet Game can be well applied in the relay
selection of cooperative communications.
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VII. CONCLUSION

In this paper, we proposed a general framework, called
Indian Buffet Game, to study how users make multiple con-
current decisions under uncertain system state. We studied the
Indian Buffet Game under two different scenarios: customers
request multiple dishes without budget constraint and with
budget constraint, respectively. We designed best response
algorithms for both cases to find the subgame perfect NE, and
discussed the simplified homogeneous cases to better under-
stand the proposed Indian Buffet Game. We also designed
a non-Bayesian social learning rule for customers to learn
about the dish state and theoretically prove its convergence.
Simulation results show that our proposed algorithms achieve
much better performance than myopic, learning and random
algorithms. Moreover, the proposed non-Bayesian learning
algorithm can help customers learn the true system state with
faster convergence speed.

We would like to emphasize that our focus in this paper
is to study the interactions and decision making behaviors of
agents in an uncertain negative-externality environment with
the concept of social learning, which is a fundamental prob-
lem existing in the signal processing, wireless communication
networks, and social networks. Meanwhile, our work in this
paper also has limitations due to some assumptions in the
analysis. One is that all the customers are assumed to share
their belief information with each other, given that sharing
the belief information can enhance the learning performance
based on social learning. We assume that the rational cus-
tomers have the incentive to do so. In addition, one of our
ongoing works is to study a more general scenario where each
user does not reveal his/her belief information and only action
information can be observed. The other main assumption is
that each customer knows all others’ utility function forms in
Algorithms 1 and 2. Note that Algorithms 1 and 2 are just
designed to find the NE of the Indian Buffet Game. When
each user have no knowledge about other users’ utility function
forms, he/she can take an expectation over the types of users
according to some empirical user-type distribution, which is
also one of our ongoing works.

The proposed Indian Buffet Game can be applied in various
fields. One important application is the relay selection prob-
lem in cooperative communications, as shown in Section VI-D,
Indian Buffet Game can well model and solve the problem of
such relay selection in cooperative communications. Moreover,
the multichannel sensing and access problem in cognitive radio
networks can also be modeled by Indian Buffet Game, where
each secondary user needs to learn the primary channel state
and tries to access the channel with least secondary users, i.e.,
considering the negative externality [24]. For those problems,
existing algorithms or models either only consider the negative
externality or only consider the social learning, without inte-
grating the learning and decision making with negative exter-
nality together. In such a case, the performance of those algo-
rithms perform worse than the proposed Indian Buffet Game
model, which can be seen from the comparison results in
Figs. 4, 6, and 8. Therefore, the research value of Indian Buffet
Game model lie in that it presents a general tool for agents
to make optimal sequential decisions when confronted with
uncertain system state and negative externality characteristic.

APPENDIX

PROOF OF THEOREM 5

Proof of Lemma

Let us first define a probability triple (�,F , P
θ ) for some

specific dish state θ ∈ �, where � is the space containing
sequences of realizations of the signals s(t)

i ∈ Q, F is the
σ -field generated by �, i.e., a set of subsets of �, and P

θ

is the probability measure induced over sample paths in �,
i.e., P

θ =⊗∞t=1 f (·|θ). Moreover, we use E
θ [ · ] to denote the

expectation operator associated with measure P
θ , and define

Ft as the smallest σ -field generated by the past history of
all customers’ observations up to time slot t. To prove the
weak convergence in (46), we start by showing that the belief
sequence {p(t)(θ∗)} converges to a positive number as t→∞
by the following lemmas.

Lemma 2: Suppose the true dish state is θ∗, all customers
update their belief p according to the non-Bayesian learning
rule in (41) and their prior belief p(0) satisfies p(0)(θ∗) > 0,
then, the belief sequence {p(t)(θ∗)} converges to a positive
number as t→∞.

Proof: From (41) and (42), we can see that if p(t)(θ) > 0,
then p(t+1)(θ) > 0. Since the prior belief satisfies p(0)(θ∗) > 0,
according to the method of induction, we have the belief
sequence {p(t)(θ∗)} > 0.

According to (44), for the true dish state θ∗, we have

p(t+1)(θ∗) = p(t)(θ∗)+ 1

N

N∑
i=1

d(t+1)
i

⎛
⎝ f

(
s(t+1)

i |θ∗
)

λ
(

s(t+1)
i

) − 1

⎞
⎠

× p(t)(θ∗). (53)

By taking expectation over Ft on both sides of (53),
we have

E
θ∗
[
p(t+1)(θ∗)|Ft

]
= p(t)(θ∗)+ 1

N

N∑
i=1

E
θ∗

×
⎡
⎣d(t+1)

i

⎛
⎝ f

(
s(t+1)

i |θ∗
)

λ
(

s(t+1)
i

) − 1

⎞
⎠
∣∣∣∣Ft

⎤
⎦ p(t)(θ∗). (54)

According to the time slot structure shown in Fig. 1, each
customer’s decision at time slot t+1 is made according to the
belief updated at the end of last time slot t. In such a case,
when given all the history information up to time slot t, Ft,
the decision d(t+1)

i is independent from the signal s(t+1)
i which

is received at the end of time slot t + 1. In such a case, we
can separate the expectation in the second term of (54) as

E
θ∗
⎡
⎣d(t+1)

i ·
⎛
⎝ f

(
s(t+1)

i |θ∗
)

λ
(

s(t+1)
i

) − 1

⎞
⎠
∣∣∣∣Ft

⎤
⎦

= E
θ∗
[
d(t+1)

i

∣∣Ft

]
· Eθ∗

⎡
⎣
⎛
⎝ f

(
s(t+1)

i |θ∗
)

λ
(

s(t+1)
i

) − 1

⎞
⎠
∣∣∣∣Ft

⎤
⎦. (55)

In (55), E
θ
[
d(t+1)

i

∣∣Ft

]
≥ 0 since d(t+1)

i can only be 1 or 0.
Moreover, since g(x) = 1/x is a convex function, according
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to Jensen’s inequality, we have

E
θ∗
⎡
⎣ f

(
s(t+1)

i |θ∗
)

λ
(

s(t+1)
i

)
∣∣∣∣Ft

⎤
⎦ ≥

⎛
⎝E

θ∗
⎡
⎣ λ

(
s(t+1)

i

)

f
(

s(t+1)
i |θ∗

)
∣∣∣∣Ft

⎤
⎦
⎞
⎠
−1

=
⎛
⎝∑

Q

λ
(

s(t+1)
i

)

f
(

s(t+1)
i |θ∗

) f
(

s(t+1)
i |θ∗

)⎞⎠
−1

= 1. (56)

In such a case, the equation in (55) is nonnegative, which
means that in (54)

E
θ∗
[
p(t+1)(θ∗)|Ft

]
≥ p(t)(θ∗). (57)

Since customers’ belief p(t)(θ∗) is bounded within interval
[0, 1], according to the martingale convergence theorem [25],
we can conclude that the belief sequence {p(t)(θ∗)} converges
to a positive number as t→∞.

Proof of Theorem 5

Proof: Let N (t+1) denote the set of customers who request
the dish at time slot t+1. In such a case, we can rewrite (53) as

p(t+1)(θ∗) = 1

|N (t+1)|
∑

i∈N (t+1)

f
(

s(t+1)
i |θ∗

)

λ
(

s(t+1)
i

) p(t)(θ∗) (58)

where | · | means the cardinality. By taking logarithmic oper-
ation on both sides of (58) and utilizing the concavity of the
logarithm function, we have

log p(t+1)(θ∗) ≥ log p(t)(θ∗)

+ 1

|N (t+1)|
∑

i∈N (t+1)

log
f
(

s(t+1)
i |θ∗

)

λ
(

s(t+1)
i

) . (59)

Then, by taking expectation over Ft on both sides of (59),
we have

E
θ∗
[
log p(t+1)(θ∗)|Ft

]
− log p(t)(θ∗)

≥ 1

|N (t+1)|
∑

i∈N (t+1)

E
θ∗
⎡
⎣log

f
(

s(t+1)
i |θ∗

)

λ
(

s(t+1)
i

)
∣∣∣∣Ft

⎤
⎦. (60)

As to the left hand of (60), according to Lemma 2, we know
that p(t)(θ∗) will converge as t→∞, and thus

E
θ∗
[
log p(t+1)(θ∗)|Ft

]
− log p(t)(θ∗)→ 0. (61)

As to the right hand of (60), it follows:

E
θ∗
⎡
⎣log

f
(

s(t+1)
i |θ∗

)

λ
(

s(t+1)
i

)
∣∣∣∣Ft

⎤
⎦ = −E

θ∗
⎡
⎣log

λ
(

s(t+1)
i

)

f
(

s(t+1)
i |θ∗

)
∣∣∣∣Ft

⎤
⎦

≥ − log E
θ∗
⎡
⎣ λ

(
s(t+1)

i

)

f
(

s(t+1)
i |θ∗

)
∣∣∣∣Ft

⎤
⎦

= 0. (62)

In such a case, combining (61) and (62), as t → ∞,
we have

0 ≥ 1

|N (t+1)|
∑

i∈N (t+1)

E
θ∗
⎡
⎣log

f
(

s(t+1)
i |θ∗

)

λ
(

s(t+1)
i

)
∣∣∣∣Ft

⎤
⎦ ≥ 0. (63)

By squeeze theorem [26], we have for ∀ i ∈ N (t+1),
as t→∞

E
θ∗
⎡
⎣log

f
(

s(t+1)
i |θ∗

)

λ
(

s(t+1)
i

)
∣∣∣∣Ft

⎤
⎦

=
∑
�

f
(

s(t+1)
i |θ∗

)
log

f
(

s(t+1)
i |θ∗

)

λ
(

s(t+1)
i

) → 0. (64)

According to Gibbs’ inequality [27], the (64) converges to 0
if and only if as t→∞

λ
(

s(t+1)
i

)
→ f

(
s(t+1)

i |θ∗
)
, ∀ s(t+1)

i ∈ Q. (65)

This completes the proof of the theorem.
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