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Abstract—With the emergence of big data computing and analysis, cloud computing services become more and more popular, which
has recently drawn researchers’ great attentions to develop various new applications and mechanisms. In this paper, we consider the
on-demand mechanism design in the infrastructure as a service (IaaS), including resource allocation and pricing issues under dynamic
scenarios. Most of existing works on mechanism design assumed static and independent individual utility, while the cloud computing
services are provided in a dynamic environment. To solve such problems, we start with analyzing the Google cluster-usage dataset to
draw the statistical and stochastic characteristics of the IaaS consumers and providers. Based on the characteristics mined from real
data, we propose a stochastic matching algorithm with Markov Decision Process (MDP), which aims at optimizing the long-term system
efficiency, with its online version using Q-learning method to address the imperfect model estimation problem. We further design an
efficient (EF), incentive compatible (IC), individual rational (IR) auction mechanism, which is an extension of traditional Vickrey-Clarke-
Groves (VCG) mechanism. The proposed mechanism is studied under two application scenario: quality sensitive services, where
unilateral MDP-VCG auction is implemented; and quality insensitive services, where MDP-VCG double auction is implemented. To
verify the performance of our proposed mechanism, we conduct experiment using the Google dataset and show that the proposed
MDP-based VCG auction mechanism can achieve EF, IC and IR properties simultaneously.

Index Terms—Cloud computing service, IaaS, Markov decision process, Q-learning, Vickrey-Clarke-Groves, mechanism design.
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1 INTRODUCTION

1.1 Background

The rapid growth of demand for big data and large
scale data processing lead the cloud computing into a
booming era. Cloud computing services consists of three
layers, i.e., Infrastructure as a Service (IaaS), Platform as
a Service (PaaS) and Software as a Service (SaaS) [1],
where IaaS provides the hardware foundation and is our
focus in this paper. Lots of IaaS providers have emerged,
e.g., Amazon CloudFormation, Google Compute Engine,
HP Cloud etc. Meanwhile, open-source cloud service
platforms like Hadoop [2] and Eucalyptus [3] are becom-
ing more and more reliable and scalable, making it easier
and faster to deploy computing clusters. This trend
further encourages companies and institutions with large
or small scale datacenters to join the profitable cloud
service market.

One of the most important concepts in IaaS is utility
computing [4]. In IaaS, computing resource is treated
as a special kind of utility, just like electricity or water.
For instances, a cloud service billing/pricing system was
proposed to fulfill the computing service transactions in
[5]; while a Nash equilibrium between the IaaS providers
and SaaS providers regarding service provisioning was
proposed in [6]. Meanwhile, the competition and coop-
eration among cloud providers were investigated in [7]
and a IaaS provider’s revenue maximization scheme us-
ing optimization method was proposed in [8]. Based on
the pay-as-you-go market model, IaaS makes it possible
for small institutions to perform large scale computation-

s with reasonable cost. With the growing number of ser-
vice providers and customers, auction becomes a natural
choice for pricing in the cloud computing services. For
example, the pricing policy of Amazon, “spot instances”,
allows users to bid for unused capacities. However, due
to the large number of potential IaaS providers and
consumers, it is difficult to design an effective auction
mechanism that can efficiently utilize the computing re-
source. Recently, a new idea called “volunteer cloud” has
been proposed [9]-[11], where researchers made some
early attempt to combine volunteer computing with
cloud service such that every personal computer can
become a potential IaaS provider. This makes the auction
mechanism design even more challenging, and thus calls
for new solutions to the bilateral trading between IaaS
providers and consumers.

1.2 Motivations

In the literature, many auction mechanisms have been
proposed, including first-price, second-price, English
and Dutch auctions [12]. Most of the existing works
on auction mechanism design assumed static and inde-
pendent private value. Meanwhile, the value function
of the users was constructed in a myopic way, without
considering the continuous changes of the system state.
However, in the cloud computing service provision, the
value model is different from traditional setting in two
perspectives.

1) The value of an IaaS consumer may vary according
to the specific IaaS provider’s computing resources.
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Different matchings between different consumers
and providers may result in extremely different
user experiences (values). For example, as shown in
Fig. 1 drawn from the Google cluster-usage traces
[13], matching an IaaS consumer who requests
0.2 CPU resource (unified within [0,1] by Google)
with an IaaS machine who can provide 0.9 CPU
resource would be over-satisfied for the consumer
but under-utilized for the provider, and vice versa.

2) The cloud computing service is provided in a
dynamic environment. In Fig. 1, we can see that
different IaaS consumers requesting different CPU
and memory resources dynamically arrive at the
system. Meanwhile, IaaS machines providing dif-
ferent resources, i.e., CPU and memory, are also dy-
namically added, removed or updated. Apparently,
both service consumers and providers appear in a
temporal basis and stay in the system for a period
time. Under such circumstances, it is natural for the
system to consider the opportunity cost in the near
future instead of one-shot or immediate reward.

The aforementioned two distinct problems require us
to customize an on-demand auction mechanism for the
cloud computing services according to their specific
statistical and stochastic characteristics. While one fun-
damental problem is how we can find the statistical
characteristics of the IaaS providers and consumers. As
a matter of fact, those characteristics are hidden in the
real big data generated by the practical services, just as
the Google cluster-usage traces. In this paper, we start
with analyzing the characteristics of IaaS consumers and
providers using the Google data traces. Then, based on
the characteristics mined from the real data, we propose
a practical MDP-based dynamic VCG auction mecha-
nism for the cloud computing services. The proposed
mechanism is studied under two application scenarios:
quality sensitive services, where unilateral MDP-VCG
is implemented; and quality insensitive services, where
MDP-VCG double auction is implemented.

1.3 Related Works

The major goals for auction mechanism design are effi-
ciency, incentive compatibility and individual rationality.
The Vickrey-Clarke-Groves (VCG) auction mechanism
[14]-[16] is able to achieve all the three properties simul-
taneously. While the problem with VCG mechanism is
that it often incurs low revenue for the sellers, which
can cause serious budget balance problem in bilateral
trading. In terms of bilateral trading, the seminal work of
Myerson [17] provided the fundamental theory that it is
impossible to achieve efficiency, incentive compatibility,
individual rationality, and budget balance simultane-
ously. Nevertheless, continual effort is being made to
leverage these criteria and find the optimal tradeoff. The
most widely adopted bilateral trading mechanism is the
McAfee mechanism [18], since it is easy to implement
and has the dominant-strategy incentive compatible and
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Fig. 1. Google cluster-usage traces: consumers with dy-
namic CPU requests and memory requests (first and sec-
ond), providers with dynamic CPU and memory servers
(third and fourth), all unified within [0,1].

asymptotically efficient properties. In [19], the authors
designed a competitive truthful double auction mech-
anism, with the goal of achieving the (approximate)
optimal revenue for the auctioneer. Fudenberg et al. in
[20] analyzed existence of pure strategy equilibrium in
double auction markets and argued that the equilibrium
is close to truth bidding as the market size grows, while
Zhao et al. in [21] proposed a matching mechanism
extending the traditional VCG mechanism to the double
auction scenario.

In the cloud computing literature, there are some
existing works on the auction-based cloud service pro-
vision model [22]-[34]. In [22]-[26], unilateral auction-
based models were employed in studying the resource
allocation and pricing issues, e.g., the combinatorial
auction model and the reverse auction model. Double
auction models were also studied in the cloud comput-
ing market to ensure both providers’ and users’ truthful
computing resource trading [27]-[29]. Meanwhile, some
dynamic auction models were proposed in [31]-[34] to
deal with the dynamically fluctuating cloud computing
resource demands and multi-round auction scenario.
However, these existing works only designed the auction
mechanism to maximize the immediate system value
while ignoring the long-term expected utility, which is
also of importance since the computing resource trading
between the service consumers and providers are long-
term instead of one-shot. Although the authors in [33]
have used the MDP model to consider the opportunity
cost in the near future, they focused on the scenario of
single service provider and only considered the unilat-
eral auction model, which is substantially different from
our work where we focus on the stochastic matching be-
tween multiple providers and consumers and investigate
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both unilateral and double auction models. Last but not
the least, in this paper, we start with the real service data
analysis and the mechanism is built on the characteristics
drawn from the real data, which is the fundamental
difference between our work and the existing works.

1.4 Organizations
The rest of the paper is organized as follows. Section
2 analyzes the statistical characteristics from the Google
cluster-usage dataset. Based on this, Section 3 proposes
a learning strategy of optimal IaaS consumer-provider
matching. Then, Section 4 proposes the MDP-VCG mech-
anism in terms of both unilateral and double auctions
with the theoretic proves of efficiency, incentive compat-
ibility, individual rationality. In Section 5, experiments
are conducted to verify the properties of the proposed
mechanism. Finally, Section 6 concludes the paper.

2 MINING STATISTICAL CHARACTERISTICS

The Google cluster-usage traces dataset contains data
from an 12k-machine cell over about a month-long peri-
od in May 2011 with size of approximately 40GB. A cell
is a set of machines, typically all in a single cluster, that
share a common cluster-management system which is in
charge of matching work to machines. Work arrives at a
cell in the form of jobs and each job is comprised of one
or more tasks. Each task represents a Linux program,
possibly consisting of multiple processes, to be run on
(matched to) a single machine. There is a set of resource
requirements accompanied with each task, which is used
for matching the task to some specific machine. In this
paper, we regard machines and tasks as IaaS providers
(sellers) and IaaS consumers (buyers), respectively.

In the dataset, there are task-event tables containing
the time stamp and status of each task, as well as the
resource request for CPU cores by each task. There
are 9 kinds of status definitions for each task: submit,
schedule, evict, fail, finish, kill, lost, update pending and
update running. With these status definitions, “a new task
is submitted” can be treated as a new buyer arriving,
while “an existing task is completed” can be regarded
as a buyer leaving the system. In such a case, with
the time stamp, we can extract the buyers’ arrival and
leaving intervals to estimate their traffic characteristic,
i.e., arrival rate and leaving rate. Besides, there are also
machine-event tables containing the time stamp and
status of each machine, as well as the CPU resource
each machine can provide. There are 3 kinds of status
definitions for each machine: add, remove, update. In such
a case, we can regard adding a new machine as a new
seller’s arrival, and removing an existing machine as a
seller leaving the system 1.

When performing matching between consumers’ tasks
and providers’ machines, perfect matching considering

1. In this paper, we use service seller/buyer and service
provider/consumer alternatively.
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Fig. 2. Intensities of different types of buyers/sellers.

each individual consumer’s requests and each individual
provider’s resources would be preferable. However, such
perfect matchings would incur extremely high compu-
tational cost due to the numerous computations and
dynamic environment. In practical scenarios, we have to
categorize the consumers and providers into discretized
types, and perform matches between different types of
consumers and different types of providers. This would
reduce the system complexity to a large extent and
ensure the practicality. Let us take CPU resource as an
example. As defined in the dataset, the CPU resource is
normalized to [0,1] by scaling to the largest capacity of
the resource on any machine in the trace. Thus, we can
define the types of IaaS buyers and sellers according to
the quantized CPU resource levels as follows.

• Type 1 sellers: sellers with CPU resources belonging
to interval [0, 0.5];

• Type 2 sellers: sellers with CPU resources belonging
to interval (0.5, 1].

For the types of IaaS consumers, according to the Google
dataset, since almost all the CPU resource requests are
below 0.5, we can define the types of buyers as

• Type 1 buyers: buyers requesting CPU resources
within [0, 1/6];

• Type 2 buyers: buyers requesting CPU resources
within (1/6, 1/3];

• Type 3 buyers: buyers requesting CPU resources
within (1/3, 0.5].

The motivation of categorizing the resource sellers into
2 types and resource buyers into 3 types comes from
the analysis of the real Google cluster-usage traces. As
shown in Fig. 1, the service provides’ CPU resources can
be easily categorized into 2 types, i.e., larger than 0.5 or
smaller than (equal with) 0.5, and the CPU resource re-
quests can be divided into 3 types, i.e., [0,1/6), [1/6,1/3),
and [1/3,0.5]. Note that the proposed services matching
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TABLE 1
Traffic intensity parameters.

Arrival Rate λ Leaving Rate µ
Type 1 Buyers λb1 = 0.028 µb1 = 0.032
Type 2 Buyers λb2 = 0.025 µb2 = 0.030
Type 3 Buyers λb3 = 0.020 µb3 = 0.026
Type 1 Sellers λs1 = 0.005 µs1 = 0.0058
Type 2 Sellers λs2 = 0.005 µs2 = 0.0060

algorithm is independent of the categorizations and thus
will work for any categorizations.

Based on the quantized types, we can further estimate
the statistic characteristics of different types of service
sellers and buyers, including the arrival rate λ and
leaving rate µ. Through analyzing the Google dataset,
we find that the service buyers and sellers arrive at
and leave the system with Poisson process, as shown in
Fig. 2 which illustrates the probability density of arriv-
ing/leaving intervals for type 1 buyers and type 1 sellers.
From Fig. 2, we can see that the empirical distribution
matches well with the exponential distribution, and the
estimated probability density using Poisson modeling
matches well with the empirical probability density from
real data. Note that the estimation results in Fig. 2 is
obtained by using minimum mean square error (MMSE)
estimator and the estimated Poisson parameters are list-
ed in Table 1. Based on those statistic characteristics,
we will discuss how to perform online matching and
dynamic auction in the following sections. Note that
the peoposed matching and auction mechanisms are not
fully relied on the statistics discovered from the Google
dataset. As long as the IaaS sellers and buyers are inde-
pendent and memoryless, i.e., satisfying Poisson process,
our proposed approaches can be applied. On one hand,
one prominent change in cloud scenario recently is the
volunteer cloud, where all users are unknown with
each other and quite independent and memoryless. On
the other hand, even the Poisson characteristic is not
satisfied, our approach can also be easily extended to
the general scenario by modifying the state definition
and transitions.

3 STOCHASTIC MATCHING SERVICE

In this section, we study the resource matching problem
between the IaaS consumers and IaaS providers. Un-
like the traditional heuristic and/or myopic matching
rule, we propose a stochastic scheduling rule based on
MDP to achieve long-term efficiency. We have noticed
that there was an MDP-based online mechanism in the
literature proposed in [35] targeting at the matching of
individual consumer and provider. The major drawback
is that it is not scalable when the number of users grows.
To reduce the complexity and make the mechanism more
practical, we classify users into performance clusters and
consider the matching among clusters, i.e., considering

matching between different types of IaaS consumers and
IaaS providers as mentioned in the previous section.
Moreover, considering the system model can be varying
with time or even unknown to the auctioneer, we further
propose a Q-learning algorithm, the implementation of
which does not rely on any system model parameters.

3.1 Stochastic Matching Using MDP

In our formulation of the cloud services provision, we
regard IaaS consumers as buyers, which can consist
of SaaS providers who rent the hardware to provide
software service for its own customers, and individual
users who use the rented hardware for their own pur-
pose. The IaaS providers are regarded as sellers, which
can be either large-scale datacenter managers or small
hardware owners. When a certain buyer i is matched to
a certain seller j, the buyer gets a value of zij , which
is dependent on both his/her intrinsic valuation of the
service and the service quality provided by seller j.
Suppose the task arrival rate at the buyer i is λi and
the deadline requirement of buyer i is Ti; the service
rate of service provider j is µj , where both arrivals and
services are assumed to follow Poisson process. Let us
denote the matching between all buyers and sellers as X .
The value of buyer i can also be denoted as a function
zi(X) = λi

(
1− e−(µi−λi)Ti

)
. Correspondingly, the cost

for a seller to provide his/her resources is denoted as
cj(X) = ηµj if seller j is successfully matched to some
buyer by X , otherwise 0. Note that once the seller j is
matched to some buyer, the cost is only dependent on the
fixed quality of service (QoS) but not the specific buyer
he/she is matched to. In other words, the dependence on
X in cj(X) is only about whether the seller is matched
or not. The immediate value of the system at time t can
be defined as the buyer’s total value minus the seller’s
total cost:

R(t) =
∑
i,j

zi(X
(t))− cj(X

(t)), (1)

where i, j are matched by matching rule X(t). Fig. 3 il-
lustrates an example of the matching between three IaaS
consumers and three IaaS providers, where the matching
rule X is buyer 1 being matched with seller 2, buyer 2
being matched with seller 3, and buyer 3 being matched
with seller 1. Under such system settings, the immediate
value of the system is R =

∑3
i=1 zi(X)−

∑3
j=1 cj(X), as

shown at the bottom of Fig. 3.
As discussed in Section 1, when designing the match-

ing rule X , most of existing works only considered the
immediate value R(t). However, the myopic rule may
not be the optimal rule since the system dynamic is
not taken into account. To further improve the system
performance, the long-term optimized matching rule is a
more favorable solution under the time-varying scenario.
Markov decision process (MDP) model can find such
a long-term optimal matching rule by analyzing the
system state transitions and optimizing the expected
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Fig. 3. Example of the matching.

long-term value function. Moreover, as shown in Section
2, the statistical characteristics of service buyers/sellers
follow Poisson process, which makes the system state
transition following Markov property. For numerical
tractability, similar to classical MDP formulation, we
introduce a discounting factor δ when calculating the
long-term system value. In such a case, supposing that
current system state is s and current matching rule is X ,
the long-term system value, Q(s,X), can be calculated
by

Q(s,X) = E

[ ∞∑
t=0

δ(t)R(t)

]
, (2)

where state s consists of the types (λi, Ti, µj) of all buyers
and sellers currently in the system.

According to MDP, the optimal long-term value func-
tion is defined as follows

V ∗(s) = max
X

Q(s,X). (3)

Therefore, the optimal system value and matching rule
can be iteratively computed using [36]

V ∗(s) = R(s,X∗(s)) + δ
∑
s′

P (s′|s,X∗(s))V ∗(s′), (4)

X∗(s) = argmax
X

{
R(s,X)+δ

∑
s′

P (s′|s,X)V ∗(s′)

}
. (5)

where R(s,X) is the immediate value of the system
with current system state s and matching rule X , and
P (s′|s,X) is the state transition probability from s to s′,
with the matching rule X . To achieve system efficiency,
the auctioneer needs to implement the optimal matching
rule X∗(s) at every system state s, which can be found
using value iteration method [36].

3.2 Low-Complexity Cluster Matching
Suppose there are N buyers and M sellers in the system.
The state of the system (λi, Ti, µj) gives rise to a scale
of M ×M ×N = NM2 dimensional space that is clearly
computationally intractable as N and M grows mildly,
no matter how coarse we quantize the value on each
dimension (the range and granularity of the value/cost).

Even if we parameterize the buyers’ values as being
determined by a single intrinsic parameter (only λi or
Ti), the space complexity will be of N × M . Moreover,
since each service seller can be matched to multiple
buyers and all sellers are independent, i.e., each seller
has N possible matches, the total number of possible
matchings X will be of the order O(NM ), which is also
unacceptable. Therefore, it is necessary to use a more
concise representation of the state space.

An opportunity is that in the bidding system for cloud
computing services, users tend to choose among a few
pre-defined options, rather than actually constructing
random options by themselves. For example, a SaaS
server can rate the value of the service according to its
own customer arrival rate (customers of the software
service, different from customers of the infrastructure
service), and classify it into three levels as high, medium
or low. An individual user can rate the value of the
service as important, medium or non-important. An IaaS
provider can rate its QoS as high, medium or low. In
other words, we can quantize the type of buyers/sellers
into several coarse levels, and classify the buyers/sellers
into clusters. Since users belonging to the same cluster
are with similar types, the scheduling of cloud services
within a cluster can be random and has little effect on
the overall performance. In such a case, we only need
to consider the cluster matching instead of individual
matching by describing the system state as the number
of traders of each type. Suppose the buyers and sellers
each have three possible types, and denote nk as the
number of buyers with type k and ml as the number
of seller with type l, then a state of the system can
simply be described using a 6-dimensional vector as
s = (n1, n2, n3,m1,m2,m3).

With such a representation of the state space, the
matching space is also much simpler. Instead of specify-
ing all matching explicitly, we now only need to specify
the number of traders to be matched for each pair of
types. Let the number of matches between type k buyers
and type l sellers be xkl, then we have

3∑
l=1

xkl ≤ nk,
3∑

k=1

xkl ≤ ml, xkl ∈ N. (6)

Fig. 4 illustrates the example of matching between three
types of buyers and sellers. In such a case, the matching
rule X can be represented by a 9-dimensional vector as

X = (x11, x12, x13, x21, x22, x23, x13, x23, x33) . (7)

If the system capacity of each type is smax =
(N1, N2, N3,M1,M2,M3), then it is easy to see that
the size of matching space would be less than(
N1+3

3

)(
N2+3

3

)(
N3+3

3

)
, which is the total number of non-

negative integer solutions of (6). The matching space
grows polynomially with respect to system capacity
and exponentially with respect to the number of level
type partitions. Therefore, keeping the type partition
coarse makes the value iteration (4), (5) computationally
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tractable.

The concise representation of the state space also
makes it easier to describe the statistical model of the
system. We model the system as a queuing model,
where the buyer/sellers’ arrivals and departures follow
a standard birth-death process. At each time slot, the
arrival rates of buyers/sellers with type k/l are denoted
as λbk/λsl. Accordingly, the departure rates of buyer-
s/sellers currently in the system are nkµbk/mlµsl, where
µbk and µsl are the “death rate” of the corresponding
traders currently in the system. With sufficiently small
time slot, the probability of two or more simultaneous
arrivals or leavings is tiny and thus can be negligible.
This model is known as “sampled-time approximation
to a Markov process” [37], where the Poisson arriving
and leaving processes can be approximated by Bernoulli
processes. During each time slot, a single user arrives
with probability λ or a single user leaves with probability
µ. Therefore, given current system state s and matching
rule X , the state transition probability can be summa-
rized in (8). Due to the local-connecting characteristic of
the state transition diagram, the transition probabilities
P (s′|s,X) do not need to be stored in a huge matrix.
Instead, the required probability can be computed online
with little overhead.

Up to now, we can summarize the four elements of
our proposed MDP model: system state, action, state
transition probability and value function, as follows:

• System state: the combination of the number
of different types of buyers and sellers s =
(n1, n2, n3,m1,m2,m3).

• Action: the matching rule X(s) = (x11, x12, x13, x21,
x22, x23, x13, x23, x33), where xkl should satisfy (6).

• State transition probability: as defined in (8).
• Value function: as defined in (4).

Given the transition probability of the random process
P (s′|s,X), we can simply initialize V ∗(s) with any arbi-
trary value and run value iteration until it converges, as
summarized in Algorithm 1.

Algorithm 1 Value iteration for MDP-based matching.
1: /********** Initialization **********/
2: Initialize V (0)(s) for all system states s.
3: Initialize matching rule X(0)(s) for all system state

s.
4: Setup the discount rate σ and tolerance ξ.
5: while

∑
s

(
V (t)(s)− V (t−1)(s)

)2 ≥ ξ do

6: for each state s do
7: /***** Determine current matching rule *****/
8: Calculate current optimal matching rule X(t)(s)
9: by solving

X(t)(s) = argmax
X

V (t−1)(s).

10: Determine the state transition probability using
(8).

11: end for
12: for each state s do
13: /***** Update value function *****/
14: Update V (t)(s) by computing

V (t)(s) = R(t)(s,X(t)(s))+
δ
∑
s′

P (s′|s,X(t)(s))V (t−1)(s′).

15: end for
16: Calculate

∑
s

(
V (t)(s)− V (t−1)(s)

)2
.

17: t = t+ 1.
18: end while
19: /********** Output **********/
20: V ∗(s) = V (t)(s).
21: X∗(s) = X(t)(s).

3.3 Online Algorithm for Imperfect Model Estimation

The value iteration algorithm is designed for the scenario
where the model is known perfectly and the system
is stationary. When the model is imperfect, or slowly
varying with time, the learned matching rule derived
by value iteration will be sub-optimal. A solution to
solve this problem is to use Q-learning [38], which is
essentially a Monte-Carlo method for MDP. The updat-
ing formula of standard Q-learning can be written as
follows

Q(t)(s,X) =(1− αt)Q
(t−1)(s,X) + αt

(
R(t)

+max
Y

Q(t−1)(s′, Y )
)
. (9)

Here, different from the value iteration method, R(t) is
the observed immediate system value at time slot t, and
s′ is the observed next state, where the transition from
s to s′ is driven by the underlying true system model.
The αt is the learning rate parameter which controls to
what extent the learner relies on previous learning result.
After the Q-function converges to Q∗(s,X), the optimal
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State transition probability:

P {s′|s = (n1, n2, n3,m1,m2,m3), X = (x11, x12, x13, x21, x22, x23, x13, x23, x33)} = (8)
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1−
3∑
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(λbk + n′
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(λsl +m′
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′
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1,m

′
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0, otherwise;

n′
1 = n1 −

3∑
l=1

x1l, n′
2 = n2 −

3∑
l=1

x2l, n′
3 = n3 −

3∑
l=1

x3l,

m′
1 = m1 −

3∑
k=1

xk1, m′
2 = m2 −

3∑
k=1

xk2, m′
3 = m3 −

3∑
k=1

xk3.

value function and optimal matching are simply

V ∗(s) = max
X

Q∗(s,X), (10)

X∗(s) = argmax
X

Q∗(s,X). (11)

The Q-learning algorithm is summarized in Algorithm
2. We can see that the most significant advantage of
Q-learning is that it does not require any knowledge
about the model. The effect of the model is not explicitly
shown in the updating formula. Instead, it is implicitly
implemented in the underlying model. In such a case,
we can avoid the model error caused by the impre-
cise estimation of the model parameters. Moreover, the
algorithm can be easily modified to an online version
by performing the optimal matching based on current
estimate of the Q function. In this way, the optimal
matching strategy can automatically adapt to the slow
change of the underlying model.

It is worth mentioning that there are some conditions
needed to hold to guarantee the convergence of the
algorithm. According to [38], a valid combination of
these conditions are: 1) the rule of matching at each time
slot ensures that each state is visited infinitely often (such
as the ϵ-exploration rule); 2) the sequence of αt satisfies
that

∞∑
t=0

αt = ∞,

∞∑
t=0

α2
t < ∞. (12)

Intuitively, the parameter ϵ controls the trade-off be-
tween exploration and exploitation in online learning,
while the parameter αt controls the learning rate, which
can be understood as a measure of “stubbornness” about
previous knowledge or “curiosity” towards new infor-
mation. Being too stubborn makes the learning slow,
while being too curious makes the learning unstable.
A good learner should properly trade-off between these

two. Since one of the major reasons of using Q-learning
in our system is to adapt with the model change, a
constant learning rate rather than a decaying sequence as
specified by (12) should be used. Although such a setting
generally leads to a sub-optimal matching decisions
along time, it generally give satisfactory solution that
is adaptive to the environment.

4 DYNAMIC VCG AUCTION MECHANISM

When it comes to the auction mechanism design, four
key properties have to be involved to evaluate the
performance of the mechanism, which are as follows.

• Efficiency (EF): resources are distributed to users that
value them most.

• Incentive Compatibility (IC): a user cannot do better
by unilaterally misreport his/her value.

• Individual Rationality (IR): users always expect non-
negative value from the auction.

• Budget Balance (BB): auctioneer do not lose money
in the auction.

Vickrey-Clarke-Groves (VCG) is the only family of auc-
tion mechanisms that can simultaneously achieve effi-
ciency, incentive compatibility and individual rationality
[14], [15], [16] . It is often used in applications where
multiple items are traded among multiple traders in one
shot. However, it is obvious that the auction associated
with the cloud computing service is a dynamic multi-
shot process. To tackle this challenge, we develop a
dynamic VCG mechanism with the help of MDP, which
considers the long-term expected value.

4.1 Dynamic VCG Auction for Quality Sensitive Ser-
vices
In this section, we discuss the auction mechanism design
under the quality sensitive services scenario, where the
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Algorithm 2 Q-learning for MDP-based matching.
1: /********** Initialization **********/
2: Initialize Q(0)(s,X) for all system states s and match-

ing rules X .
3: Initialize optimal matching rule X∗(0)(s) for all sys-

tem state s.
4: Setup the exploration rate ϵ.
5: for t = 1, 2, 3, ..., tmax do
6: /******* Determine current matching rule *******/
7: Observe current system state s(t).
8: Generate random number ϵ(t) uniformly between

[0, 1].
9: if ϵ(t) ≥ ϵ then

10: Determine current matching rule as X∗(t)(s(t)).
11: else
12: Randomly determine current matching rule.
13: end if
14: The system state will transit to a new state s(t+1).
15: /********** Update Q-function **********/
16: Setup current learning rate αt.
17: Observe the next system state s(t+1) after match-

ing.
18: Observe the immediate system vale R(t).
19: Update Q(t)(s,X) for all s and X with

Q(t)(s,X) = (1 − αt)Q
(t−1)(s,X) +

αt

(
R(t) +max

Y
Q(t−1)(s, Y )

)
.

20: Compute

V ∗(t)(s) = max
X

Q(t)(s,X),

and
X∗(t)(s) = argmax

X
Q(t)(s,X).

21: end for
22: /********** Output **********/
23: X∗(s) = X∗(tmax)(s).
24: V ∗(s) = V ∗(tmax)(s).

buyers are sensitive to the QoS provided by the sellers.
We first introduce some notations and definitions for the
MDP-based auction mechanism that are counterparts of
traditional VCG auction. We assume that the value for
a buyer can vary when matched to different sellers, and
this variation can be characterized by a single parame-
ter (type) wi. For example, when the buyers are SaaS
providers, the type can be the traffic intensity of the
corresponding buyer; while when the buyers are indi-
vidual users, the type can be the computing resources
requested by the corresponding buyer. Note that the
type of buyer here is equivalent with the type defined
in the previous section when defining the system state
of the MDP model. After a new arriving buyer reports
his/her type, the auctioneer can observe the system
state s according to the reported types and make the
matching decisions. However, due to the selfishness of
rational users, a buyer may intentionally report his/her
type as ri, which is different from the true type wi, if

this kind of misreporting can gain more utilities for the
buyer. For example, a buyer may exaggerate his/her
computing resource requirement as some value which
far outweighs his/her true requirement, in order to be
matched to sellers with higher computing capability.
Since the auctioneer has no knowledge about the true
type of each buyer, his/her observation of the system
state has to purely depend on the buyers’ reported type.
As discussed at the beginning of this section, an auction
mechanism should effectively prevent users from misre-
porting their types, i.e., the incentive compatibility.

Let vi(wi, X(s)) be the expected (discounted) long-
term value obtained by buyer i with his/her true type
wi, when the reported system state is s and the matching
policy is X(s). Note that if all buyers report their types
truthfully, vi(wi, X(s)) only depends on s. As an indi-
vidual value function, vi(wi, X(s)) satisfies similar MDP
formulation as the system value function as follows

vi(wi, X(s)) = gi(ri)+ δ
∑
s′

P (s′|s,X)vi(wi, X(s′)), (13)

where we use gi(ri) to denote the apparent benefit re-
ceived by buyer i when buyer i leaves the system. Note
that gi(ri) is inferred by the auctioneer according to the
reported type ri, and becomes the true benefit if and
only if ri = wi.

A mechanism for the dynamic auction of cloud com-
puting services consists of a matching policy X and a
pricing rule q, both of which are functions of system
state s. To formulate the price in the Bayesian setting,
let qi(ri, X(s)) denote the expected payment of buyer i
with reported type ri when the system state is s and
the matching policy is X(s). With the above notation
definitions, we show our proposed MDP-based VCG
mechanism in the following definition.

Definition 1 (MDP-based VCG mechanism): The
MDP-based VCG mechanism (MDP-VCG) is a mecha-
nism with the following matching and pricing rule.

• Matching rule: The matching function X(s) is the
optimal matching policy calculated from the MDP
formulation (4) and (5), implemented using either
value iteration or Q-learning:

V ∗(s) = R(s,X∗(s)) + δ
∑
s′

P (s′|s,X∗(s))V ∗(s′),

X∗(s) = argmax
X

{
R(s,X) + δ

∑
s′

P (s′|s,X)V ∗(s′)

}
.

Note that the MDP formulation is based on the
auctioneer’s observed types of the buyers, i.e., their
reported types. Therefore, s may not be the true
system state.

• Pricing Rule: The pricing rule is to collect payment

qi(ri, X
∗(s)) = gi(ri)− V ∗(s) + V ∗(s− {ri}

)
, (14)

from buyer i when he/she leaves the system. Here
s is the system state when the buyer first joins the
system, s − {ri} is the system state by excluding
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buyer i. For example, if the current system state is
(n1, n2, n3,m1,m2,m3) and buyer i is of type 2, then
s− {ri} = (n1, n2 − 1, n3,m1,m2,m3).

In the following, we will theoretically show that our
proposed MDP-VCG mechanism is Bayesian efficient,
Bayesian incentive compatible and Bayesian individual
rational. Before that, let us first define the Bayesian
efficiency, Bayesian incentive compatibility and Bayesian
individual rationality for the dynamic auction.

Definition 2 (Bayesian Efficiency, BEF): A mechanism
for dynamic auction is Bayesian Efficient (BE) when the
long-term expected system value V (s) is maximized for
all system state s, i.e.,

maxV (s) = R(s,X∗(s)) + δ
∑
s′

P (s′|s,X∗(s))V ∗(s′), (15)

Definition 3 (Bayesian Incentive Compatibility, BIC):
Let s be the observed system state when all buyers
truthfully report their types, and s(i) be the observed
system state when buyer i misreports the type while all
other buyers truthfully report their types. A mechanism
for dynamic auction is Bayesian Incentive Compatible
(BIC) when

vi
(
wi, X(s)

)
− qi

(
wi, X(s)

)
≥

vi
(
wi, X(s(i))

)
− qi

(
ri, X(s(i))

)
, ∀i, (16)

where wi is the true type and ri is the misreported type.
Definition 4 (Bayesian Individual Rationality (BIR):

A (incentive compatible) mechanism for dynamic auc-
tion is Bayesian Individual Rational (BIR) when

vi
(
wi, X(s)

)
− qi

(
wi, X(s)

)
≥ 0, ∀i, (17)

where wi is the true type.
Theorem 1: The proposed MDP-VCG is Bayesian

efficient, Bayesian incentive compatible and Bayesian
individual rational.

Proof: Due to the page limit, we have put the de-
tailed proof in the supplementary file.

4.2 Dynamic VCG Double Auction for Quality Insen-
sitive Services

In this section, we discuss the dynamic auction mech-
anism under the quality insensitive services scenario,
where the buyers are insensitive to the QoS provided
by the sellers. In such a case, both buyers and sellers
can misreport their types and the proposed MDP-VCG
mechanism need to be extended to the double auction
to enforce truth telling of both sides. The formulation
of double auction is similar to that of unilateral auction
discussed in the previous section. The only difference is
that in a double auction wi can denote the type of either
a buyer or a seller (QoS), and vi(wi, X

∗(s)) can denote
the value function for either a buyer or a seller. For
a matched seller, vi(wi, X

∗(s)) taking a negative value
represents the cost of the seller for providing the service.
The form of the mechanism stays the same and the proof
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2 3sw = − 3 10sw = −

Best Matching:

Regarding 

1b 2b 3b

1s 2s 3s

1 10bw = 2 5bw = 3 4bw =

1 2sw = − 2 3sw = − 3 10sw = −

Best Matching:

Regarding 

*( ) 10 5 2 3 10V s = + − − =

3( , ')

10 5 4 2 3 14

sQ s X v− =
+ + − − =

3 10 14 4,  violating individual rationality!su = − = −

*( )V s

3( , ') sV s X v−

Fig. 5. Problem with Clarke Pivot Rule.

of EF, IC and IR does not change. However, the budget
balance cannot be guaranteed in double auction, which
means that the total payment made by buyers may be
less than the total payment to the sellers, making the
auctioneer lose money. Fortunately, such loss is typically
small as shown later in the evaluations.

Note that the pricing rule (14) in our proposed mech-
anism is different from the traditional Clarke Pivot Rule
in [39]. If Clarke Pivot Rule is used in the mechanism,
the IR property will not hold for double auction, as
illustrated by the simple example in Fig. 5. In the figure,
we have three buyers with values 10, 5 and 4, and three
sellers with costs 2, 3 and 10. We are trying to determine
the price (payment) for seller 3. If Clarke Pivot Rule
is used, we should first determine the best matching
and system value for all six traders, as shown in the
upper half of the figure, where V ∗(s) = 10. Then we
should find the matching X ′ (still over all six traders)
that maximizes the value Q(s,X ′) − vs3, resulting in
Q(s,X ′) − vs3 = 14. The payment of seller 3 will then
be determined as vs3 − V ∗(s) + (Q(s,X ′)− vs3) and the
net value is V ∗(s) − (Q(s,X ′) − vs3) = −4, violating
individual rationality.

5 EVALUATION

In this section, we conduct experiments to verify the effi-
ciency, incentive compatibility and individual rationality
properties of our proposed mechanism. At the same
time, we also analyze the budget balance issue. In the
evaluations, we use the real-world traces collected from
Google cluster to compare the proposed mechanism with
the existing works in terms of efficiency, and show the
IC, IR and BB properties. The traffics and types of the
IaaS providers and consumers discussed in Section 2 are
also used for performance evaluation.

5.1 Efficiency Verification
In the experiments, we consider the application of allo-
cating IaaS resources to individual users, i.e., the IaaS
providers are sellers and individual users are buyers.
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Fig. 6. Efficiency comparison with perfect traffic model.

In such an application, the value of the service can be
characterized by the waiting time of the individual users,
which is dependent on the computing capability of the
specific seller. Suppose that the requested computing
resources of buyer i is σi, and the computing capability
of the corresponding seller j is ζj , we can define the
(immediate) value function of the buyers as

zi(X) = e−βσi/ζj , (18)

and the cost of the seller as a linear function of his/her
computing capacity as

cj(X) = γζj , (19)

where β and γ are positive coefficients.
Based on the value and cost functions definitions in

(18) and (19), we can define different types of sellers’
values and different types of sellers’ cost according to the
types mined from the Google dataset in Section 2. Since
the types are quantized levels of computing resources,
an approximation is required. Here, we adopt the mean
for the approximation, e.g., for the type 1 sellers with
CPU resources in [0, 0.5], their computing capability is
quantized to 0.25. In such a case, we can obtain the value
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Fig. 7. Efficiency comparison with imperfect traffic model.

TABLE 2
Buyers’ values and sellers’ costs.

Type 1 Sellers Type 2 Sellers
Type 1 Buyers (0.9355, 0.025) (0.9780, 0.075)
Type 2 Buyers (0.8187, 0.025) (0.9355, 0.075)
Type 3 Buyers (0.7165, 0.025) (0.8948, 0.075)

and cost between different pairs of types of buyers and
sellers, as shown in Table 2 where β = 1, γ = 0.1 and
(·, ·) means (buyer’s value, seller’s cost).

With the buyers’ values and seller’s costs defined
in Table 2, we can conduct experiment to verify the
efficiency of our proposed mechanism using the Google
dataset. In the experiment, we compare the system value
of four different methods as follows:

• Proposed mechanism with value iteration algorithm
as shown in Algorithm 1,

• Proposed mechanism with Q-learning algorithm as
shown in Algorithm 2,

• Existing mechanism without considering the long-
term efficiency, ([23], [25], [28], [31], [32]),

• Random mechanism.
For the existing mechanism, the auctioneer determines
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Fig. 8. IR, IC and BB verification for “quality sensitive services”.

the resource allocation through maximizing the immedi-
ate (myopic) system value R without taking into account
the long-term system value in the near future, as in [23],
[25], [28], [31], [32]. While with the random mechanism,
a random matching rule is selected, which is considered
as a comparison benchmark in the experiment. For our
proposed MDP-based mechanism, the discount factor is
set as α = 0.9 and the learning rate is set as ξ = 0.5.
Fig. 6-(a) shows the system value comparison results,
where all methods start with a same initial system
state. The results are averaged over 1000 independent
experiments. From Fig. 6-(a), we can see that due to the
discount factor α, the system values of four methods
converge to some constants as time slot index goes to
50. The system values of our proposed mechanism with
value iteration and Q-learning are basically the same,
both of which perform better than the existing and ran-
dom mechanisms. Moreover, as shown in Fig. 6-(b), we
also compare the four methods in terms of accumulated
system value, which is calculated from the summation
of system values associated with 1000 random initial
system states. The experiment results are consistent with
the theoretical results, which are directly calculated from
value function. Similarly, we can see that our proposed
mechanism can achieve the highest efficiency.

In the previous experiment, we assume that the auc-
tioneer has perfect knowledge (estimation) about the
traffic model listed in Table 1. Under such circumstance,
we can see that there is no difference between value

iteration algorithm and Q-learning algorithm as shown
in Fig. 6. In this experiment, to compare the performance
of value iteration and Q-learning, we study the case
when the traffic model estimation is not precise or the
traffic model is slowly varying with time. In Fig. 7-(a),
we show the system value comparison between value
iteration and Q-learning algorithms under the imperfect
traffic model estimation. We can see Q-learning can
adapt to the true underlying model and achieve better
performance than value iteration. Therefore, Q-learning
is a better candidate to decide optimal matching in
real applications. Moreover, we also compare the two
algorithms in terms of accumulated system value for
1000 time slots in Fig. 7-(b). Similarly, we can see that
there is no performance degradation when the model
transits from perfect case to imperfect case.

5.2 Incentive Compatibility and Individual Rationali-
ty Verification
To verify IC and IR, we consider two application s-
cenarios. The first one is “quality sensitive services”,
where buyers’ value functions are influenced by the
sellers’ service quality, and sellers are enforced to report
truthfully. The application of allocating IaaS resources
to individual users discussed in the previous subsection
belongs to this “quality sensitive services” scenario, as
shown in the definition of buyers’ value function (18).
Unilateral MDP-VCG mechanism is used for this kind of
application scenario. The second application scenario is
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Fig. 9. IR and IC verification for “quality insensitive services”.

“quality insensitive services”, where buyers’ value func-
tions are not influenced by the sellers’ service quality,
and neither buyers nor sellers are enforced to truthfully
report their types. The double auction version of MDP-
VCG is used for this “quality insensitive services” appli-
cation scenario.

In the experiment of “quality sensitive services”, all
the system settings are same with the previous subsec-
tion. Firstly, in Fig. 8-(a), we show the average value of a
buyer with different initial system states. We can see that
the buyer’s value is always non-negative, which means
that our proposed mechanism satisfies the individual
rational property. Secondly, in Fig. 8-(b), we show the
difference of the buyer’s value from bidding truthfully
minus that from bidding untruthfully. The buyer is
supposed to be of type 2 and untruthfully report his/her
type as 1 or 3. In order to clearly show the results, we

only depict several random initial state. From Fig. 8-(b),
we can see that the differences are always non-negative,
which means that our proposed mechanism satisfy the
incentive compatible property. Finally, in Fig. 8-(c), we
show the budget of the auctioneer, which is the total
payment from the buyers minus the total cost of the
sellers. From Fig. 8-(c), we can see that the budget is
always non-negative, i.e., the budget balance is also
achieved.

In the experiment of “quality insensitive services”,
where the buyers’ values are not influenced by the
computation capacity of sellers, we modify the system
settings discussed in the previous subsection, especially
the buyer’s value function. In this case, since the buyers
only care about whether the task is done regardless how
the task is implemented, we can re-define the buyer’s
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TABLE 3
Buyers’ values and sellers’ costs for quality insensitive

scenario.

Type 1 Sellers Type 2 Sellers
Type 1 Buyers (0.9672, 0.025) (0.9672, 0.075)
Type 2 Buyers (0.9048, 0.025) (0.9048, 0.075)
Type 3 Buyers (0.8465, 0.025) (0.8465, 0.075)
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Fig. 10. Auctioneer’s budget balance for “quality insensi-
tive services”.

value function as

z′i(X) = e−βσi/ζ , (20)

where ζ = 0.5 is a constant. In such a case, the modified
buyers’ values and sellers’ costs can be calculated as
Table 3. Other system settings, including the sellers’
cost function, the types and traffic model of sellers
and buyers, are still same with those in the previous
subsection.

Under such settings, sellers are allowed to misreport
their types (their costs). In this experiment, a buyer
reports his/her value of service and a seller reports
a single scalar indicating its cost. The double auction
version of MDP-VCG is then implemented. We show the
IC and IR verification results in Fig. 9, from which it can
be seen that similar to the “quality sensitive services”
scenario, both the buyers’ and sellers’ incentive compat-
ibility and individual rationality are satisfied. However,
from Fig. 10, we can see that different from the “quality
sensitive services” scenario, the budget balance is not
satisfied in the “quality insensitive services” scenario
with double auction. Fortunately, the violation of budget
balance is not very severe. One possible practical solu-
tion to the budget balance is through external advertise-
ment. Just as Amazon and Alibaba, while organizing an
auction platform to coordinate the sellers and buyers, the
auctioneer can earn additional profits through external
advertisement on the platform to achieve the budget
balance.

6 CONCLUSION

In this paper, we discussed the resource allocation
and pricing issue in the cloud services provision. We
first analyze the Google cluster-usage dataset to obtain
the statistical characteristics of the IaaS consumers and
providers. Based on the characteristics mined from real
data, we proposed a stochastic matching algorithm using
MDP model, which aims at optimizing long-term system
efficiency. To reduce the complexity of the MDP-based
algorithm, we classify the buyers/sellers into different
clusters and consider the cluster matching instead of in-
dividual matching. We then proposed its online version
using Q-learning to address the imperfect model/slowly
changing model problem. Based on the MDP formula-
tion, we designed an efficient, incentive compatible, indi-
vidual rational auction mechanism that is an extension of
traditional VCG mechanism. The proposed mechanism
were discussed under two application scenarios: quality
sensitive services, where unilateral MDP-VCG is imple-
mented; and quality insensitive services, where MDP-
VCG double auction is implemented. Finally, we con-
ducted experiments using Google cluster-usage traces to
verify the properties of the proposed mechanism.
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