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Abstract—How to enhance the network capacity is one of the
most important issues. To achieve this, the existing works have
focused on improving either the network structure or routing
strategies with a common assumption of uniformly distributing
the replicas of information among the nodes in the network.
The nodes associated with information replicas are considered
as source nodes (or server). However, for many networks such
as the Internet, some nodes have much more traffics than the
others, exhibiting an asymmetric phenomenon. In this letter,
we study the optimal source selection strategy to enhance the
network capacity, where an optimization model is proposed to find
the optimal source selection probability distribution. Simulation
results show that in homogeneous networks, most of the nodes
can be the sources. While in heterogeneous networks such as the
scale-free networks, only a small number of the nodes can be the
sources. Moreover, an interesting phenomenon is observed that
the optimal proportion of source nodes in Erdős-Rényi random
network and Barabási-Albert scale-free network exhibits a power
law relationship with the network size.

Index Terms—Client-server, network capacity, network science,
source selection.

I. INTRODUCTION

T RAFFIC dynamics on complex networks have attracted
a lot of attentions [1]. Most of the interests come from

some real-world complex networks including the Internet, the
World Wide Web (WWW) and the high-way networks [2]. To
deal with the ever-increasing amount of traffic in these net-
works, one needs to have a deep understanding upon the traffic
behaviors in order to avoid congestion. Recent studies have pre-
sented some models to describe the traffic routing on complex
networks by introducing the concepts of packet generating rate
and randomly selected sources and destinations of each packet
[3], [4]. These models use the critical packet generating rate,
, at which the phase transition from the free flow phase to the

congestion phase occurs, to define the network capacity. These
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studies have proposed several ways to improve network capac-
ities either by making changes to network structure [5]–[7] or
by using different routing strategies [8]–[10].
All the aforementioned studies have made a common

assumption: the source nodes in the networks are selected
uniformly, i.e., the probability of one node being a source or
not is equivalent. However, traffic in most of the practical
networks is heterogeneous. For example, big web sites have
much more visitors than the small ones. Although the original
goal of the Internet was to interconnect existing networks [11],
the Internet users are more interested in accessing resources
rather than connecting to machines. The resource allocation
within the complex network has expedited the network caching
technology, i.e., some nodes serve as servers to cache and
distribute popular resources [12]. In other words, these caching
technologies use distributed replicas to change the distribu-
tion of the resources. By doing this, the network traffic can
be changed to improve network capacity and enhance user
experience. Therefore, uniform source selection strategy, i.e.,
uniformly distributing the resource replicas, may not be optimal
for network capacity improvement. A nature question is what
is the most efficient distribution of source nodes to maximize
the capacity.
To answer this, we study the optimal sources selection

strategy in this letter by formulating a network capacity opti-
mization model. Through solving the optimization problem,
the optimal source selection strategy and network capacity are
found and analyzed. Simulation results show that in homoge-
nous networks, the sources should be distributed uniformly;
while in heterogeneous networks, only a few nodes can be
the sources. Moreover, we also observe that the optimal pro-
portions of source nodes in Erdős-Rényi random network
and Barabási-Albert scale-free network exhibits a power law
relationship with the network size. The problem solutions in
this letter can be widely applied in network caching (how to
control the proportion of nodes with caches), content-cen-
tric-networks (how to control the proportion of servers with
popular resources), datacenter deployment (how to control the
proportion of datacenter), etc. In the following, we will first
illustrate the optimization model formulation, and then give the
simulation results and the insights.

II. OPTIMAL SOURCE SELECTION MODEL

In the traffic routing model, all nodes in the network can be
both hosts and routers for generating and delivering packets.
The shortest path routing strategy is commonly used to forward
packets. Each node has a packet queue that works on a “first-in-
first-out” basis. When a packet is generated at a node or arrives
at a node along its path, it is appended at the end of the queue.
Once a packet reaches its destination, it would be removed from
the network. Let us denote as the delivery capacity of each
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node, i.e., the maximal number of packets a node can deliver
at one time step. Suppose there are totally packets generated
in a -node network at each time step, where the packets are
generated at a node with probability and the destinations
are chosen uniformly from the other nodes.
The network capacity can be characterized by the order pa-

rameter presented in [4] as follows

(1)

where indicates the average
number of packets during time windows , and is the
total number of generated packets within the network at time .
When , i.e., the critical point, we have and

, which indicates that the network system is under the
free-flow state. When , is above zero, which indicates
that packets are accumulating in the network and the network
will become congested. Therefore, represents the maximal
packets generated per time step for the network to maintain
in the free-flow state, and is used as a measure of the overall
capacity of the network system.
The critical point is related to the betweenness centrality

of the nodes. Betweenness centrality (BC) [13], is a measure of
a node’s centrality in a network, which equals to the number of
shortest paths from all nodes to all others that pass through that
node. The BC of a node is given by

(2)

where is the total number of shortest paths from node to
node and is the number of those paths that pass through
node . If the sources and destinations are chosen uniformly, the
probability of any packet to pass node is

(3)

where is the probability of a packet to choose
node as its source and node as its destination. Under the
shortest path routing strategy, since the network congestion oc-
curs at the node with the largest betweenness, can be esti-
mated by [4]

(4)

where is the largest betweenness among all nodes.
In our proposed model, we meticulously select the source

nodes to maximize the network capacity instead of uniform
strategy. Since the destination nodes are mostly common net-
work users, as in previous models [5]–[10], we also assume that
the destinations of packets (or clients) are uniformly distributed.
For example, in the network caching technology, the general
network users who require the popular resources are destina-
tion nodes, and the network users in a complex network are
statistically uniformly distributed. On the other hand, different
from the previous models where the sources are also chosen uni-
formly, we select a node as the source according to its proba-
bility . The probability of a packet starting from node and
ending in node is

(5)

In such a case, the probability of any packet to pass node can
be calculated as follows

(6)
We can calculate the source dependent betweenness matrix
by

(7)

where measures the conditional probability of
any node which starts from node to pass node . Here, the
is a normalized parameter and . We
can also calculate the BC of a node with non-uniform source
selection strategy as

(8)
which we call generalized BC with respect to the BC of nodes
with uniform source selection in (2). In such a case, can be
estimated by

(9)

To maximize the capacity of a network with nodes is to
minimize the maximum probability of any packet to pass node
: , which is a min-max problem as follows:

(10)

By introducing an auxiliary variable (
) representing the maximum probability that a packet

will pass a node , the optimization problem (10) can be casted
as a linear programming problem as follows

(11)

where as shown in (7),
and . Thus, we can easily find the

minimal by linear programming algorithms.

A. Remarks
Note that when the following condition holds

(12)

the optimal source selection strategy can be found by

(13)

Homogeneous networks, e.g., the lattice and random regular
networks, has the property (12). The optimal source selection
strategy suggests that the generalized betweenness centrality
of every node can be uniformed. However, the property (12)
usually does not hold for heterogenous networks, e.g., random
Erdős-Rényi network (ER) [14] and Barabási-Albert scale free
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network(BA) [15]. Nevertheless, we can add a slack variable
to this linear programming problem and re-write it as follows

(14)

This new linear programming problem has variables:
( are both vectors of length ) and equality

constraints: . The simplex method
indicates that in the optimal result, at least of these
variables are 0. Since it is obvious that , we have

(15)

where represents the number of 0 in one vector. Thus,
the optimal number of nodes with non-zero probabilities to be
selected as sources satisfies that

(16)

where means the generalized betweenness centrality
of node equals to the upper bound, i.e., . The
(16) indicates that the optimal number of source nodes in the
network is bounded by the number of nodes that can reach the
upper bound of betweenness. In homogeneous networks, all of
the nodes can have the same generalized betweenness after
the optimization process, and thus most of the nodes can
be source nodes. In heterogeneous networks, the variance
of betweenness can be so large that only a small number of
nodes’ betweenness centralities can reach the upper bound,
and thus only a small number of nodes can be sources.

III. SIMULATION RESULTS AND DISCUSSIONS

Due to the discovery of small-world [16] and scale-free
[15] phenomena, there are extensive studies about network
structures. We conduct simulation on four typical types of
networks: square lattices with periodic boundary condition,
random regular graph (RG), random Erdős-Rényi network
(ER) [14] and Barabási-Albert scale free network(BA) [15] and
present a comparative analysis of results from these networks.
Note that the first two networks are homogeneous networks
since every node has the same degree. The square lattice is in
a two-dimensional Euclidean space with each vertex connected
to its four neighbors while in RG each node chooses its neigh-
bors randomly. The latter two networks are heterogeneous
networks, where the ER has a Poisson degree distribution and
the BA has a power-law (or scale-free) degree distribution. All
these networks are configured with the same size .
The average degree for the lattice and for the other
three networks. We set the node deliver capacity for
all the nodes for simplicity and 100 independent realizations
are averaged for all simulations. By solving the optimization
problem (10), the optimal source selection probability (i.e.

) distribution can be obtained. The results are compared
with uniform source selection strategy, i.e. .
Fig. 1 shows the order parameter versus the packet-gener-

ating rate in four different networks, respectively. We can see
that the optimal strategy and uniform strategy behave nearly the
same regarding network capacities in the lattice and RG net-
works. When it comes to the random ER network and BA scale-
free network, the network capacity of optimal strategy out-
performs that of the uniform strategy significantly. Therefore,

Fig. 1. The order parameter versus the packet-generating rate and the
for the following: (a) lattice, (b) random regular network (RG), (c) random
Erdős-Rényi network (ER) and (d) Barabási-Albert scale free network (BA),
where the blue and red dots correspond to uniform and optimal source selection
strategies, respectively.

it can be concluded that the uniform source selection strategy
is optimal or near optimal for the homogenous networks like
square lattice and RG networks, while the ER and BA net-
works can benefit significantly from the optimal source selec-
tion strategy.
The generalized betweenness centralities (BC), i.e,

defined in equation (2) and in equation (8), under these
two strategies of all the four networks are compared in Fig. 2.
Fig. 2-(a,b) show that all the nodes have the same generalized
BC in the lattice and the RG has a narrow BC distribution
range. Meanwhile, in those two homogenous networks, the
generalized BC of all the nodes become exactly the same by
the optimization process. In the ER and BA networks as shown
in Fig. 2-(c,d), the ranges of BC are so large that they cannot
be unified by optimization. Nevertheless, the optimization
process can significantly narrow down the ranges and the
upper bounds can be clearly observed. Recall that in Section II,
we have proved that the optimal number of source nodes in
heterogenous network is bounded by the number of nodes that
can reach this upper bound.
Fig. 3 shows the optimal source selection probability distribu-

tion , i.e., the probability of any packet to choose a node as
its source, where the rank in x-axis means the number of nodes
that are selected as source nodes. The is plotted in the de-
scend order. We can see that the uniform strategy is optimal for
the lattice. In the RG networks, every node has a positive ,
but the values are different. In the ER and BA networks, only
a small portion of the nodes have non-zero probabilities. These
results indicate that in homogeneous network such as lat-
tice and RG, the sources (or servers) should distribute uni-
formly like the P2P network system. However, in heteroge-
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Fig. 2. Distribution of node betweennesses before (blue dots) and after (red
dots) optimization for (a) the lattice and (b) random regular (RG) (c) the random
Erdős-Rényi (ER) and (d) Barabási-Albert (BA) networks.

neous network such as ER and BA, only a few nodes should
act as sources, which means in these networks, the central-
ized client-server architecture can perform better than the
decentralized P2P-like architecture if the servers are dis-
tributed properly. In practical scenario, e.g., for content-cen-
tric-networks, the content cache should not be distributed uni-
formly. Instead, only a few nodes should act as content servers
and the optimal proportion of the source nodes can be found in
this letter. Moreover, the optimal probability distribution is not
directly related with the degree of each node, but determined by
the source dependent betweenness matrix defined in (7) and
the optimization process. Nodes with high degrees do not nec-
essarily have the high probabilities to be as sources, as shown
in Fig. 3.
As shown above, only a few nodes should act as sources in

heterogeneous networks like the ER and BA networks. What is
the optimal proportion of source nodes in the network? Fig. 4
shows the optimal proportion of nodes with non-zero source
probabilities, i.e., , versus network size
. We can see that the optimal proportion decreases with the in-

crease of the network size and their relation is approximately
power law. Moreover, Fig. 5 shows the average path length of
packets using the two strategies. The average path length is
the average shortest path length of all the source-destination
pairs, which can be calculated by

(17)

The average path length follows the small world property, i.e.,
. From Fig. 5, we can see that in the optimal strategy

are slightly larger than that in the uniform strategy for both ER
and BA networks. This is because through optimal source se-
lection, the packets bypass the nodes with high betweenness.

Fig. 3. The optimal source selection probability distribution in the four
networks, where means the probability of any packet to choose as the
source node. We plot in the descend order, and also plot the corresponding
degree of each node (a) Lattice (b) RG (c) ER (d) BA.

Fig. 4. The optimal proportion of nodes with nonzero source probabilities to
all the nodes versus network size for the random Erdős-Rényi (ER) and
Barabási-Albert (BA) networks. .

Fig. 5. The average path length versus network size using uniform and
optimal strategies in the ER and BA networks. .

IV. CONCLUSION

In this letter, we studied the optimal source selection strategy
to improve the network capacity. The optimal selection prob-
ability distribution was found through solving a min-max op-
timization problem. Simulation results on four different types
of network showed that in heterogeneous networks, the source
nodes should be distributed within a small number of the nodes.
When applied to the Internet information sharing service, as the
Internet is a gigantic heterogeneous network, our work suggests
that the client-sever structure with properly selected servers can
improve the network capacity.
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