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Abstract—In a cognitive radio network with mobility, sec-
ondary users can arrive at and leave the primary users’ licensed
networks at any time. After arrival, secondary users are con-
fronted with channel access under the uncertain primary channel
state. On one hand, they have to estimate the channel state,
i.e., the primary users’ activities, through performing spectrum
sensing and learning from other secondary users’ sensing results.
On the other hand, they need to predict subsequent secondary
users’ access decisions to avoid competition when accessing the
”spectrum hole”. In this paper, we propose a Dynamic Chinese
Restaurant Game to study such a learning and decision making
problem in cognitive radio networks. We introduce a Bayesian
learning based method for secondary users to learn the channel
state and propose a Multi-dimensional Markov Decision Process
based approach for secondary users to make optimal channel
access decisions. Finally, we conduct simulations to verify the
effectiveness and efficiency of the proposed scheme.

Index Terms—Chinese Restaurant Game, Bayesian Learning,
Markov Decision Process, Cognitive Radio, Game Theory.

I. INTRODUCTION

With the emerging of various wireless applications, avail-

able electromagnetic radio spectrums are becoming more

and more crowded. The traditional static spectrum allocation

policy results in a large portion of the assigned spectrum

being under utilized [1]. Recently, dynamic spectrum access

in cognitive radio networks has shown great potential to

improve the spectrum utilization efficiency. In a cognitive radio

network, Secondary Users (SUs) can opportunistically utilize

the Primary User’s (PU’s) licensed spectrum bands without

harmful interference to the PU [2].

Two essential issues of dynamic spectrum access are spec-

trum sensing and channel access. Since SUs are uncertain

about the primary channel state, i.e., whether the PU is absent,

they need to estimate the channel state through performing

spectrum sensing [3]. In order to counter the channel fad-

ing and shadowing problem, cooperative spectrum sensing

technology was proposed recently, in which SUs share their

spectrum sensing results to improve the sensing performance

[4]. After channel sensing, SUs access one vacant prima-

ry channel for data transmission. When choosing a vacant

channel, each SU should not only consider the immediate

utility, but also take into account the utility in the future since

the more subsequent SUs access the same channel, the less

throughput can be obtained by each SU. Such a phenomenon

is known as negative network externality [5], i.e., the negative

influence of other users’ behaviors on one user’s reward, due

to which users tend to avoid making same decisions with

others to maximize their own payoffs. However, traditional

cooperative sensing schemes simply combine all SUs’ sensing

results while ignoring the structure of sequential decision

making [4], especially in a dynamic scenario where the

primary channel state is time-varying and SUs arrive and leave

stochastically. Moreover, the negative network externality has

not been considered in the previous channel access methods

[6]. Therefore, how SUs learn the uncertain primary channel

state sequentially and make best channel selections by taking

into account the negative network externality are challenging

issues in cognitive radio networks.

In our previous work [7], we proposed a new game, called

Chinese Restaurant Game, to study how users in a social

network make decisions when being confronted with uncertain

network state [8][9]. Such a Chinese Restaurant Game is

originated from the well-known Chinese Restaurant Process

[10], which is widely adopted in non-parametric Bayesian

statistics in machine learning to model the distribution which

is not parametric but stochastic. In Chinese Restaurant Game,

there are finite tables with different sizes and finite customers

sequentially requesting tables for meal. Since customers do

not know the exact size of each table, they have to learn the

table sizes according to some external information. Moreover,

when requesting one table, each customer should consider

the subsequent customers’ decisions due to the limited dining

space in each table, i.e., the negative network externality. In

[11] and [12], the applications of Chinese Restaurant Game in

various research fields are also discussed.

The channel sensing and access problems in cognitive radio

networks can be ideally modeled as a Chinese Restaurant

Game, where the tables are the primary channels, and cus-

tomers are SUs who are seeking vacant channels. Moreover,

how a SU learns the PU’s activities can be regarded as how a

customer learns the restaurant state, and how a SU chooses a

channel to access can be formulated as how a customer selects

a table. One assumption in the Chinese Restaurant Game [7]

is the fixed population setting, i.e., there is a finite number

of customers choosing the tables sequentially. However, in

cognitive radio networks, SUs may arrive and leave at any
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time, which results in a dynamic population setting. In such

a case, a SU’s utility will change from time to time due to a

dynamic number of SUs in each channel.

Considering these challenges, in this paper, we extend the

Chinese Restaurant Game in [7] to a dynamic population

setting and propose a Dynamic Chinese Restaurant Game

for the cognitive radio networks. In this Dynamic Chinese

Restaurant Game, we consider the scenario that SUs arrive

at and leave the primary network by Poisson process. Each

new coming SU not only learns the channel state according

to the information received and revealed by former SUs, but

also predicts the subsequent SUs’ decisions to maximize the

utility. We introduce a channel state learning method based

on Bayesian learning rule, where each SU constructs his/her

own belief on the channel state according to his/her own

signal and the former SU’s belief information. Moreover, we

formulate the channel access problem as a Multi-dimensional

Markov Decision Process (M-MDP) and design a modified

value iteration algorithm to find the best strategies. We prove

theoretically that there is a threshold structure in the optimal

strategy profile for the two primary channel scenario. For

multiple primary channel scenario, we propose a fast algorithm

with much lower computational complexity while achieving

comparable performance. Finally, we conduct simulations to

verify the effectiveness and efficiency of the proposed Dynam-

ic Chinese Restaurant Game theoretic scheme.

The rest of this paper is organized as follows. Firstly, our

system model is described in Section II. Then, we discuss how

SUs learn the primary channel state using Bayesian learning

rule in Section III. We introduce an M-MDP model to solve

the channel access problem in Section VI and a modified value

iteration algorithm in Section V. Finally, we show simulation

results in Section VI and draw conclusions in Section VII.

II. SYSTEM MODEL

A. Network Entity

We consider a primary network with N independent primary

channels, and each channel can maximally host L users, as

shown in Fig. 1. The PU has priority to occupy the channels

at any time, while SUs are allowed to access the channel

under the condition that the PU’s communication QoS is

guaranteed [6]. We denote the primary channel state as θ =
{θ1, θ2, ..., θN} (all the subscripts mean the channel number

index in the paper), where θi ∈ {H0,H1} denotes the state

of channel i, H0 means the PU is absent and H1 means the

PU is present. Note that the channel state θi(t) is time-varying

since the PU may appear at the primary channel at any time.

For the secondary network, we assume SUs arrive and

depart by Poisson process with rate λ and μ, respectively.

All SUs can independently perform spectrum sensing using

energy detection [1]. For each SU, his/her action set is

A = {1, 2, ..., N}, i.e., choosing one channel from all N
channels. Let us define the grouping state when the jth SU

arrives, Gj = (gj1, g
j
2, ..., g

j
N ) (all the superscripts mean the SU

index in the paper), where gji ∈ [0, L] stands for the number

of SUs in channel i. Assuming that the jth SU finally chooses

Fig. 1. System model of the cognitive radio network.

channel i to access, his/her utility function can be given by

U
(
θi(t), g

j
i (t)

)
, where θi(t) denotes the state of channel i at

time t and gji (t) is the number of SUs choosing channel i
during the jth SU’s access time in channel i. Note that the

utility function is a decreasing function in terms of gji (t),
which can be regarded as the characteristic of negative network

externality since the more subsequent SUs join channel i, the

less utility the jth SU can achieve. In the following analysis,

the time index (t) is omitted.

As discussed above, the channel state θ is changing with

time. For new arriving SUs, they may not know the exact

state of each channel θi. Nevertheless, SUs can estimate the

state through channel sensing and former SU’s sensing result.

Therefore, we assume that all SUs know the common prior

distribution of the state θi for each channel, which is denoted

as b0 = {b0i |b0i = Pr(θi = H0), ∀i ∈ 1, 2, ..., N}. Moreover,

each SU can receive a signal sj = {sji , ∀i ∈ 1, 2, .., N}
through spectrum sensing, where sji = 1 if the jth SU detects

some activity on channel i and sji = 0 if no activity is

detected on channel i. In such a case, the detection and

false-alarm probability of channel i can be expressed as

P d
i = Pr(si = 1|θi = H1) and P f

i = Pr(si = 1|θi = H0),
which are considered as common priors for all SUs. Fur-

thermore, we assume that there is a log-file in the server

of the secondary network, which records each SU’s channel

belief and channel selection result. Through querying this log-

file, the new coming SU can obtain current grouping state

information, i.e., the number of SUs in each channel, as well

as the former SU’s belief on the channel state.

B. ON-OFF Primary Channel Model

For the PU’s behavior in the primary channel, we model it

as a general alternating ON-OFF renewal process, where the

ON state means the PU is present and the OFF state means

the PU is absent. This general ON-OFF switch model can be

applied in the scenario when SUs have no knowledge about

the PU’s communication mechanism [13]. Let TON and TOFF

denote the length of the ON state and OFF state, respectively.

According to different types of the primary services (e.g.,

digital TV broadcasting or cellular communication), TON and

TOFF statistically satisfy different types of distributions. Here

we assume that TON and TOFF are independent and satisfy ex-

ponential distributions with parameter r1 and r0, respectively,
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denoted by fON(t) and fOFF(t) as follows:{
TON ∼ fON (t) =

1
r1
e−t/r1 ,

TOFF ∼ fOFF(t) =
1
r0
e−t/r0 .

(1)

In such a case, the expected lengths of the ON state and

OFF state are r1 and r0 accordingly. These two parameters r1
and r0 can be effectively estimated by a maximum likelihood

estimator [14]. Such an ON-OFF behavior of the PU is a

combination of two Poisson process, which is a renewal

process [15]. The renewal interval is Tp = TON + TOFF and

the distribution of Tp, denoted by fp(t), is

fp(t) = fON(t) ∗ fOFF(t). (2)

III. BAYESIAN LEARNING FOR THE CHANNEL STATE

In this section, we discuss how a SU estimates the channel

state according to his/her own sensing results and the former

SU’s beliefs. Here, we first introduce the concept of belief

to describe the SU’s uncertainty about the channel state. The

belief bji denotes the jth SU’s belief on the state of channel

i, θji . It is assumed that each SU reveals his/her beliefs after

making the channel selection. In such a case, the jth SU’s

belief on channel i is learned from former SU’s belief bj−1
i ,

his/her own signal sji , which can be defined as

bj = {bji |bji = Pr(θji = H0|bj−1
i , sji ), ∀i ∈ 1, 2, ...N}. (3)

From the definition above, we can see that the belief bji ∈ [0, 1]
is a continuous parameter. In a practical system, it is im-

possible for a SU to reveal his/her continuous belief using

infinite data bits. Therefore, we quantize the continuous belief

into M belief levels {B1,B2, ...,BM}, which means that if

we have bji ∈ [k−1
M , k

M ], then Bj
i = Bk. Since each SU can

only reveal and receive the quantized belief, the former SU’s

quantized belief Bj−1 is first mapped into the continuous

belief b̂j−1 according to the rule that if Bj−1
i = Bk then

b̂j−1
i = 1

2

(
k−1
M + k

M

)
. Note that the mapped continuous belief

b̂j−1
i here is not the former SU’s real continuous belief bj−1

i .

Then, b̂j−1 is combined with the signal sj to calculate the

continuous belief bj . Finally, bj is quantized into the belief

Bj . Since all primary channels are assumed to be independent,

the learning processes of these channels are also independent.

Thus, the learning process for the jth SU on channel i can be

summarized as Bj−1
i

C−→ b̂j−1
i

sji−→ bji
Q−→ Bj

i .

In the learning process, the most important step is how to

calculate current belief bji according to current signal sji and

the former SU’s belief b̂j−1
i , which is a classical social learning

problem. Based on the approaches to belief formation, social

learning can be classified as Bayesian learning [16] and non-

Bayesian learning [17]. Bayesian learning refers that rational

individuals use Bayes’ rule to form the best estimation of the

unknown parameters, such as the channel state in our model,

while non-Bayesian learning requires individuals to follow

some predefined rules to update their beliefs, which inevitably

limits the rational users’ optimal decision making. Since SUs

are assumed to be fully rational, they adopt Bayesian learning

to update their beliefs bj = {bji} by

bji =
Pr
(
θji = H0|b̂j−1

i

)
Pr(sji |θji = H0)∑1

l=0 Pr
(
θji = Hl|b̂j−1

i

)
Pr(sji |θji = Hl)

. (4)

As discussed in the system model, the channel state is vary-

ing with time. Here, we define the state transition probability

as Pr(θji = H0|θj−1
i = H0), which represents the probability

that channel i is currently available when the jth SU arrives

given the condition that channel i was available when the (j−
1)th SU arrived. Similarly, we have Pr(θji = H1|θj−1

i = H0),
Pr(θji = H0|θj−1

i = H1) and Pr(θji = H1|θj−1
i = H1). In

such a case, the SU can calculate the items Pr
(
θji = H0|b̂j−1

i

)
and Pr

(
θji = H1|b̂j−1

i

)
in (4) as follows:

Pr
(
θji = H0|bj−1

i

)
= Pr(θji = H0|θj−1

i = H0)b
j−1
i +

Pr(θji = H0|θj−1
i = H1)(1− bj−1

i ),(5)

Pr
(
θji = H1|bj−1

i

)
= Pr(θji = H1|θj−1

i = H0)b
j−1
i +

Pr(θji = H1|θj−1
i = H1)(1− bj−1

i ).(6)

Since the primary channel is modeled as an ON-OFF

process, the channel state transition probability depends on

the time interval between the (j − 1)th and jth SUs’ arrival

time, tj . Note that the tj can be directly obtained from the

log-file in the server. For notation simplicity, in the rest of this

paper, we use P00(t
j), P01(t

j), P10(t
j) and P11(t

j) to denote

Pr(θji = H0|θj−1
i = H0), Pr(θji = H1|θj−1

i = H0), Pr(θji =
H0|θj−1

i = H1) and Pr(θji = H1|θj−1
i = H1), respectively,

where P01(t
j) = 1− P00(t

j) and P11(t
j) = 1− P10(t

j).
We can derive the close-form expression for P01(t

j) using

the renewal theory as follow [18]

P01(t
j) =

r1
r0 + r1

(
1− e−

r0+r1
r0r1

tj
)
. (7)

Thus, we can have P00(t
j) as

P00(t
j) = 1− P01(t

j) =
r1

r0 + r1

(r0
r1

+ e−
r0+r1
r0r1

tj
)
. (8)

Similarly, the close-form expression for P11(t
j) can also be

obtained by solving the following renewal equation

P11(t) = r1fON(t) +

∫ t

0

P11(t− w)fp(w)dw, (9)

where fON(t) is the probability density function (p.d.f ) of the

ON state’s length given in (1) and fp(t) is the p.d.f of the

PU’s renewal interval given in (2).

By solving (9), we can obtain the close-form expression for

P11(t
j) given by

P11(t
j) =

r0
r0 + r1

(r1
r0

+ e−
r0+r1
r0r1

tj
)
. (10)

Then, we can have P10(ti) as

P10(t
j) = 1− P11(t

j) =
r0

r0 + r1

(
1− e−

r0+r1
r0r1

tj
)
. (11)

By substituting (5-6), (7-8) and (10-11) into (4), we can

calculate the jth SU’s belief bji with the corresponding sensing
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results sji = 1 and sji = 0 in (12-13) below. In the following,

we denote (12) as bji |sji=1 = φ(b̂j−1
i , ti, s

j
i = 1), and denote

(13) as bji |sji=0 = φ(b̂j−1
i , ti, s

j
i = 0) for simplicity.

IV. MULTI-DIMENSIONAL MARKOV DECISION PROCESS

BASED CHANNEL ACCESS

In this section, we investigate the channel access game by

modeling it as a Markov Decision Process (MDP) problem

[19]. In this game, each SU selects a channel to access,

with the objective of maximizing his/her own expected u-

tility during the access time. To achieve this goal, rational

SUs not only need to consider the immediate utility, but

also need to consider the following SUs’ decisions. In our

model, SUs arrive by Poisson process and make the channel

selection sequentially. When making the decision, one SU is

only confronted with current grouping information Gj and

belief information Bj . In order to take into account the SU’s

expected utility in the future, we use Bellman equation to

formulate the SU’s utility and use MDP model to formulate

this channel selection problem. In traditional MDP problem,

a player can adjust his/her decision when the system state

changes. However, in our system, after choosing a certain

primary channel, a SU cannot adjust his/her channel selection

even if the system state has already changed. Therefore,

traditional MDP cannot be directly applied here. To solve

this problem, we propose a Multi-dimensional MDP (M-MDP)

model, and a modified value iteration method to derive the best

response (strategy) for each SU.

A. System State

To construct the MDP model, we first define the system

state and verify the Markov property of the state transition.

Let the quantized belief B = (B1, B2, ..., BN ) ∈ [1,M ]N be

the belief state. Thus, we can define the system state S as the

belief state B with the grouping state G = (g1, g2, ..., gN ) ∈
[0, L]N , i.e., S = (B,G), where the finite state space is

X =
(
[1,M ]N × [0, L]N

)
. When the jth SU arrives, the

system state he/she encounters is Sj = (Bj ,Gj). In such a

case, with multiple SUs arriving sequentially, the system states

at different arrival time {S1, S2, ...Sj , ...} form a stochastic

process. In our learning rule, only the (j − 1)th SU’s belief

is used to update the jth SU’s belief. Therefore, Bj depends

only on Bj−1. Moreover, since SUs arrive by Poisson process,

the grouping state Gj is also memoryless. In such a case, we

can verify that {S1, S2, ...Sj , ...} is a Markov process.

B. Belief State Transitions

Note that a SU’s belief transition is independent with his/her

action, and is only related to the channel state, as well as

the Bayesian learning rule. Here, we define the belief state

transition probability as P
(
Bj |Bj−1

)
. Since all channels are

independent with each other, we have

P
(
Bj

∣∣Bj−1
)
=

N∏
i=1

P
(
Bj

i |Bj−1
i

)
, (14)

where P
(
Bj

i |Bj−1
i

)
is the belief state transition probability of

channel i. In such a case, there is an M ×M belief state tran-

sition matrix for each channel, which can be derived according

to the Bayesian learning rule. To find P
(
Bj

i = Bq|Bj−1
i =

Bp

)
, with the quantized belief Bj−1

i = Bp, we can calculate

the corresponding continuous belief b̂j−1
i = 1

2

(
p−1
M + p

M

)
.

Then, with Bj
i = Bq , we can have the value interval of

bji = [ q−1
M , q

M ]. Thus, the belief state transition probability

can be computed by

P
(
Bj

i = Bq|Bj−1
i = Bp

)
=

∫ q
M

q−1
M

P (bji |b̂j−1
i )dbji . (15)

According to (12) and (13), we have bji = φ
(
b̂j−1
i =

1
2

(
p−1
M + p

M

)
, tj , sji

)
. Therefore, the belief state transition

probability can be re-written by (16) below, where the second

equality follows the assumption that the arrival interval of

two SUs tj obeys exponential distribution with parameter

bji |sji=1 =

(
r0e

r0+r1
r0r1

tj − r0 + (r1 + r0)b̂
j−1
i

)
P f
i(

r0e
r0+r1
r0r1

tj − r0 + (r1 + r0)b̂
j−1
i

)
P f
i +

(
r1e

r0+r1
r0r1

tj + r0 − (r1 + r0)b̂
j−1
i

)
P d
i

, (12)

bji |sji=0 =

(
r0e

r0+r1
r0r1

tj − r0 + (r1 + r0)b̂
j−1
i

)
(1− P f

i )(
r0e

r0+r1
r0r1

tj − r0 + (r1 + r0)b̂
j−1
i

)
(1− P f

i ) +
(
r1e

r0+r1
r0r1

tj + r0 − (r1 + r0)b̂
j−1
i

)
(1− P d

i )
. (13)

Pr(Bj
i = Bq|Bj−1

i = Bp) =

∫∫
q−1
M ≤φ

(
b̂j−1
i = 1

2 (
p−1
M + p

M ),tj ,sji

)
≤ q

M

Pr
(
tj , sji |b̂j−1

i

)
dtjdsj ,

=

∫
q−1
M ≤φ

(
b̂j−1
i = 1

2 (
p−1
M + p

M ),tj ,sji=0
)
≤ q

M

λe−λtj Pr(sji = 0|b̂j−1
i )dtj

+

∫
q−1
M ≤φ

(
b̂j−1
i = 1

2 (
p−1
M + p

M ),tj ,sji=1
)
≤ q

M

λe−λtj Pr(sji = 1|b̂j−1
i )dtj . (16)
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λ and is independent with the belief. To calculate (16), we

need to derive Pr(sji |b̂j−1
i ), which represents the distribution

of the jth SU’s received signal when given the (j − 1)th
SU’s belief. Note that given current channel state θji , signal

sji is independent with belief b̂j−1
i . Thus, Pr(sji |b̂j−1

i ) can be

calculated as follows:

Pr(sji |b̂j−1
i ) = Pr(sji , θ

j
i = H0|b̂j−1

i ) + Pr(sji , θ
j
i = H1|b̂j−1

i )

= Pr(sji |θji = H0)Pr(θji = H0|b̂j−1
i ) +

Pr(sji |θji = H1)Pr(θji = H1|b̂j−1
i ). (17)

Moreover, given the previous channel state θj−1
i , current state

θji is also independent with the former SU’s belief b̂j−1
i . Thus,

Pr(θji = H0|b̂j−1
i ) in (17) can be obtained as follows:

Pr(θji = H0|b̂j−1
i ) = Pr(θji = H0, θ

j−1
i = H0|b̂j−1

i ) +

Pr(θji = H0, θ
j−1
i = H1|b̂j−1

i )

= Pr(θji = H0|θj−1
i = H0)b̂

j−1
i +

Pr(θji = H0|θj−1
i = H1)(1− b̂j−1

i ),

= P00(t
j)b̂j−1

i + P10(t
j)(1− b̂j−1

i ). (18)

Similarly, for Pr(θji = H1|b̂j−1
i ), we have

Pr(θji = H1|b̂j−1
i ) = P01(t

j)b̂j−1
i + P11(t

j)(1− b̂j−1
i ). (19)

By substituting (18-19) into (17), the conditional distribution

of the signal can be obtained as (20-21) below, with which we

can calculate the transition probability matrix using (16).

C. Actions and System State Transitions

The finite action set for SUs is the N channel set, i.e.,

A = {1, 2, ..., N}. Let a ∈ A denote a new SU’s action under

the system state S = (B,G). Let P
(
S′ = (B′,G′)

∣∣S =
(B,G), a

)
denote the probability that action a in state S will

lead to state S′. Since the SU’s belief transition is independent

with his/her action, we have

P
(
S′=(B′,G′)|S=(B,G), a

)
=P

(
B′|B)

P
(
G′|G, a

)
, (22)

where P
(
G′|G, a

)
is the system grouping state transition

probability. Suppose that G = (g1, g2, ..., gN ), if a new SU

arrives and accesses channel i, i.e., a = i, we have the system

state transition probabilities in (23-24) below, where λ is the

arrival rate. If no SU arrives, but some SU leaves the channel

at state G, we have the remaining system state transition

probabilities in (25-26) below, where μ is SUs’ departure rate.

Note that λ and μ are normalized such that λ+NLμ ≤ 1. In

such a case, the system state transition probabilities P (S′|S)
form an

(
M(L+1)

)N ×(
M(L+1)

)N
state transition matrix

when given action a.

D. Expected Utility

The immediate utility of SUs in channel i at state S is

Ui(S) = b̂i ·Ri

(
gi
)
, (27)

where b̂i is the continuation mapping of Bi and Ri is a de-

creasing function with respect to the number of SUs in channel

i, gi. In general, each SU will access the selected channel for

a period of time, during which the system state may change.

Therefore, when making the channel selection, SUs should not

only consider the immediate utility, but also take into account

the future utility. Here, we define a SU’s expected utility in

channel i, Vi(S), based on Bellman equation [19] as follow

Vi(S) = Ui(S) + (1− μ)
∑
S′∈X

Pi(S
′|S)Vi(S

′), (28)

where (1 − μ) is the discount factor, which can be regarded

as the probability that the SU keeps staying at the selected

channel since μ is the departure probability, and Pi(S
′|S) is

the state transition probability defined as

Pi

(
S′=(B′,G′)|S=(B,G)

)
=P

(
B′|B) ·Pi

(
G′|G)

, (29)

where P
(
B′|B)

is the belief state transition probability,

and Pi

(
G′|G)

is the grouping state transition probability

conditioned on that SUs in channel i still stay in channel i
in the next state S′, which is different with P

(
G′|G)

in (23-

26). Note that Pi

(
G′|G)

is closely related to the new arriving

SU’s action. Suppose that the new SU’s action aS = k, i.e.,

accessing channel k at state S, we have the state transition

probability in (30) below. For the leaving transition probability,

since we have considered the discount factor (1 − μ) in the

future utility, i.e., the SU will not leave the channel, thus we

have state transition probabilities in (31-33) below, where the

item (gi− 1) is because the grouping in channel i, gi, already

Pr(sji = 0|b̂j−1
i ) =

(
1− P f

i

)(
P00(t

j)b̂j−1
i + P10(t

j)(1− b̂j−1
i )

)
+

(
1− P d

i

)(
P01(t

j)b̂j−1
i + P11(t

j)(1− b̂j−1
i )

)
, (20)

Pr(sji = 1|b̂j−1
i ) = P f

i

(
P00(t

j)b̂j−1
i + P10(t

j)(1− b̂j−1
i )

)
+ P d

i

(
P01(t

j)b̂j−1
i + P11(t

j)(1− b̂j−1
i )

)
. (21)

P
(
G′ = (g1, g2, ..., gi + 1, ..., gN )|G = (g1, g2, ..., gi, ..., gN ), a = i

)
= λ, (23)

P
(
G′ �= (g1, g2, ..., gi + 1, ..., gN )|G = (g1, g2, ..., gi, ..., gN ), a = i

)
= 0, (24)

P
(
G′ = (g1, g2, ..., gi − 1, ..., gN )|G = (g1, g2, ..., gi, ..., gN )

)
= giμ,

(∀i ∈ [1, N ]
)
, (25)

P
(
G′ = G|G = (g1, g2, ..., gi, ..., gN )

)
= 1− λ−

N∑
i=1

giμ. (26)
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includes this SU who will not leave the channel at state S′. In

such a case, we can have an M-dimensional expected utility

function set in (34), where Pi(S
′|S) = [

Pi(S
′|S)|∀S′ ∈ X ]

and Vi(S
′|S) = [

Vi(S
′|S)|∀S′ ∈ X ]

.

E. Best Strategy
The strategy profile π = {aS |∀S ∈ X} is a mapping from

the state space to the action space, i.e., π : X → A. Due to

the selfish nature, each SU will choose the best strategy to

maximize his/her own expected utility. Suppose that one SU

arrives at the primary network with system state S =
(
B,G =

(g1, g2, ..., gi, ..., gN )
)
, his/her best strategy can be defined as

aS = argmax
i∈[1,N ]

{
Vi

(
B,G = (g1, ..., gi + 1, ..., gN )

)}
. (35)

Since the strategy profile satisfying (34) and (35), denoted

by π�, maximizes every arriving SU’s utility, π� is a Nash

equilibrium of the proposed game.

V. MODIFIED VALUE ITERATION ALGORITHM

As discussed at the beginning of Section IV, although the

channel access problem can be modeled as an MDP problem, it

is different from the traditional MDP problem that a SU cannot

adjust action even the system state changes. In traditional MDP

problem, there is only one Bellman equation associated with

each system state, and the optimal strategy is directly obtained

by optimizing the Bellman equation. In our Multi-dimensional

MDP problem, there is a set of Bellman equations as shown

in (34) and the optimal strategy profile should satisfy (34)

and (35) simultaneously. Therefore, the traditional dynamic

programming method in [19] cannot be directly applied. To

solve this problem, we design a modified value iteration

algorithm.
Given an initial strategy profile π, the conditional state

transition probability Pi(S
′|S) can be calculated by (29-33),

and thus the conditional expected utility Vi(S) can be found

by (34). Then, with Vi(S), the strategy profile π can be

updated again using (35). Through such an iterative way, we

can finally find the optimal strategy π�. In Algorithm 1, we

summarize the proposed modified value iteration algorithm for

the Multi-dimensional MDP problem.

Algorithm 1 Modified Value Iteration Algorithm for Multi-

dimensional MDP Problem.
1: • Given tolerance η1 and η2, set ε1 and ε2.

2: • Initialize {V (0)
i (S) = 0, ∀S ∈ X} and randomize

3: π = {aS , ∀S ∈ X}.
4: while ε1 > η1 or ε2 > η2 do
5: for all S ∈ X do
6: • Calculate transition probability Pi(S

′|S),
7: ∀i ∈ [1, N ] using π and (29-33).

8: • Update utility function V
(n+1)
i (S), ∀i ∈ [1, N ]

9: using (34).

10: end for
11: for all S ∈ X do
12: • Update π� = {aS} using (35).

13: end for
14: • Update the parameter ε1 by ε1 = ‖π − π�‖2.

15: • Update the parameter ε2 by ε2 =
∥∥V(n+1)

i (S)−
16: V

(n)
i (S)

∥∥
2
.

17: • Update the strategy file π = π�.

18: end while
19: • The optimal strategy profile is π�.

A. Channel Access: Two Primary Channels Case

In this subsection, we discuss the case where there are

two primary channels. In such a case, the system state S =
(B1, B2, g1, g2), where B1 and B2 are beliefs of two channels,

g1 and g2 are numbers of SUs in two channels. We define SUs’

immediate utility in channel i, U(Bi, gi), as

U(Bi, gi) = b̂iR(gi) = b̂i log

(
1 +

SNR

(gi − 1)INR + 1

)
, (36)

where b̂i is the continuous mapping of quantized belief Bi.

According to (34), the expected utility functions of two

channels can be written as

V1(S) = U(B1, g1) + (1− μ)
∑
S′

P1(S
′|S)V1(S

′), (37)

V2(S) = U(B2, g2) + (1− μ)
∑
S′

P2(S
′|S)V2(S

′), (38)

Pi

(
G′ = (g1, ..., gk + 1, ..., gN )|G = (g1, ..., gk, ..., gN )

)
= λ, (30)

Pi

(
G′ = (g1, g2, ..., gi − 1, ..., gN )|G = (g1, g2, ..., gi, ..., gN )

)
= (gi − 1)μ, (31)

Pi

(
G′ = (g1, g2, ..., gi′ �=i − 1, ..., gN )|G = (g1, g2, ..., gi′ �=i, ..., gN )

)
= gi′μ,

(∀i′ ∈ [1, N ]
)
, (32)

Pi

(
G′ = G|G = (g1, g2, ..., gN )

)
= 1− λ−

( N∑
i=1

gi − 1

)
μ. (33)

⎡⎢⎢⎢⎣
V1(S)
V2(S)

...

VN (S)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
U1(S)
U2(S)

...

UN (S)

⎤⎥⎥⎥⎦+ (1− μ)

⎡⎢⎢⎢⎣
P1(S

′|S) 0 . . . 0
0 P2(S

′|S) . . . 0
...

...
. . .

...

0 0 . . . PN (S′|S)

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
V1(S

′)T

V2(S
′)T

...

VN (S′)T

⎤⎥⎥⎥⎦ . (34)
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where S = (B1, B2, g1, g2) is the system state, P1 and P2

are the state transition probabilities conditioned on the event

that SUs stay in the channels they has chosen, which can be

calculated according to (29-33).

According to (35), the best strategy aS for SUs arriving

with system state S = (B1, B2, g1, g2) is as follows:

aS=

{
1, V1(B1, B2, g1+1, g2)≥V2(B1, B2, g1, g2+1),
2, V1(B1, B2, g1+1, g2)<V2(B1, B2, g1, g2+1).

(39)

Thus, with (36-39), we can find the optimal strategy profile

π� = {aS , ∀S ∈ X} using the modified value iteration method

in Algorithm 1. In the following, we will show that when given

the beliefs of two channel, there exists a threshold structure

in the optimal strategy profile π�.

Lemma 1: For g1 ≥ 0 and g2 ≥ 1,

V1(B1, B2, g1, g2) ≥ V1(B1, B2, g1 + 1, g2 − 1), (40)

V2(B1, B2, g1, g2) ≤ V2(B1, B2, g1 + 1, g2 − 1). (41)

Proof: Due to page limitation, we show the proof in the

supplementary information [20].

Lemma 1 shows that given the beliefs of two channels, V1

is non-decreasing and V2 is non-increasing along the line of

g1+g2 = m, ∀m ∈ {0, 1, ..., 2L}. Based on Lemma 1, we will

show the threshold structure in the optimal strategy profile π�

by Theorem 1.

Theorem 1: For the two-channel case, given the belief state,

the optimal strategy profile π� = {aS} derived from the

modified value iteration algorithm has threshold structure.

Proof: Due to page limitation, we show the proof in the

supplementary information [20].

Note that the optimal strategy profile π� can be obtained off-

line and the profile can be stored in a table for SUs. We can

see that for some spectific belief state, the number of system

states is (L+1)2, which means the corresponding strategy file

has (L+1)2 strategies. With the proved threshold structure on

each line g1 + g2 = m, ∀m ∈ {0, 1, 2, ..., 2L}, we just need

to store the threshold point on each line. In such a case, the

storage of the strategy profile can be reduced from O(L2) to

O(2L).

B. Channel Access: Multiple Primary Channels Case

In this subsection, we discuss the case where there are

multiple primary channels. Although the optimal strategy

profile of the multi-channel case can also be obtained using

Algorithm 1, the computation complexity grows exponentially

in terms of the number of primary channels N . Besides, the

storage and retrieval of the strategy profile are also challenging

when the number of system states exponentially increases with

N . Therefore, it is important to develop a fast algorithm for

the multi-channel case.

Suppose the channel number N is even, we can randomly

divide these N primary channels into N/2 pairs. For each

pair, SUs can choose one channel using the threshold strategy

derived in the previous subsection. Then, SUs can further

divide the selected N/2 channels into N/4 pairs and so on

so forth. In such a case, SUs can finally select one suboptimal

Algorithm 2 Fast Algorithm for the Multi-channel Case.

1: if N is even then
2: while N > 1 do
3: • Randomly divide the N channels into N/2 pairs.

4: for all N/2 pairs do
5: • Select one channel according to Algorithm 1.

6: end for
7: • N = N/2.

8: end while
9: end if

10: if N is odd then
11: while N > 1 do
12: • Randomly divide the N primary channels into

13: (N − 1)/2 pairs and one channel.

14: for all (N − 1)/2 pairs do
15: • Select one channel according to Algorithm 1.

16: end for
17: • N = (N − 1)/2 + 1.

18: end while
19: end if

channel to access. On the other hand, if the channel number

N is odd, the suboptimal channel can be selected by a similar

way. With such an iterative dichotomy method, a SU can find

one suboptimal primary channel only by logN steps and the

complexity of each step is same with that of the two-channel

case. This fast algorithm is summarized in Algorithm 2. In

the simulation section, we will compare the performance of

this fast algorithm with the optimal algorithm using modified

value iteration method.

VI. SIMULATION RESULTS

In this section, we conduct simulations to evaluate the

performance of proposed scheme in cognitive radio networks.

Specifically, we evaluate the performance of channel sensing

and access, as well as the interference to the PU.

A. Bayesian Channel Sensing

In this simulation, we evaluate the performance of channel

sensing with Bayesian learning. We first generate one primary

channel based on the ON-OFF model, and the channel param-

eters are set to be r0 = 55s and r1 = 50s, respectively. Then, a

number of SUs with some arrival rate λ sequentially sense the

primary channel and construct their own beliefs by combining

the sensing result with the former SU’s belief. In Fig. 2, we

compare the detection and false-alarm probabilities between

channel sensing with Bayesian learning and sensing without

learning under different arrival rate λ. Overall, the detection

probability is enhanced and false-alarm probability decreases

when the Bayesian learning is adopted. Moreover, we can

see that with Bayesian learning, the larger the arrival rate λ,

the higher detection probability and the lower the false-alarm

probability. This is because a larger λ means a shorter arrival

interval between two SUs, and thus the former SU’s belief

information is more useful for current SU’s belief construction.
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Fig. 2. Detection and false-alarm probability.

B. Channel Access of Two Primary Channel Case

In this subsection, we evaluate the performance of the pro-

posed Multi-dimensional MDP model, as well as the modified

value iteration algorithm for the two-channel case. The param-

eters of the two primary channels are set to be: for channel 1,

r0 = 55s and r1 = 25s; for channel 2, r0 = 25s and r1 = 55s,

which means channel 1 is statistically better than channel 2.

In the simulation, our proposed strategy is compared with

centralized strategy, myopic strategy and random strategy in

terms of social welfare. We first define the social welfare, W ,

when given a strategy profile π = {aS , ∀S ∈ X} as

W =
∑
S∈X

σπ(S)
(
g1U(B1, g1) + g2U(B2, g2)

)
, (42)

where S = (B1, B2, g1, g2) in the two-channel case, and

σπ(S) is the stationary probability of state S. The four

strategies we test are defined as follows.

• Proposed strategy is obtained by our proposed value

iteration algorithm in Algorithm 1.

• Centralized strategy is obtained by exhaustively search-

ing all possible 2|X | strategy profiles to maximize the

social welfare, i.e., πc = argmax
π

Wπ , where the super-

script c means centralized strategy. We can see that the

complexity of finding the centralized strategy is NP-hard.

• Myopic strategy is to maximize the immediate utility,

i.e., to choose the channel with the largest immediate

reward by πm = {aS = argmax
i∈[1,2]

U(Bi, gi), ∀S ∈ X},
where the superscript m means myopic strategy.

• Random strategy is to randomly choose one chan-

nel with equal probability 0.5, i.e., πr = {aS =
rand(1, 2), ∀S ∈ X}, where the superscript r means

random strategy.

In the simulation, we use the myopic strategy as the com-

parison baseline and show the results by normalizing the

performance of each strategy by that of the myopic strategy.

In Fig. 3, we evaluate the social welfare performance of

different methods. Due to the extremely high complexity of

the centralized strategy, we consider the case with 2 belief

Fig. 3. Social welfare under 2-channel with M = 2 and L = 2.

Fig. 4. Social welfare under 2-channel with M = 5 and L = 5.

levels and maximally 2 SUs in each channel, i.e., M = 2
and L = 2. Note that if M = 2 and L = 3, there are

totally 22
2·(3+1)2 = 264 possible strategy profiles to verify,

which is computational intractable. Therefore, although slight-

ly outperforming our proposed strategy as shown in Fig. 3,

the centralized method is not applicable to the time-varying

primary channels. Moreover, we also compare the proposed

strategy with the myopic and random strategies under the case

with M = 5 and L = 5 in Fig. 4. We can see that the proposed

strategy performs the best among all the strategies.

We verify that the proposed strategy is a Nash equilibrium

(NE) by simulating a new coming SU’s expected utility in

Fig. 5. The deviation probability in x-axis stands for the

probability that a new coming SU deviates from the proposed

strategy or centralized strategy. We can see that when there

is no deviation, our proposed strategy performs better than

the centralized strategy. Such a phenomenon is because the

centralized strategy is to maximize the social welfare and thus

sacrifices the new coming SU’s expected utility. Moreover,

we can see that the expected utility of a new coming SU

decreases as the deviation probability increases, which verifies

that the proposed strategy is a NE. On the other hand, by

deviating from the centralized strategy, a new coming SU can
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Fig. 5. NE verification under 2-channel with M = 2 and L = 2.

Fig. 6. Social welfare under 3-channel with M = 5 and L = 5.

obtain higher expected utility, which means that the centralized

strategy is not a NE and SUs have incentive to deviate.

C. Fast Algorithm for Multiple Channel Access

In this simulation, we evaluate the performance of the pro-

posed fast algorithm for multi-channel case, which is denoted

as suboptimal strategy hereafter. In Fig. 6, the suboptimal strat-

egy is compared with the proposed strategy, myopic strategy

and random strategy in terms of social welfare under 3-channel

case, where the channel parameters are set to be: for channel

1, r0 = 55s and r1 = 25s; for channel 2, r0 = 45s and

r1 = 40s; for channel 3, r0 = 25s and r1 = 55s. We can see

that the suboptimal strategy achieves the social welfare very

close to that of the optimal one, i.e., the proposed strategy

using modified value iteration, and is still better than the

myopic and random strategies. Therefore, considering the low

complexity of the suboptimal strategy, it is more practical to

use the suboptimal strategy for the multi-channel case.

VII. CONCLUSION

In this paper, we extended the previous Chinese Restaurant

Game work [7] into a dynamic population setting and proposed

a Dynamic Chinese Restaurant Game for cognitive radio

networks. Based on the Bayesian learning rule, we introduced

a channel state learning method for SUs to estimate the

primary channel state. We modeled the channel access problem

as a Multi-dimensional MDP and designed a modified value

iteration algorithm to find the optimal strategy. The simulation

results show that compared with the centralized approach that

maximizes the social welfare with an intractable computational

complexity, the proposed scheme achieves comparable social

welfare performance with much lower complexity, while com-

pared with random strategy and myopic strategy, the proposed

scheme achieves much better social welfare performance.

Moreover, the proposed scheme maximizes a new coming

SU’s expected utility and thus achieves Nash equilibrium

where no user has the incentive to deviate.
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