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ABSTRACT

Information diffusion over social networks becomes a hot topic re-
cently. Most of the existing works are based on the machine learn-
ing method with social network structure analysis and empirical da-
ta mining. However, the results learned from some specific dataset
may not apply to the future networks, since the social network struc-
ture is in a highly dynamic environment. Moreover, the dynamics of
information diffusion are also heavily influenced by network user-
s’ decisions, actions and their socio-economic interactions, which is
generally ignored by existing works. In this paper, we propose an
evolutionary game theoretic framework to model the dynamic infor-
mation diffusion process in social networks, which focuses on the
users’ behavior analysis from a microeconomics points of view. We
also conduct experiments by using real-world Twitter information d-
iffusion dataset, which shows that the proposed evolutionary game
theoretic model is effective and practical in modeling the social net-
work users’ information diffusion dynamics.

Index Terms— Social networks, information diffusion, infor-
mation spreading, game theory, evolutionary game.

1. INTRODUCTION

Nowadays, social networks have become ubiquitous in our daily life.
Due to its diverse implication, researchers from different disciplines
have been working on it from various perspectives [1]. The topic of
how information diffuse over social networks draws great attentions
from both industry and academia recently. On one hand, the study of
information diffusion can help the enterprises/polititians to achieve
efficient and effective advertisement/advocation. On the other hand,
from the security point of view, the study of information diffusion
can also help to prevent the detrimental information spreading, e.g.
computer virus, rumors and inauthentic news.

In the literature, the existing works can be classified into two cat-
egories: diffusion dynamics analysis and diffusion stability analysis.
The first category focuses on analyzing the dynamic diffusion pro-
cess over different kinds of networks using different mathematical
models [2]-[8]. While the second category focuses on the stabili-
ty and consequence of information diffusion [9]-[13]. In this paper,
our analysis falls into the first category, i.e., the dynamic diffusion
process. Most of existing works on information diffusion analysis
are based on the machine learning method through empirical data
mining, which is based on the assumption that the training set is
statistically consistent with the testing set. One conspicuous short-
coming is that the results learned from some specified dataset rely
on the corresponding social network structure and may not be able
to analyze or predict the future networks since the social networks
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are usually in a highly dynamic environment. Secondly, such ma-
chine learning based method totally ignores the actions and decision
making of users. While the influence of users’ decisions, action-
s and socio-economic connections on information forwarding also
plays an important role in the diffusion process. Considering these
problems, we propose a game theoretic framework to analyze the
dynamics of information diffusion over social network. Compared
with the machine learning based method, the game theoretic one fo-
cuses on the users’ behavior analysis from a microeconomics point
of view, the results of which do not rely on the network structure and
can be generally used to analyze and predict the future networks.

Specifically, we find that in essence the information diffusion
process on social networks follows similarly the evolution process
in natural ecological systems [14]. It is a process that evolves from
one state at a particular instance to another when information is
being forwarded and diffused around. Therefore, we consider the
evolutionary game to model and study the social network users’ in-
formation forwarding strategies and the dynamic diffusion process.
The proposed model reveals the dynamics of information diffusion
among users through analyzing their learning, interactions and de-
cision making. Based on the evolutionary game theoretic formula-
tion, we analyze the dynamics of diffusion process over complete
networks and uniform degree networks. In the rest of this paper, we
first model the dynamics of information diffusion over complete net-
works using evolutionary game in Section 3. Then, we model the dy-
namics of information diffusion over uniform degree networks using
graphical evolutionary game in Section 3. Experiments results are
shown in Section 4 and conclusions are drawn in Section 5.

2. EVOLUTIONARY GAME FORMULATION FOR
INFORMATION DIFFUSION DYNAMICS OVER

COMPLETE NETWORKS

In this section, we modeling the information diffusion dynamics over
complete networks using graphical evolutionary game. We first in-
troduce the basic concepts of evolutionary game, and then elaborate
how to formulate the dynamic information diffusion process using
evolutionary game theory.

2.1. Basic Concepts of Evolutionary Game Theory

The evolutionary game theory (EGT), originated from ecological bi-
ology [14], imagines that a game is played over and over again by bi-
ologically or socially conditioned players who are randomly drawn
from a large population [15]. It emphasizes more on the dynam-
ics of the whole population’s strategies by studying the population
shift and evolving process due to the influence of mutants. Recently,
EGT has been widely used to model users’ behaviors in communica-
tion and networking area [16][17], including network selection [18],
cooperative sensing [19], cooperative peer-to-peer (P2P) streaming
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[20] and dynamic spectrum access [21], and also image processing
area [22]. In these literatures, evolutionary game has been shown
to be an effective approach to model the dynamic social interactions
among users in a network.

One of the most important concepts in EGT is the “replicator
dynamics”, which illustrates the dynamic process of the whole pop-
ulation’s strategies and can provide the system state information at a
particular time instance. Consider an evolutionary game with a pop-
ulation of N players andM pure strategies X = {1, 2, ...,M}. Let
ni denote the number of players adopting strategy i and xi =

ni
N

de-
note the proportion of players adopting strategy i among the whole
population. In such a case, the population state can be illustrated
by a vector x = [x1, x2, ..., xM ]. In EGT, the utility of a player is
referred as “fitness” [23], which is defined as follows:

Ψ = (1− η) ·B + η · P, (1)

where B is the baseline fitness representing the player’s inherent
property. For example, in a social network, a user’s baseline fitness
can be interpreted as his/her own interests on the released news. P
is the player’s payoff which is determined by the predefined pay-
off matrix and the player’s interactions with others. The parameter
η represents the selection intensity, i.e., the relative contribution of
the game to fitness. The case η → 0 represents the limit of weak
selection [24], while η → 1 denotes strong selection, where fitness
equals payoff. Note that the selection intensity can be time variant,
e.g., η(t) = βe−αt which means that the contribution of game in-
teraction decreases along with time.

According to EGT, the replicator dynamics can be defined by a
set of discrete differential equations as follows:

ẋi(t) = xi(t)
[
Ψi(t)−Ψ(t)

]
, ∀i = 1, 2, ...,M. (2)

where ẋi(t) represents the variation of xi at time t, i.e., xi(t+1) =
xi(t) + ẋi(t), Ψi(t) represents the average fitness of players adopt-
ing strategy i at time t and Ψ(t) represents the average fitness of
the whole population at time t. We can see that if adopting strategy
i can lead to a higher fitness than the average level, the proportion
xi will increase and the increasing rate ẋi/xi is proportional to the
difference between Ψi and Ψ.

2.2. Evolutionary Game Formulation

In a social network, when a series of new information are originated
from one user or a small group of users, the dynamic information d-
iffusion process heavily depends on other users’ actions: to forward
the information or not. For each user, whether to forward the in-
formation is determined by several factors, including the user’s own
interest on this information, as well as his/her neighbor’s actions in
the sense that if all his/her neighbors forward the information, the
user may also forward the information with relatively high proba-
bility. Such a dynamic process of users’ information forwarding is
quite similar to the players’ strategies update in the aforementioned
EGT. Therefore, we can model the information diffusion dynamics
over complete network using the evolutionary game, where the users
can be regarded as players and each user has two possible strategies:

{
Sf , forward the information,
Sn, not forward the information.

(3)

In social networks, users’ payoff is determined by multiple factors,
including the cost of forwarding the information, the reward ob-
tained by forwarding/not forwarding the information (e.g, the popu-
larity of a user in a social network or the hit rate of a website). In

this paper, we model the users’ payoff matrix as follows:

Sf Sn

Sf

(
uff ufn

)
Sn ufn unn

(4)

where a symmetric payoff structure is considered, i.e., when
a user with strategy Sf meets a user with strategy Sn, each
of them receives the same payoff ufn. Moreover, we assume
that the payoff has been normalized within interval (0, 1), i.e.,
0 < uff , ufn, unn < 1. In a complete network, each user has pos-
sible interactions with all other users. Under such a circumstance,
once some information are released by a user, all other users are
supposed to receive the information. However, whether to forward
the information depends on the strategies of different users. In this
scenario, we consider the network as a group of users that con-
tinuously release new information. For instance, in practical social
networks, such a group of users can be a circle in the Google pluse or
a group in the Facebook. Since each user in the group also connects
to other users outside the group, the more users in the group forward
the information, the wider the information can diffuse. Therefore,
through analyzing the dynamic of users’ strategies on information
forwarding, we can infer how the information propagate to oth-
er users outside the group. Let us define the proportion of users
adopting strategy Sf , i.e., forward the information, as xf ; and the
proportion of users adopting strategy Sn as xn = 1− xf . In such a
case, the network state can be described by x = [xf , xn].

To analyze the dynamic changing of x along with time, we dis-
cretize the dynamic information diffusion process into time slot. In
each time slot, the users in the complete network are assumed to be
able to observe the strategies and fitness of other users in the pop-
ulation. Based on the observed information, in the next time slot,
each user’s decision on whether forwarding the information or not is
determined by which strategy can give him/her higher fitness. Thus,
along with the users’ strategies update slot by slot, the network s-
tate x also keeps changing slot by slot. Let us define the changing
rate of the network state as the population dynamics of information
diffusion, [ẋf , ẋn]. The following theorem shows the population dy-
namics of information diffusion in complete networks, where we can
see that no network scale information, e.g., how many users in the
network, were utilized. The information diffusion dynamics in (5)
only rely on the initial state xf (0) and the values of payoff matrix,
which also shows the scale-free property.

Theorem 1: The population dynamics of information diffusion
over complete networks can be described as follows:

ẋf (t) = ηxf (t)(1− xf (t)) (a1xf (t) + b1) , (5)

xf (t+ 1) = xf (t) + ẋf (t), (6)

where

{
a1 = uff − 2ufn + unn,
b1 = ufn − unn.

(7)

Proof: Due to page limitation, we show the proof in the supple-
mentary information [25].

3. GRAPHICAL EVOLUTIONARY GAME FORMULATION
FOR INFORMATION DIFFUSION DYNAMICS OVER

UNIFORM DEGREE NETWORKS

In this section, we model the information diffusion dynamics over
uniform degree networks, where users do not fully connect with each
other. We first introduce the basic concepts of graphical evolutionary
game, and then elaborate how to formulate the dynamic information
diffusion process over uniform degree networks.
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3.1. Basic Concepts of Graphical Evolutionary Game Theory

The traditional evolutionary game theory considers a population
with full connections, i.e., the population is based on a complete
graph. However, in many scenarios, players’ spatial locations may
lead to an incomplete graph structure. Graphical evolutionary game
theory is introduced to study the strategies evolution in such a struc-
tured population [26]. In graphical EGT, in addition to the entities of
players, strategy and payoff matrix, each game model is associated
with a graph structure, where the vertexes represent players and the
edges determine which player to interact with. Since the players
only has limited connections with others, each player’s fitness is
locally determined from interactions with all adjacent players. In
essence, the traditional evolutionary game can be regarded as a spe-
cial case of graphical EGT, where the corresponding graph structure
is complete. Previously, we have used graphical EGT to model the
adaptive networks [27], as well as the stable state of information
diffusion over social networks [28]. The major difference is that,
we focus on the dynamics analysis of information diffusion in this
paper using replicator dynamics, while [28] focused on the final
stable state of information diffusion by analyzing the evolutionarily
stable state (ESS), which is also an important concept in the EGT.

Similar to that in the traditional EGT, the concept of replicator
dynamics is also of importance in the graphical EGT. The difference
is that it is usually analyzed under some predefined strategy updat-
ing rules, including birth-death (BD), death-birth (DB) and imitation
(IM) [29]. These strategy updating rules are from the evolutionary
biology field and used to model the resident/mutant evolution pro-
cess as follows: (a) For BD update rule, a player is chosen for re-
production with the probability being proportional to fitness (Birth
process). Then, the chosen player’s strategy replaces one neighbor’s
strategy with uniform probability (Death process). (b) For DB up-
date rule, a random player is chosen to abandon his/her current strat-
egy (Death process). Then, the chosen player adopts one of his/her
neighbors’ strategies with the probability being proportional to their
fitness (Birth process). (c) For IM update rule, each player either
adopts the strategy of one neighbor or remains with his/her current
strategy, with the probability being proportional to fitness. In this
paper, we adopt BD update rule when modeling the information dif-
fusion dynamics. Note that all the analytical method and results can
be easily extended to the DB and IM update rules.

3.2. Graphical Evolutionary Game Formulation

Based on the graphical evolutionary game formulation above, we an-
alyze the information diffusion dynamics over uniform degree net-
works in this subsection. In the uniform scenario, an N -user social
network based on a homogenous graph with general degree k is con-
sidered. Similar to the complete network scenario, the network state
of information diffusion can also be described by x = [xf , 1− xf ],
where xf denotes the proportion of users who forward the informa-
tion among the whole population. In this uniform degree networks
scenario, our target is also to derive the dynamics of xf along with
time, which reflects the diffusion scale of the information. On the
other hand, unlike the complete network scenario where the proba-
bility that a player meets an a player adopting strategy Sf is equal
to the global network state xf , in a social network based on an in-
complete graph, this is not necessarily true since each user only has
possible connections with his/her neighbors. In such a case, due to
the limited dispersal, those who adopt the same strategy, i.e., either
forward the information or not, tend to form clusters. In order to take
into account the correlation in strategies of two adjacent players, we
define the local network states as xf |f and xf |n, which represents

the proportion of a user’s neighbors adopting strategy Sf , given the
user is using strategy Sf and Sn, respectively. In other words, xf |f
or xf |n is the local network state around a user adopting strategy Sf

or Sn. Note that the local network state and the global network state
has the relationship as follows:

xf |f = xff/xf , (1− xf |f )xf = xf |nxn, (8)

where xff represents the global edge state, i.e., the proportion of
edges on which both users adopting strategy Sf . Similarly, we have
xfn and xnn, where xff+xfn+xnn = 1. Thus, with the definitions
of global and local network states, as well as the global edge states,
we can define three dynamics of information diffusion over graph
based networks as follows:

• Population dynamics: ẋf , which is similar to that in the com-
plete networks.

• Relationship dynamics: ẋff and ẋnn, which are the dynamics
of global edge states and illustrate the dynamics of relation-
ship among users. Note that ẋfn = −ẋff − ẋnn.

• Influence dynamics: ẋf |f and ẋf |n, which are the dynamics
of local network state and illustrate the influence of one user
on his/her neighbors. For instance, ẋf |f = 1 means that all
the user’s neighbors adopt the same forwarding strategy with
him/her, i.e., the user’s neighbors are inclined to be influenced
by him/her or the user is more influential. On the other hand,
ẋf |n = 1 represents an opposite characteristic.

In the following, we will analyze those dynamics of information dif-
fusion over uniform degree networks, with the objective of deriving
the close-form expression of population dynamics.

Similar to the complete network scenario in Section II, we also
discretize the dynamic information diffusion process into time slot
and analyze the local and global dynamics under the BD strategy
updating rule. According to the BD strategy rule, in each time slot,
a user is selected from the whole population with probability pro-
portional to his/her fitness. Then, the selected user’s strategy, i.e.,
either forward the information or not, replaces one of his/her neigh-
bors’ strategy randomly. In other words, one of the user’s neighbor
is influenced by the user and replicates the user’s strategy. Since the
user selected for reproduction probably adopts a strategy with high-
er fitness than the average, the physical meaning of such a dynamic
strategy updating rule is equivalent to that of the replicator dynamic-
s. Therefore, the dynamics of the network states updated under BD
rule is also expected to be derived as a set of differential equation-
s, as in (2). In the following derivation, we only consider the weak
selection scenario, i.e., the selection intensity parameter η → 0. Un-
der the weak selection, the payoff obtained from the interactions is
considered as limited contribution to the overall fitness of each play-
er, as we can see in (1). Note that the results derived from weak
selection often remain as valid approximations for larger selection
strength [24]. Moreover, the weak selection assumption can help to
achieve a close-form analysis of the dynamic information diffusion
process and better reveal how the strategy diffuses over the network.
The following theorem shows the population dynamics of informa-
tion diffusion in uniform degree networks.

Theorem 2: The population dynamics of information diffusion
over uniform degree networks under Birth-Death strategy update
rule can be described as follows:

ẋf (t) =
η(k − 2)

(k − 1)
xf (t)(1− xf (t)) (a2xf (t) + b2) , (9)

xf (t+ 1) = xf (t) + ẋf (t), (10)
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where

{
a2 = (k − 2)(uff − 2ufn + unn),
b2 = uff + (k − 2)ufn − (k − 1)unn.

(11)

Proof: Due to page limitation, we show the proof in the supple-
mentary information [25].

Remarks: From Theorem 2, we can see that the form of pop-
ulation dynamics of information diffusion over uniform degree net-
works is quite similar to that over complete network in (5). The
dynamics in (9) only rely on the initial state xf (0), the values of
payoff matrix and the degree of the network, regardless of the net-
work scale information. Therefore, the population dynamics of in-
formation diffusion over uniform degree networks also shows the
scale-free property. Moreover, in real social networks, the degree of
each user usually exhibits that k � 2. In such a case, (9) can be
further approximated by

ẋf =
η(k − 2)2

(k − 1)
xf (1− xf )

[
(uff − 2ufn + unn)xf

+
uff − unn

k − 2
+ ufn − unn

]
= η′xf (1−xf )

[
(uff−2ufn+unn)xf+ufn−unn

]
, (12)

where η′ = η(k−2)2

(k−1)
. We can see that, the population dynamics

of information diffusion over uniform degree networks are exactly
same with that over complete network as in (5). This is because, in
a uniform degree network with sufficiently large degree, i.e., each
user is with sufficiently large number of neighbors, the information
forwarding strategy of one user is influenced by a large number of
other users, which is similar to that in the complete networks. In
essence, the complete network is a special case of the uniform de-
gree networks when k → N . Moreover, such a phenomenon also
validates that the dynamics derived by the BD strategy update rule is
equivalent with the replicator dynamics in complete networks.

4. EXPERIMENTS

In the experiment, we use the Twitter hashtag dataset to estimate
the payoff matrices corresponding to different hashtags. The Twitter
hashtag dataset contains the the number of mention times per hour
of 1000 Twitter hashtags with corresponding time series, which are
the 1000 hashtags with highest total mention times among 6 million
hashtags from Jun. to Dec. 2009 [30]. Let us first derive the closed-
form expression for the global network state xf (t). In Theorem 1
and Theorem 2, we can see that the dynamics of information diffu-
sion over two kinds of networks share the same form as follows:

dxf

dt
= βe−αtxf (1− xf ) (xf + γ) , (13)

where η = e−αt is considered as time-variance and different kinds
of networks have different coefficients β and γ. Using the separation
of variables method, we can derive the implicit closed-form expres-
sion of xf as follows:

(γ+1)lnxf−γln(1−xf )+ln(−xf−γ)
γ(γ + 1)

= −β
α
e−αt+c, (14)

where c is a constant and can be calculated by the initial condition
xf (t = 0). In such a case, we can estimate the parameters α, β and
γ using (14) through fitting the Twitter hashtag dataset. Fig. 1 shows
the curve fitting results of four hashtags using least squares method,
where the vertical axis is global network state xf (t). The mention
times of different hashtags per hour in the Twitter dataset are first
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Fig. 1. The curve fitting of different hashtags diffusion dynamics.
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Fig. 2. Comparison with the existing work.

normalized within interval [0, 1] and then accumulated over time to
get the cumulative mention times as shown by solid black square.
From the figure, we can see that our model can fit the real-world
information diffusion data very well, which means that the global
network state of information diffusion can be accurately predicted
by the proposed evolutionary game theoretic model.

According to (5), (9) and (13), we can obtain the relationship of
the payoff matrix as follows:

uff − 2ufn + unn = β, (15)

ufn − unn = βγ. (16)

If ufn is normalized as 1, then we can calculate uff and unn

through solving the equation set above. Based on the estimated
payoff matrix, we can further simulate the dynamics ẋf (t) using
our proposed model. In this experiment, we compare our results
with one of the most related exsiting works [31] using data min-
ing method, in which the dynamics of information diffusion are
predicted by

dxf

dt
= q1t

q2e−q3t, (17)

where the parameters q1, q2 and q3 can also be estimated through
least-squares curve fitting in a similar way. Fig. 2 shows the compar-
ison results, where the vertical axis is the dynamics ẋf (t) and the
mention times of different hastags per hour in the Twitter dataset are
normalized within interval [0, 1] and denoted by solid black square.
From the figure, we can see that our model can fit the real-world
information diffusion dynamics better than the data mining method
in [31] since the users’ interactions and decision making behaviours
are taken into account.

5. CONCLUSION

In this paper, we formulate the dynamics of information diffusion
over social networks using evolutionary game theory. We defined
the players, strategies and payoff matrix in this problem, and high-
lighted the correspondence between the EGT and information diffu-
sion. To validate our theoretical analysis, we conducted experiments
on Twitter hashtags dataset, which corroborated that our proposed
EGT model is effective and practical for modeling the dynamics of
information diffusion problem. One of our future works is to extend
the system model into non-uniform degree networks.
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