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Abstract— In self-organized mobile ad hoc networks (MANET)
where each user is its own authority, fully cooperative be-
haviors, such as unconditionally forwarding packets for each
other, cannot be directly assumed. In this paper, we focus on
cooperation enforcement in the self-organized mobile ad hoc
networks with noise and imperfect observation and study the
basic packet-forwarding function using the repeated game models
with imperfect information. A belief-based packet forwarding
framework is proposed to obtain cooperation-enforcement strate-
gies solely based on each node’s own past actions and its
private imperfect observation of other nodes’ information. The
simulation results illustrate that the proposed belief-based packet
forwarding approach can enforce the cooperation with only a
small performance degradation compared to the unconditionally
cooperative outcomes in the ad hoc networks with noise and
imperfect observation.

I. INTRODUCTION

Mobile ad hoc networks (MANET) have drawn extensive
attention in recent years due to the increasing demands of
its potential applications [1], [2]. In traditional emergency or
military situations, the nodes in a MANET usually belong
to the same authority and act cooperatively for the common
goals. Recently, emerging applications of MANETs are also
envisioned in civilian usage [3]–[5], where nodes typically
do not belong to a single authority and may not pursue a
common goal. We refer to such networks as self-organized
(self-organized) MANETs.

Before MANETs can be successfully deployed in a self-
organized way, the issue of cooperation stimulation must
be resolved first. In the literature, two types of schemes
have been proposed to stimulate cooperation among selfish
nodes: reputation-based schemes and payment-based schemes.
In reputation schemes, such as [3], [4], [6], a node determines
whether it should forward packets for other nodes or request
other nodes to forward packets for it based on their past
behaviors. In the payment-based schemes, such as [5], [7],
a selfish node will forward packets for other nodes only if it
can get some payment from those requesters as compensation.

Recently, some efforts have been made towards mathe-
matically analyzing the cooperation in self-organized ad hoc
networks using game theory, such as [8], [9]. In these existing
game theoretic approaches, all of them have assumed perfect
observation and most of them have not considered the effect
of noise on the strategy design. However, in self-organized ad
hoc networks, even when a node has decided to forward a
packet for another node, this packet may still be dropped due
to link breakage or transmission errors. Further, since central

monitoring is in general not available in self-organized ad hoc
networks, perfect public observation is either impossible or
too expensive to be employed. Each node makes its decisions
only based on its own past actions and imperfectly observed
private information of its opponents.

In this paper we study the cooperation enforcement for
self-organized mobile ad hoc networks with both noise and
imperfect observation and focus on the most basic networking
functioning, namely packet forwarding, in ad hoc networks.
A belief-based packet forwarding approach is proposed to
stimulate the packet-forwarding among nodes and maximize
the expected payoff of each selfish node. Specifically, the
repeated game model is applied to analyze the interactions
among nodes. A formal belief system based on Bayes’ rule
is developed to assign and update beliefs of other nodes’
continuation strategies for each node based on its private
imperfect information. Further, we not only show that the
packet forwarding strategy obtained from the proposed belief-
based framework achieves a sequential equilibrium that guar-
antees the strategy to be cheat-proof but also develop its
performance bounds. The simulation results illustrate that the
proposed belief-based packet forwarding approach can enforce
the cooperation in the ad hoc networks with noise and imper-
fect observation with only a small performance degradation
compared to the unconditionally cooperative outcomes.

The rest of this paper is organized as follows. The system
model of self-organized ad hoc networks with noise and
imperfect observation is presented in Section II. In Section III,
we propose the belief-based packet forwarding framework
and carry out the equilibrium and efficiency analysis. In
Section IV, the belief-based multi-hop multi-node packet
forwarding approach is developed. The simulation studies are
provided in Section V. Finally, Section VI concludes this
paper.

II. SYSTEM MODEL

We consider self-organized ad hoc networks where nodes
belong to different authorities and have different goals. As-
sume all nodes are selfish and rational, that is, their objective
are to maximize their own payoff, not to cause damage to other
nodes. Each node may act as a service provider: packets are
scheduled to be generated and delivered to certain destinations;
or act as a relay: forward packets for other nodes. The sender
will get some payoffs if the packets are successfully delivered
to the destination and the forwarding effort of relay nodes will
also introduce certain costs.
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Fig. 1: Two-player packet forwarding game in strategic form.

In this paper we assume that some necessary traffic mon-
itoring mechanisms, such as those described in [3], [5], [6],
[10], will be launched by each node to keep tracking of its
neighbors’ actions. However, it is worth mentioning that we
do not assume any public or perfect observation, where a
public observation means that when an action happens, a group
of nodes in the network will have the same observation, and
perfect observation means all actions can be perfectly observed
without any mistake. In ad hoc networks, due to its multi-hop
nature and the lack of central monitoring mechanism, public
observation is usually not possible. Meanwhile, to our best
knowledge, these exist no such monitoring mechanisms in ad
hoc networks which can achieve perfect observation. Instead,
in this paper, we study the cooperation-enforcement strategies
based on imperfect private observation. Here, private means
that the observation of each node is only known to itself
and won’t or cannot be revealed to others. We focus on two
scenarios causing imperfect observation in ad hoc networks.
One scenario is that the outcome of the forwarding action may
be packet dropping due to link breakage or transmission errors.
The other scenario is that a node has dropped a packet but was
observed as forwarding the packet, which may happen when
the watchdog mechanism [3] is used and the node wants to
cheat its previous node on the route.

III. BELIEF-BASED PACKET FORWARDING FRAMEWORK

Two-player packet forwarding game is studied in this sec-
tion in attempt to shed light on the solutions to the more
complicated multi-player case.

A. Static and Repeated Packet-Forwarding Game Model

We model the process of routing and packet-forwarding
between a source node and a relay node as a game. The
players of the game are the network nodes. There are two
players in this game, denoted by i ∈ I = {1, 2}. Each
player is able to serve as the relay for the other player and
needs the other player to forward packets for him based on
current routing selection and topology. Each player chooses
his action, i.e., strategy, ai from the action set A = {F, D},
where F and D are packet forwarding and dropping actions,
respectively. Also, each player observes a private signal ω
of the opponent’s action from the set Ω = {f, d}, where f
and d are the cooperation and non-cooperation observations,
respectively. Since the player’s observation can not be perfect,
the forwarding action F of one player may be observed as d
by the other player due to link breakage or transmission error.

We let such probability be pf . Also, the noncooperation action
D may be observed as the cooperation signal f under certain
circumstances. Without loss of generality, let the observation
error probability be pe in our system, which is usually caused
by cheating behaviors and the packet is actually dropped
though forwarding signal f is observed. For each node, the
cost of forwarding a group of packets for the other node during
one play is �, and the gain it can get for the packets that the
other node has forwarded for it is g̃.

We first consider the packet forwarding as a static game,
which is only played once. Given any action profile a =
(a1, a2), we refer to u(a) = (u1(a), u2(a)) as the expected
payoff profile. Let a−i and Prob(ωi|ai) be the action of the
ith player’s opponent and the probability of having observation
ωi given a−i, respectively. Then, ui(a) can be obtained as
follows.

ui(a) =
∑

ωi∈Ω

ũi(ai, ωi, a−i) · Prob(ωi|a−i), (1)

where ũi is the ith player’s payoff depending on the action
profile and his own observation. Then, calculating u(a) for
different strategy pairs, we have the strategic form of the static
packet forwarding game as a matrix in Figure 1, where g =
(1 − pf ) · g̃.

To analyze the outcome of a static game, the Nash Equi-
librium [11] is a well-known concept, which is the strategy,
one for each other, such that no player has incentive to
unilaterally change his action. The only Nash equilibrium of
our two-player packet-forwarding game is the action profile
a∗ = (D,D). But, the better cooperation payoff outcome
(g − �, g − �) of the cooperation action profile {F, F} will
not be practically realized in the static packet-forwarding
game due to the greediness of the players. However, generally
speaking, the above packet forwarding game will be played
many times in real ad hoc networks. It is natural to extend the
above static game model to a repeated game model. Basically,
in the repeated games, the players face the same static game
in every period, and the player’s overall payoff is a weighted
average of the payoffs in each stage over time.

Let ωt
i be the privately observed signal of the ith player in

period t. Suppose that the game begins in period 0 with the
null history h0. In this game, a private history for player i at
period t, denoted by ht

i, is a sequence of player i’s past actions
and signals, i.e., ht

i = {aτ
i , ωτ

i }t−1
τ=1. Denote the infinite packet-

forwarding repeated game with imperfect private histories by
G(p, δ), where p = (pf , pe), δ ∈ (0, 1) is the discount factor.
Assume that pf < 1/2 and pe < 1/2. Then, the overall
discounted payoff for player i ∈ I is defined as follows [11].

Ui(δ) = (1 − δ)
∞∑

t=0

δtut
i(a

t
1(h

t
1), a

t
2(h

t
2)). (2)

Folk Theorems for infinite repeated games [11] assert that
there exists a δ̂ < 1 such that any feasible and individually
rational payoff can be enforced by an equilibrium for all
δ ∈ (δ̂, 1) based on the public information shared by players.
However, one crucial assumption for the Folk Theorems is that
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players share common information about each other’s actions.
In contrast, the nature of our repeated packet forwarding game
for self-organized ad hoc networks determines that the nodes’
behaviorial strategies can only rely on the private information
histories including their own past actions and imperfectly
observed signals. A seemingly minor game-setting change
from the public observation to the private observation due
to noise and imperfect observation will make a substantial
difference in analyzing the efficiency of the packet-forwarding
game. In the situations of imperfect private observation, each
node must conduct statistical inference to detect potential
deviations and estimate what others are going to do next,
which can become extremely complex due to the imperfect
observation [12], [13].

B. Belief-Based Packet Forwarding Approach

In order to have an efficient and robust forwarding strategy
based on each node’s own observation and actions, we propose
a belief-based packet forwarding approach enlightened by
[13].

First, we define two strategies, i.e., σF and σD. Let σF be
the trigger cooperation strategy, which means that the player
forwards packets at current stage, and at the next stage the
player will continue to forward packets only if it observes the
other player’s forwarding signal f . Let σD be the defection
strategy, which means that the player always drops packets
regardless of its observation history. Such strategies are also
called continuation strategies [13]. Since both of the two
strategies also determine the player’s following actions at every
private history, the strategy path and expected future payoffs
caused by any pair of the two strategies are fully specified. Let
Vα,β(p, δ), α, β ∈ {F, D} denote the repeated game payoff
of σα against σβ , which can be illustrated by the following
Bellman equations [14] for different pairs of continuation
strategies.

VFF = (1 − δ)(g − �) + δ((1 − pf )2VFF +
pf (1 − pf )VFD + pf (1 − pf )VDF + p2

f · VDD), (3)

VFD = −(1 − δ)� + δ((1 − pf )(1 − pe)VDD +
pf (1 − pe)VDD + pe(1 − pf )VFD + pfpeVFD), (4)

VDF = (1 − δ)g + δ((1 − pf )(1 − pe)VDD +
pe(1 − pf )VDF + pf (1 − pe)VDD + pepfVDF ), (5)

VDD = (1 − δ) · 0 + δ((1 − pe)2VDD +
pe(1 − pe)VDD + pe(1 − pe)VDD + p2

e · VDD). (6)

Note that the first term in the above equations represents
the normalized payoffs of current period, while the second
term illustrates the expected continuation payoffs considering
four possible outcomes due to the imperfect observation. By
solving the above equations, Vα,β(p, δ) can be easily obtained.
Then, we have VDD > VFD, for any δ, p. Furthermore, if
δ > δ0, then VFF > VDF , where δ0 can be calculated as

δ0 =
�

(1 − pf − pe)g − [pf (1 − pf ) − pe]�
, (7)

TABLE I: Belief-based Two-player Packet Forwarding Algorithm

1. Initialize using system parameter configuration (δ, pe, pf ):
Node i initializes his belief µ1

i of the other node as π(δ, p)
and chooses the forwarding action in period 1 with probability π(δ, p).
2. Belief update based on the private history:
Update each node’s belief µt−1

i into µt
i using (10-13) according to

different realizations of private history.
3. Optimal Decision of the player’s next move:

If the continuation belief µt
i > π, node i plays σF ;

If the continuation belief µt
i < π, node i plays σD ;

If the continuation belief µt
i = π, node i plays either σF or σD .

4. Iteration:
Let t = t + 1, then go back to Step 2.

Note that this constraint of δ will prevent trivial defection
outcomes. Suppose that player i believes that his opponent is
playing either σF or σD, and is playing σF with probability
µ. Then the difference between his payoff of playing σF and
the payoff of playing σD is given by

�V (µ; δ, p) = µ ·(VFF −VDF )−(1−µ) ·(VDD−VFD). (8)

Hence �V (µ) is increasing and linear in µ and there is a
unique value π(p, δ) to make it zero, which can be obtained
as follows.

π(δ, p) =
−VFD(δ, p)

VFF (δ, p) − VDF (δ, p) − VFD(δ, p)
, (9)

where π(p, δ) is defined so that player i has no preference in
choosing σF or σD when player j plays σF with probability
π(δ, p) and σD with probability 1 − π(δ, p). For simplicity,
π(δ, p) may be denoted as π in the following parts under the
circumstances with no confusion. Intuitively, if node i holds
the belief that the other node will help him to forward the
packets with a probability smaller than 1/2, node i is inclined
not to forward packets for the other node. Considering such
situation, we let δ be such that π(δ, p) > 1/2.

It is worth mentioning that equation (8) is applicable to any
period. Thus, if a node’s belief of an opponent’s continuation
strategy being σF is µ, in order to maximize its expected
continuation payoff, the node prefers σF to σD if µ > π and
prefers σD to σF if µ < π. Given any initial belief µ, the
ith player’s new belief when he takes action ai and receives
signal ωi can be defined using the Bayes’ rule [11] as follows.

µ(ht−1
i , (F, f)) =

µ(ht−1
i )(1 − pf )2

µ(ht−1
i )(1 − pf ) + pe · (1 − µ(ht−1

i ))
, (10)

µ(ht−1
i , (F, d)) =

µ(ht−1
i )(1 − pf ) · pf

µ(ht−1
i ) · pf + (1 − pe) · (1 − µ(ht−1

i ))
, (11)

µ(ht−1
i , (D, f)) =

µ(ht−1
i )(1 − pf ) · pe

µ(ht−1
i ) · (1 − pf ) + pe · (1 − µ(ht−1

i ))
,

(12)

µ(ht−1
i , (D, d)) =

µ(ht−1
i )pf · pe

µ(ht−1
i ) · pf + (1 − pe) · (1 − µ(ht−1

i ))
. (13)

Based on the above discussion, we propose a two-player
belief-based packet forwarding algorithm shown in Table I.
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C. Efficiency Analysis of the Belief-Based Packet Forwarding
Framework

In this part, we show that the behaviorial strategy obtained
from the proposed algorithm with well-defined belief systems
is a sequential equilibrium and further analyze its performance
bounds.

First, we briefly introduce the equilibrium concepts of
the repeated games with imperfect information. As for the
infinitely repeated game with perfect information, the Nash
Equilibrium concept is a useful concept for analyzing the
game outcomes. But, since the threats in Nash equilibria
may not be credible and become empty threats, the subgame
perfect equilibrium [11] is defined to eliminate those equilibria
in which the players’ threats are incredible. However, the
above equilibrium criteria for the infinitely repeated game
require that perfect information can be obtained for each
player. In our packet forwarding game, each node is only
able to have his own strategy history and form the beliefs
of other nodes’ future actions through imperfect observation.
Sequential Equilibrium [11] is a well-defined counterpart of
subgame perfect equilibrium under such circumstance, which
guarantees that any deviations will be unprofitable.

In our packet-forwarding game with private history and
observation, the proposed strategy with belief-system can be
denoted as (σ∗, µ), where µ = {µi}i∈I and σ∗ = {σ∗

i }i∈I .
By studying (10), we find that there exists a point φ such
that µ(ht−1

i , (F, f)) < µ(ht−1
i ) as µ(ht−1

i ) > φ while
µ(ht−1

i , (F, f)) > µ(ht−1
i ) as µ(ht−1

i ) < φ. Here, φ can
be calculated as φ = [(1 − pf )2 − pe]/(1 − pf − pe). It is
easy to show that µ(ht−1

i , (ai, ωi)) < µ(ht−1
i ) when (F, d),

(D, f) and (D, d) are reached. Since we initialize the belief
with π, we have µt

i ≤ φ after any belief-updating operation
if π < φ. Considering the belief updating in the scenario that
π ≥ φ becomes trivial, we assume π < φ, thus µt

i ∈ [0, φ] and
φ > 1/2. Then, let the proposed packet-forwarding strategy
profile σ∗ be defined as: σ∗

i (µi) = σF if µi > π and
σ∗

i (µi) = σD if µi < π; If µi = π, the node forwards packets
with probability π and drops them with probability 1 − π.
Similar to [13], we have the following two theorems.

Theorem 1: The proposed strategy profile σ∗ with the belief
system µ from Table I is a sequential equilibrium for π ∈
(1/2, φ).

Theorem 2: Given g and �, there exist δ̃ ∈ (0, 1) and p̃
for any small positive τ such that the average payoff of the
proposed strategy σ∗ in the packet-forwarding repeated game
G(p, δ) is greater than g − � − τ if δ > δ̃ and pe, pf < p̃.

Theorem 1 shows that the strategy profile σ∗ and the
belief system µ obtained from the proposed algorithm is a
sequential equilibrium, which not only responds optimally
at every history but also has consistency on zero-probability
histories. Thus, the cooperation can be enforced using our
proposed algorithm since the deviation will not increase the
players’ payoffs. Then, Theorem 2 addresses the efficiency
of the equilibrium and shows that when the pe and pf are
small enough, our proposed strategy approaches the coop-

erative payoff g − �. However, in real ad hoc networks, a
more useful and important measurement is the performance
bounds of the proposed strategy given some fixed pe and pf

values. We further develop the following theorem studying
the lower bound and upper bound of our strategy to provide
a performance guideline. In order to model the prevalent data
application in current ad hoc networks, we assume that the
game discount factor is very close to 1.

Theorem 3: Given the fixed (pe, pf ) and discount factor of
the repeated game δG close to 1, the payoff of the proposed
algorithm in Table I is upper bounded by

Ū = (1 − κ) · (g − �), (14)

where

κ =
pf · [g(1 − pf ) + �]
(1 − pf − pe)(g − �)

. (15)

The lower bound of the performance will approach the upper
bound when the discount factor of the repeated game δG

approaches 1 if the packet forwarding game is divided into N
sub-games as follows: the first sub-game is played in period
1, N + 1, 2N + 1, ... and the second sub-game is played in
period 2, N + 2, 2N + 2, ..., and so on. The optimal N is

N = �log δ/ log δG�, (16)

where δ = �/{[(1 − pf )2 − pe] · g + � · pe}. The proposed
strategy is played in each sub-game with equivalent discount
factor δN

G .
In the above theorem, by introducing the idea of dividing

the original game into several sub-games, even if the outcomes
of some sub-games become the non-cooperation case due to
the observation errors, cooperation plays can still continue in
other sub-games to increase the total payoff. Note that due
to the limited space, the proofs of theorems are omitted here,
which can be found in [15].

IV. BELIEF-BASED MULTI-NODE MULTI-HOP

PACKET FORWARDING

A. Multi-Node Multi-Hop Game Model

In this section, we consider self-organized ad hoc networks
where nodes can move freely inside a certain area. For each
node, packets are scheduled to be generated and sent to certain
destinations. Different from the two-player packet forwarding
game, the multi-player packet forwarding game studies multi-
hop packet forwarding which involves the interactions and
beliefs of all the nodes on the route. Before studying the belief-
based strategy in this scenario, we first model the multi-player
packet forwarding game as follows:

• There are M players in the game, which represent M
nodes in the network. Denote the player set as IM =
{1, 2, ...,M}.

• For each player i ∈ IM , he has groups of packets to be
delivered to certain destinations at different time.

• For each player i ∈ IM , forwarding a packet for another
player will incur some cost �.
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Fig. 2: The average payoffs of the cooperative strategy and
proposed strategy.

• Due to the multi-hop nature of ad hoc networks, the
destination player j may not lie in the sending player
i’s direct transmission range. Player i needs to not only
find the possible routes leading to the destination (i.e.,
route discovery), but also choose an optimal route from
the routing candidates (i.e., route selection).

• Each player only knows his own past action and imper-
fect observation of other players’ action. Note that the
information history consisting of the above two parts is
private to each player.

Similar to [8], we assume the network operates in discrete
time. In each time slot, one node is randomly selected from the
M nodes as the sender. The probability that the sender finds
r possible routes is given by qr(r) and the probability that
each route needs h̄ hops is given by qh̄(h̄) (assume at lease
one hop is required in each time slot). Note that the h̄ relays
on each route are selected from the rest of nodes with equal
probability and h̄ ≤ �g/��. Assume each routing session lasts
for one slot and the routes remain unchanged within each time
slot. In our study, we consider that delicate traffic monitoring
mechanisms such as receipt-submission approaches [5] are in
place, hence the sender is able to have the observation of each
node on the forwarding route.

B. Belief-Based Strategy for Multi-hop Packet Forwarding

In this part, we develop efficient belief-based strategies for
multi-hop packet forwarding games based on the proposed
two-player approach. Let ωij , µij and hij denote the sending
player i’s observation, belief value and the private history on
the forwarding player j, respectively. The proposed forwarding
strategy for the multi-player case is illustrated as follows.

Belief-Based Multi-hop Packet Forwarding (BMPF) Strat-
egy: In the multi-node multi-hop packet forwarding game,
given the discount factor δG and p = (pe, pf ), the sender and
relay nodes act as follows during different phases of routing
process.

• Game partition and belief initialization: Partition the
original game into N sub-games according to (16). Then,
each node initializes its belief of other nodes as π(δN

G , p)
and forwards packets with probability π(δN

G , p)

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.75

0.8

0.85

0.9

0.95

1

p
f

P
ay

of
f r

at
io

p
e
=0.01

p
e
=0.1

p
e
=0.2

Fig. 3: Payoff ratios of the proposed strategy to the cooperative
strategy.

• Route participation: The selected relay node on each route
participates in the routing if and only if its belief of the
sender is greater than π.

• Route selection: The sender selects the route with the
largest µi =

∏
j∈Ri

µij from the route candidates.
• Packet forwarding: The sender updates its belief of each

relay node’s continuation strategy using (10)-(13) and
decide the following actions based on its belief.

Based on Theorem 1, it is straight-forward to show that
BMPF Strategy designed for multi-node multi-hop packet
forwarding games is also a sequential equilibrium. Here, in
order to calculate the equivalent two-player expected gain g
in Table I, we need to consider the routing statistics such as
qr(r) and qh̄(h̄) to deal with the error propagation and routing
diversity.

V. SIMULATION STUDIES

In this section, we investigate the cooperation enforcement
results of our proposed belief-based packet forwarding ap-
proach by simulation.

We first focus our simulation studies on one-hop packet
forwarding scenarios in ad hoc networks, where the two-
player belief-based packet forwarding approach can be directly
applied to. Let M = 100, g = 1 and � = 0.2 in our
simulation. For comparison, we define the cooperative strategy,
which assumes every node will unconditionally forwarding
packets with no regard to other nodes’ past behaviors. Such
cooperative strategy is not implementable in self-organized ad
hoc networks. But it can serve as a loose upper bound of
the performance of the proposed strategy and determine the
performance loss of cooperation enforcement due to noise and
imperfect observation.

Figure 2 shows the average payoff and performance bounds
of the proposed belief-based strategy for different pf by
comparing them with the cooperative payoff. Note that pe =
0.01 and δG = 0.99. It can be seen from Figure 2 that our
proposed approach can enforce cooperation with only small
performance loss compared to the unconditionally cooperative
payoff. Further, this figure shows that the average payoff of
our proposed strategy satisfies the theoretical payoff bounds
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developed in Theorem 3. The fluctuation of the payoff curve of
our strategy is because that only integer number of sub-games
can be partitioned from the original game. Figure 3 shows the
ratio of the payoffs of our strategy to those of the cooperative
strategy for different pe and pf . Here we let δG = 0.999 to
approach the payoff upper bound. It can be seen from Figure
3 that even if pf is as large as 0.1 due to link breakage or
transmission error, our cooperation enforcement strategy can
still achieve as high as 80% of the cooperative payoff.

In order to show that the proposed strategy is cheat-proof
among selfish users, we define the deviation strategies for
comparison. The deviation strategies differ from the proposed
strategy only when the continuation strategy σF and obser-
vation F are reached. The deviation strategies will play σD

with deviating probability pd instead of playing σF as the
proposed strategy specifies. Figure 4 compares the nodes’
average payoffs of the proposed strategy, cooperative strategy
and deviation strategies with different deviating probabilities.
Note that δG = 0.999 and pe = 0.1. This figure shows that the
proposed strategy has much better payoffs than the deviating
strategies.

Then, we study the performance of the proposed multi-hop
multi-node packet forwarding approach. Let qr(1) = qr(2) =
1/2, qh̄(2) = qh̄(3) = 1/2 and δG = 0.999. We compare
the payoff of our approach with that of the cooperative one
in Figure 5. Note that multi-hop forwarding will incur more
costs to the nodes since one successful packet delivery involves
the packet forwarding efforts of many relay nodes. Also, the
noise and imperfect observation will have more impact on the
performance as each node’s incorrect observation will affect
the payoffs of all other nodes on the selected route. We can
see from Figure 5 that our proposed strategy still maintains
high payoffs even when the environment is noisy and the
observation error is large.

VI. CONCLUSION

In this paper, we study the cooperation enforcement in
self-organized ad hoc networks with noise and imperfect
observation. By modeling the basic network function, packet
forwarding, as a repeated game with imperfect information,
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Fig. 5: Average payoffs of the proposed strategy and deviating
strategies in multi-node multi-hop scenarios.

we develop the belief-based packet forwarding framework to
enforce cooperation in the scenarios of noise and imperfect
observation. We show that the behaviorial strategy with well-
defined belief system from the proposed approach can not
only achieve the sequential equilibrium but also maintain
high payoffs for both two-player and multi-player cases. The
simulation results illustrate that the proposed belief-based
packet forwarding approach achieves stable and near-optimal
equilibrium in the ad hoc networks with imperfect observation.
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