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Abstract— In order to fully utilize the scarce spectrum
resources, with the development of cognitive radio tech-
nologies, dynamic spectrum allocation becomes a promis-
ing approach to increase the efficiency of spectrum usage.
In this paper, we consider the spectrum allocation in wire-
less networks with multiple selfish legacy spectrum holders
and unlicensed users as multi-stage dynamic games. A
belief-assisted dynamic pricing approach is proposed to
optimize overall spectrum efficiency while keeping the
participating incentives of the users based on double
auction rules. Moreover, considering the budget constraints
of the unlicensed users, a dynamic programming approach
is further developed to optimize the spectrum allocation
over time. The simulation results show that our proposed
scheme not only approaches optimal outcomes with low
overhead compared to general continuous double auction
mechanisms, but also fully exploits the time diversity of
spectrum resources when budget constraints exist.

I. INTRODUCTION

Recently, regulatory bodies like the Federal Commu-
nications Commission (FCC) in the United States are
recognizing that current static spectrum allocation can
be very inefficient considering the bandwidth demands
may vary highly along the time dimension or the space
dimension. In order to fully utilize the scarce spectrum
resources, with the development of cognitive radio tech-
nologies, dynamic spectrum access becomes a promising
approach to increase the efficiency of spectrum usage,
which allows unlicensed wireless users to dynamically
access the licensed bands from legacy spectrum holders
based on leasing agreements.

Cognitive radio technologies have the potential to
provide the wireless devices with various capabilities,
such as frequency agility, adaptive modulation, trans-
mit power control and localization. The advances of
cognitive radio technologies make more efficient and
intensive spectrum access possible on a negotiated or an
opportunistic basis. The FCC began to consider more
flexible and comprehensive use of available spectrum
in [1], [2]. Then, great attentions have been drawn to
explore the open spectrum systems [3], [4] for dynamic
spectrum sharing. Traditionally, network-wide spectrum

assignment is carried out by a central server, namely,
spectrum broker [5], [6]. Recently, distributed spectrum
allocation approaches [7], [8] have been well studied to
enable efficient spectrum sharing only based on local
observations. In [7], local bargaining mechanism was
introduced to distributively optimize the efficiency of
spectrum allocation and maintain bargaining fairness
among secondary users. In [8], the authors proposed
a repeated game approach to increase the achievable
rate region of spectrum sharing, in which the spectrum
sharing strategy can be enforced by the Nash Equilib-
rium of dynamic games. Moreover, efficient spectrum
sharing has also been studied from a practical point of
view, such as in [9] and [10], which analyzed spectrum
sharing games for WiFi networks and cellular networks,
respectively.

Although the existing dynamic spectrum access
schemes have achieved some success on enhancing the
spectrum efficiency and distributive design, most of them
focus on efficient spectrum allocation given fixed topolo-
gies and cannot quickly adapt to the dynamics of wireless
networks due to node mobility, channel variations or
varying wireless traffic. Furthermore, existing cognitive
spectrum sharing approaches generally assume that the
network users will act cooperatively to maximize the
overall system performance, which is a reasonable as-
sumption for traditional emergency or military situations.
However, with the emerging applications of mobile ad
hoc networks envisioned in civilian usage, the users may
not serve a common goal or belong to a single authority,
which requires that the network functions can be carried
out in a self-organized way to combat the selfish be-
haviors. In dynamic spectrum allocation scenarios, the
users’ selfishness causes more challenges for efficient
mechanism design, such as incentive-stimulation and
price of anarchy [9], [11]. Therefore, novel spectrum
allocation approaches need to be developed considering
the dynamic nature of wireless networks and users’
selfish behaviors.

Considering a general network scenario in which
multiple primary users (legacy spectrum holders) and

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE SECON 2006 proceedings.

1191-4244-0626-9/06/$20.00 (c) 2006 IEEE.



secondary users (unlicensed users) coexist, primary users
attempt to sell unused spectrum resources to secondary
users for monetary gains while secondary users try to
acquire spectrum usage permissions from primary users
to achieve certain communication goals, which generally
introduces reward payoffs for them. In order to solve
the above issues, we consider the spectrum sharing
as multistage dynamic games and propose a dynamic
pricing approach to optimize the overall spectrum effi-
ciency, meanwhile, keeping the participating incentives
of the users based on double-auction rules and coping
with the budget constraints by dynamic programming.
The main contributions of this paper are multi-fold.
First, by modeling the spectrum sharing as a dynamic
pricing game, we are able to quickly and accurately
coordinate the spectrum allocation among primary and
secondary users through a trading process to maximize
the payoffs of both primary and secondary users. Further,
we develop a belief system to assist greedy users update
their strategies adaptive to the spectrum demand and sup-
ply changes, which not only approaches the theoretical
optimal outcomes of the spectrum allocation problem but
also substantially decreases the pricing overhead due to
frequent bid/ask updates and message exchange. Third,
by considering the budget constraints of the secondary
users, the proposed dynamic pricing approach is able to
further exploit the time diversity of spectrum resources.

The reminder of this paper is organized as follows:
The system model of dynamic spectrum allocation is
described in Section II. In Section III, we formulate
the spectrum allocation as pricing games based on the
system model. In Section IV, the belief-based dynamic
pricing approach is proposed for the optimal spectrum
allocation. The simulation studies are provided in Section
V. Finally, Section VI concludes this paper.

II. SYSTEM MODEL

We consider the wireless networks where multiple
primary users and secondary users operate simultane-
ously in a wireless network, which may represent various
network scenarios. For instance, the primary users can be
the spectrum broker connected to the core network and
the secondary users are the base stations equipped with
cognitive radio technologies; or the primary users are
the access points of a mesh network and the secondary
users are the mobile devices. On one hand, every primary
user has the license of using a certain spectrum range,
which can be divided into non-overlapping orthogonal
channels. Considering that the authorized spectrum of
primary users may not be fully utilized over time, they

prefer to lease the unused channels to the secondary
users for monetary gains. On the other hand, since the
unlicensed spectrums become more and more crowded,
the secondary users may try to lease some unused
channels from primary users for more communication
gains by providing leasing payments.

In our system model, we assume all users are selfish
and rational, that is, their objectives are to maximize
their own payoffs, not to cause damage to other users.
However, users are allowed to cheat whenever they
believe cheating behaviors can help them to increase
their payoffs. Generally speaking, in order to acquire the
spectrum licenses from regulatory bodies such as FCC,
the primary users have certain operating costs. With
regard to secondary users, in order to have the rewards
of achieving certain communication goals, they want to
utilize more spectrum resources. The selfishness of both
primary and secondary users will prevent them from re-
vealing their private information such as acquisition costs
or reward payoffs, which makes traditional spectrum
allocation approaches not applicable under this scenario.
Therefore, novel spectrum allocation approaches need
to be developed which not only optimize the spectrum
efficiency but also extract the private information from
the selfish parties through certain mechanisms to assist
the optimization of spectrum allocation.

Specifically, we consider the collection of the available
spectrums from all primary users as a spectrum pool,
which totally consists of N non-overlapping channels.
Assume there are J primary users and K secondary
users, indicated by the set P = {p1, p2, ..., pJ} and
S = {s1, s2, ..., sK}, respectively. We represent the
channels authorized to primary user pi using a vector
Ai = {aji}j∈{1,2,...,ni}, where aji represents the channel
index in the spectrum pool and ni is the total number of
channels which belong to user pi. Define A as the set of
all the channels in the spectrum pool. Moreover, denote
the acquisition costs of user pi’s channels as the vector
Ci = {ca

j
i

i }j∈{1,2,...,ni}, where the jth element represents
the acquisition cost of the jth channel in Ai. For
simplicity, we write ca

j
i

i as cji . As for secondary user si,
we define her/his payoff vector as Vi = {vji }j∈{1,2,...,N},
where the jth element is the reward payoff if this user
successfully leases the jth channel in the spectrum pool.

III. PRICING GAME MODEL

In this paper, we model the dynamic spectrum alloca-
tion problem as a pricing game to study the interactions
among the players, i.e., the primary and secondary users.
Based on the discussion in the previous section, we are
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able to have the payoff functions of the players in our
dynamic game. Specifically, if primary user pi reaches
agreements of leasing all or part of her/his channels to
secondary users, the payoff function of this primary user
can be written as follows.

Upi
(φAi

, αAi

i ) =
ni∑
j=1

(φaj
i
− cji )α

aj
i

i , (1)

where φAi
= {φaj

i
}j∈{1,2,...,ni} and φaj

i
is the payment

that user pi obtains from the secondary user by leasing
the channel aji in the spectrum pool. Note that αAi

i =
{αa

j
i

i }j∈{1,2,...,ni} and α
aj

i

i ∈ {0, 1} which indicates if
the jth channel of user pi has been allocated to a
secondary user or not. For simplicity, we denote αa

j
i

i as
αji . Similarly, the payoff function of secondary user si
can be modeled as follows.

Usi
(φA, β

A
i ) =

N∑
j=1

(vji − φj)β
j
i , (2)

where φA = {φj}j∈{1,2,...,N}, βA
i = {βji }j∈{1,2,...,N}.

Note that βji ∈ {0, 1} illustrates if secondary user si
successfully leases the jth channel in the spectrum pool
or not. Hence, the strategies of the primary users and
secondary users are actually defined by αAi

i and βA
i ,

respectively.
Since the players may have conflict interests with

each other, our dynamic spectrum sharing game can
be modeled as a multi-stage non-cooperation game. To
be specific, from the primary users’ point of view,
they want to earn the payments by leasing the unused
channels which not only cover their spectrum acquisition
costs but also gain as much extra payments as possible;
from the secondary users’ point of view, they aim to
accomplish their communication goals by providing the
least possible payments to lease the channels; while
from the network designers’ point of view, they attempt
to maximize the network performance, which in our
case is the spectrum efficiency. Therefore, the spectrum
users involved in the spectrum sharing process construct
a non-cooperative pricing game [11], [12]. Since the
selfish users are their own authorities, they will not
reveal their private information to others unless some
mechanisms have been applied to guarantee that it is not
harmful to disclose the private information. Generally,
such non-cooperative game with incomplete information
is complex and difficult to study as the players do not
know the perfect strategy profile of others. But based
on our game setting, the well-developed auction theory

[13] can be applied to formulate and analyze the pricing
game.

In auction games [13], according to an explicit set
of rules, the principles (auctioneers) determine resource
allocation and prices on the basis of bids from the agents
(bidders). In our spectrum allocation pricing game, the
primary users can be viewed as the principles, who
attempts to sell the unused channels to the secondary
users. The secondary users are the bidders who com-
pete with each other to buy the permission of using
primary users’ channels, by which they may gain extra
payoffs for future use. In our pricing game, multiple
sellers and buyers coexist, which indicates the double
auction scenario. It means that not only the secondary
users but also the primary users need to compete with
each other to make the beneficial transactions possible
by eliciting their willingness of the payments in the
forms of bids or asks. Specifically, the double auction
is one of the most common exchange mechanisms, used
extensively in stock markets such as the New York
Stock Exchange (NYSE) or commodity markets such
as Chicago Merchandize Exchange (CME). The most
important property of double auction mechanism is its
high efficiency, which is still not fully understood in
economic theory. Moreover, it can respond quickly to
changing conditions of auction participants. However, in
order to achieve the full efficiency of the double auction
mechanism, a lot of messages need to be exchanged
among the auction participants, which can be easily
implemented by powerful central authorities in stock
or commodity markets. It is worth noticing that in au-
tonomous wireless networks either central authorities can
be pre-assumed or the bandwidth of control channels is
very limited. Therefore, we aims to develop an efficient
pricing approach for spectrum allocation, which not only
has the prevalence of the double auction mechanism
but also uses simple message exchanges to quickly and
accurately coordinate the spectrum sharing.

IV. BELIEF-ASSISTED DYNAMIC PRICING FOR

EFFICIENT SPECTRUM ALLOCATION

A. Static Pricing Game and Competitive Equilibrium

Assume that the available channels from the primary
users are leased for usage of certain time period T .
Also, we assume that the cost of the primary users and
reward payoffs of the secondary users remain unchanged
over this period. Before this spectrum sharing period,
we define a trading period τ , within which the users
exchange their information of bids and asks to achieve
agreements of spectrum usage. The time period T + τ is
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considered as one stage in our pricing game. We first
study the interactions of the players in static pricing
games. Note that the users’ goals are to maximize their
own payoff functions. As for the primary users, the
optimization problem can be written as follows.

O(pi) = max
φAi

,α
Ai
i

Upi
(φAi

, αAi

i ), ∀i ∈ {1, 2, ..., J} (3)

s.t. Uŝ
a

j
i

({φ−aj
i
, φaj

i
}, βA

i ) ≥ Uŝ
a

j
i

({φ−aj
i
, φ̃aj

i
}, βA

i ),

ŝaj
i
�= 0, aji ∈ Ai. (4)

where φ̃aj
i

is any feasible payment and φ−aj
i

is the
payment vector excluding the element of the payment
for the channel aji . Note that ŝaj

i
is defined as follows.

ŝaj
i

=

{
sk if βa

j
i

k = 1,

0 if βa
j
i

k = 0,∀k ∈ {1, 2, ...,K}.
(5)

Thus, (4) is the incentive compatible constraint [13]. It
means that the secondary users have incentives to pro-
vide the optimal payment because they cannot have extra
gains by cheating on the primary users. Similarly, the
optimization problem can be written for the secondary
users as follows.

O(si) = max
φA,βA

i

Usi
(φA, β

A
i ), ∀i ∈ {1, 2, ...,K} (6)

s.t. Up̂j
({φ−j , φj}, βA

i ) ≥ Up̂j
({φ−j , φ̃j}, βA

i ),

p̂j �= 0, βji = 1. (7)

where p̂j is defined as

p̂j =
{
pk if βji = 1, j ∈ Ak, α

j
k = 1

0 otherwise,∀k ∈ {1, 2, ..., J}. (8)

Similarly, (7) is the incentive compatible constraint for
the primary users, which guarantees that the primary
user will give the usage permission of their channels to
the secondary users so that they can receive the optimal
payments.

From (3) and (6), we can see that in order to obtain
the optimal allocation and payments, a multi-objective
optimization problem needs to be solved, which becomes
extremely complicated due to our game setting that
only involves incomplete information. Thus, in order
to make this problem tangible, we analyze it from the
game theory point of view. Generally speaking, game
theory provides well-developed equilibrium concepts or
optimality criteria to study the outcomes of games.
For instance, Nash Equilibrium [12] is an important

Fig. 1: Illustration of supply and demand functions.

concept to measure the outcome of a non-cooperation
game, which is a set of strategies, one for each player,
such that no selfish player has incentive to unilaterally
change his/her action. In order to further measure the
efficiency of game outcomes, Pareto Optimality [11]
is defined such that a Pareto optimal outcome cannot be
improved upon without hurting at least one player. Often,
a Nash equilibrium is not Pareto optimal while Pareto
optimal outcomes may not be sustained considering
the selfishness of the players. Further, considering the
double auction scenarios of our pricing game, Competi-
tive Equilibrium (CE) [14] is a well-known theoretical
prediction of the outcomes. It is the price at which the
number of buyers willing to buy is equal to the number
of sellers willing to sell. Alternatively, CE can also be
interpreted as where the supply and demand match [13].
The supply function can be defined as the relationship
between the acquisition costs of primary users and the
number of corresponding channels; the demand function
can be defined as the relationship between the reward
payoffs of secondary users and the number of corre-
sponding channels. We describe the supply and demand
functions in Figure 1. Note that CE is also proved to
be Pareto optimal in stationary double auction scenarios
[15]. It is worth noting that in order to achieve the CE the
traditional continuous bid/ask interactions among players
will involve a great amount of message exchanges and
require powerful centralized control, which may not be
applicable to wireless networking scenarios due to the
limited bandwidth of control channels.

B. Belief-Assisted Dynamic Pricing

Considering network dynamics due to mobility, chan-
nel variations or wireless traffic variations, the secondary
users may have different reward payoffs of acquiring
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certain channels from primary users at different time
stages. Specifically, since the secondary users can be
mobile devices, they may move out the access range
of certain channels and hence the corresponding reward
payoffs vji are regarded as 0. Or, the secondary users may
face various channel fading conditions within different
spectrum ranges or during different time periods, which
changes their payoff values vji at different time stages.
Moreover, the costs of primary users will also change
over time due to network dynamics. For instance, if the
legacy users themselves have larger spectrum demands,
some legacy channels may not be available for leasing
anymore, which actually indicates an infinite leasing cost
of those channels in our pricing model. In brief, cji and vji
need to be considered as random variables in dynamic
scenarios, which we assume to satisfy the probability
density functions (PDF) fc(c) and fv(v), respectively.
Therefore, considering dynamic network conditions, we
further model the spectrum sharing as a multi-stage
dynamic pricing game. Let γ be the discount factor of
the multi-stage game. Based on (3) and (6), the objective
functions for the primary users and secondary users can
be rewritten as follows.

Õ(pi) = max
φAi,t,α

Ai
i,t

Ecj
i ,v

j
i
[
∞∑
t=1

γt · Upi,t(φAi,t, α
Ai

i,t )], (9)

Õ(si) = max
φA,t,βA

i,t

Ecj
i ,v

j
i
[
∞∑
t=1

γt · Usi,t(φA,t, β
A
i,t)], (10)

where the subscript t indicates the tth stage of the
multi-stage game. Generally speaking, there may exist
some overall constraints of spectrum sharing such as
each secondary user’s total budget for leasing spectrum
resources or each primary user’s total available spectrum
supply. Under these constraints, the above problem need
to be further modeled as a dynamic programming process
[16], [17] to obtain optimal sequential strategies by
considering some state parameters such as the number
of channels to be allocated at every stage or the resid-
ual monetary budget. However, the major difficulty of
dynamic spectrum sharing lies in that how to efficiently
and quickly update the spectrum sharing strategies adapt
to the changing network conditions only based on local
information. Therefore, in the following parts, we first
focus on developing a belief-assisted dynamic pricing
approach, which can not only approach CE outcomes
but also responds quickly to networking dynamics while
only introducing limited overhead. Then, the total budget
constraint is taken into consideration and a dynamic

programming approach is further proposed to obtain the
optimal sequential strategies.

1) Belief-Assisted Dynamic Pricing: Since our pric-
ing game belongs to the non-cooperation games with
incomplete information [12], the players need to build up
certain beliefs of other players’ future possible strategies
to assist their decision making. Considering that there are
multiple players with private information in the pricing
game and what directly affect the outcome of the game
are the bid/ask prices, it is more efficient to define one
common belief function based on the publicly observed
bid/ask prices than generating specific belief of every
other player’s private information. Hence, enlightened by
[14], we consider the primary/secondary users’ beliefs
as the ratio their bid/ask being accepted at different
price levels. At each time during the dynamic spectrum
sharing, the ratio of asks from primary users at x that
have been accepted can be written as follows.

r̃p(x) =
µA(x)
µ(x)

, (11)

where µ(x) and µA(x) are the number of asks at x and
the number of accepted asks at x, respectively. Similarly,
at each time during the dynamic spectrum sharing, the
ratio of bids from secondary users at y that have been
accepted is

r̃s(y) =
ηA(y)
η(y)

, (12)

where η(y) and ηA(y) are the number of bids at y and
the number of accepted bids at y, respectively. Usually,
r̃p(x) and r̃s(y) can be accurately estimated if a great
number of buyers and sellers are participating in the
pricing at the same time. However, in our pricing game,
only a relatively small number of players are involved
in the spectrum sharing at the specific time. The beliefs,
namely, r̃p(x) and r̃s(y) cannot be practically obtained
so that we need to further consider using the historical
bid/ask information to build up empirical belief values.
Considering the characteristics of double auction, we
have the following observations:

• If an ask x̃ < x is rejected, the ask at x will also
be rejected;

• If an ask x̃ > x is accepted, the ask at x will also
be accepted;

• If a bid ỹ > x is made, the ask at x will also be
accepted.

Based on the above observations, the players’ beliefs
can be further defined as follows using the past bid/ask
information.
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Definition 1: Primary users’ beliefs: for each potential
ask at x, define

r̂p(x) =




1 x = 0∑
w≥x µA(w)+

∑
w≥x η(w)∑

w≥x µA(w)+
∑

w≥x η(w)+
∑

w≤x µR(w)
x ∈ (0, M)

0 x ≥ M
(13)

where µR(w) is the number of asks at w that has been
rejected, M is a large enough value so that the asks
greater than M won’t be accepted. Also, it is intuitive
that the ask at 0 will be definitely accepted as no cost is
introduced.

Definition 2: Secondary users’ beliefs: for each po-
tential bid at y, define

r̂s(x) =




0 y = 0∑
w≤y ηA(w)+

∑
w≤y µ(w)∑

w≤y ηA(w)+
∑

w≤y µ(w)+
∑

w≥y ηR(w)
y ∈ (0, M)

1 y ≥ M
(14)

where ηR(w) is the number of bids at w that has been
rejected. And, it is intuitive that the bid at 0 will not be
accepted by any primary users.

Noting that it is too costly to build up beliefs on every
possible bid or ask price, we can update the beliefs only
at some fixed prices and use interpolation to obtain the
belief function over the price space. Then, it is worth
discussing the effect of the available public information
on the efficiency of the above belief system. First, in the
scenario that only local information is available to each
user, the user updates the belief based on her/his own
observed past bid/ask information, which results in more
message exchanges to achieve the equilibrium price.
Second, considering the broadcast nature of wireless
channels, the neighbors’ bid/ask information may be
observed by the users, which can also be utilized to
update the beliefs. In this scenario, the users may have
part of the public information besides of their private
information, which may accelerate their belief-updating
pace and result in more efficient pricing process. More-
over, if the users have the access to all the public
information such as ask/bid interactions through some
centralized point, the above belief function is able to
quickly reflect current supply and demand relationships.

Before using our defined belief functions to assist the
strategy decisions, we first look at the Spread Reduction
Rule (SRR) of double auction mechanisms. Generally,
before the double auction pricing game converges to
CE, there may exist a gap between the highest bid
and lowest ask, which is called the spread of double
auction. The SRR states that any ask that is permissible
must be lower than current lowest ask, i.e., outstanding
ask [14], and then either each new ask results in an

TABLE I: Belief-assisted dynamic spectrum allocation

1. Initialize the users’ beliefs and bids/asks
� The primary users initialize their asks as large values close to M
and their beliefs as small positive values less than 1;
� The secondary users initialize their bids as small values close to 0
and their beliefs as small positive values less than 1.
2. Belief update based on local information:
Update primary and secondary users’ beliefs
using (13) and (14), respectively
3. Optimal bid/ask update:
� Obtain the optimal ask for each primary user by solving (16);
� Obtain the optimal bid for each secondary user by solving (17).
4. Update leasing agreement and spectrum pool:
� If the outstanding bid is greater than or equal to the outstanding ask,
the leasing agreement will be signed between the corresponding users;
� Update the spectrum pool by removing the assigned channel.
5. Iteration:
If the spectrum pool is not empty, go back to Step 2.

agreed transaction or it becomes the new outstanding
ask. A similar argument can be applied to bids. By
defining current outstanding ask and bid as ox and oy,
respectively, we let r̄p(x) = r̂p(x) · I[0,ox)(x) for each
x and r̄s(y) = r̂s(x) · I(oy,M ](y) for each y, which are
modified belief function considering the SRR. Note that
I(a,b)(x) is defined as

I(a,b)(x) =
{

1 if x ∈ (a, b);
0 otherwise.

(15)

By using the belief function r̄p(x), the payoff maximiza-
tion of selling the ith primary user’s jth channel can be
written as

max
x∈(oy,ox)

E[Upi
(x, j)], (16)

where Upi
(x, j) represents the payoff introduced by

allocating the jth channel when the ask is x, and then
E[Upi

(x, j)] = (x − cji ) · r̄p(x). Similarly, as for the
secondary user si, the payoff maximization of leasing
the jth channel in the spectrum pool can be written as

max
y∈(oy,ox)

E[Usi
(y, j)], (17)

where Usi
(y, j) represents the payoff introduced by

leasing the jth channel in the spectrum pool when the bid
is y, and then E[Usi

(y, j)] = (vji − y) · r̄s(y). Therefore,
by solving the optimization problem for each primary
and secondary user using (16) and (17), respectively,
primary and secondary users can make the optimal
decision of spectrum allocation at every stage conditional
on dynamic spectrum demand and supply. Based on
the above discussions, we illustrate our belief-assisted
dynamic pricing algorithm for spectrum allocation in
Table I.
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2) Dynamic Pricing with Budget Constraints: Based
on the belief-assisted dynamic pricing algorithm devel-
oped above, in this part we further consider the optimal
spectrum allocation when each secondary user is con-
strained by a total monetary budget for leasing spectrum
usage. Note that the spectrum allocation problem can be
similarly solved when the overall constraints exist for
primary users.

Considering the budget constraints of secondary users,
we rewrite their optimization objectives as follows.

Ô(si) = max
φA,t,βA

i,t,ψi

Ecj
i ,v

j
i
[
∞∑
t=1

γt · Usi,t(φA,t, β
A
i,t, ψ̃i,t)],

(18)

s.t. Up̂j ,t({φ−j,t, φj,t}) ≥ Up̂j ,t({φ−j,t, φ̃j,t}),(19)
∞∑
t=1

ψt ≤ Bi. (20)

where ψi = {ψi,t}t∈{1,2,...,∞} and ψi,t is the total
monetary payment used during the tth stage for the ith
secondary user leasing the channels. Moreover, Bi is
the ith secondary user’ total budget. Note that ψ̃i,t =
Bi−

∑τ=t−1
τ=1 ψi,τ , which is the residual budget at the tth

stage and can be considered as a state parameter. Hence,
(19) and (20) are the incentive compatible constraint and
total budget constraint, respectively. As it is difficult to
directly solve (18), we study the dynamic programming
approach to simplify the multistage optimization prob-
lem.

Define the value function Qsi,t(ψ̃i) as the ith sec-
ondary user’s maximum expected payoff obtainable from
periods t, t+1, ...,∞ given that the monetary budget left
is ψ̃i. Simplifying (18) using the Bellman equation [16],
we have the maximal expected payoff Qsi,t(ψ̃i) written
as follows.

Qsi,t(ψ̃i) = max
φA,t,βA

i,t,ψi

{Ecj
i ,v

j
i
[Usi,t(φA,t, β

A
i,t, ψ̃i) +

γ ·Qsi,t+1(ψ̃i − ψi,t)]}, (21)

s.t. Up̂j ,t({φ−j,t, φj,t}) ≥ Up̂j ,t({φ−j,t, φ̃j,t}). (22)

The boundary conditions for the above dynamic pro-
gramming problem are

Qsi,∞(ψ̃i) = 0, ψ̃i ∈ (0, Bi]. (23)

Note that the first term on the right hand side (RHS)
of (21) represents the payoff at current stage and the
second term on the RHS of (21) represents the future
payoff obtained after the tth stage give the budget state
ψ̃i−ψi,t. Further, applying the principle of optimality in

[16], the spectrum sharing configuration {φA,t, β
A
i,t, ψi}

that achieves the maximum in (21) given ψ̃i, t and the
statistics of cji , v

j
i is also the optimal solution for the

overall optimization problem (18).
In order to obtain Qsi,t(ψ̃i), the maximal payoff of

one stage needs to be first derived for different residual
budget values ψ̃i. The difference of the current payoff
function in (18) and the one-stage payoff function in
(6) lies in that the applied budget constraint affects the
outcomes of the pricing game. For instance, even though
both the primary users and secondary users can achieve
higher payoffs by assigning a channel to user si, the user
si may not have enough budgets to lease this channel.
Thus, the algorithm in Table I cannot be directly applied
here for optimal spectrum sharing. We need to modify
the bid update step as follows: user si updates his/her bid
by min{ψ̃i, y}, where y is obtained from (17). Note that
it is highly complicated to derive the close-form solution
for the one-stage payoff function in (18) [13], [15].Thus,
we use simulation to approximate it for different residual
budget values, which proceeds as follows: Generate a
large number of samples of the secondary and primary
users with reward payoffs and costs satisfying fv(v) and
fc(c), respectively. Using the above modified version of
the algorithm in Table I, calculate the average one-stage
payoffs given different ψ̃ based on the outcomes of the
spectrum allocation samples.

By using the numerical results of the one-stage pay-
off function, we then derive Qsi,t(ψ̃i) using dynamic
programming methods. Considering infinite spectrum
allocation stages, the maximum payoff Qsi,t(ψ̃i) in (21)
can be written as follows.

Q∗
si

(ψ̃i) = max
φA,t,βA

i,t,ψi

{Ecj
i ,v

j
i
[Usi,t(φA,t, β

A
i,t, ψ̃i) +

γ ·Q∗
si

(ψ̃i − ψi,t)]}, (24)

or, equivalently, Q∗
si

= T Q∗
si

, where T is the operator
updating Q∗

si
using (24). Let S be the feasible set of

the state parameter. The convergence proposition of the
dynamic programming algorithm [16] can be applied
here, which states that: for any bounded function Q :
S → R, the optimal payoff function satisfies Q∗(x) =
limp→∞(T pQ)(x),∀x ∈ S. As Qsi

(ψ̃i) is bounded in
our algorithm, we are able to apply the value iteration
method to approximate the optimal Qsi

(ψ̃i), which pro-
ceeds as follows: Start from some initial function for
Qsi

(ψ̃i) as Q0
si

(ψ̃i) = g(x), where the superscript stands
for the iteration number. Then, iteratively update Qsi

(ψ̃i)
by letting Qp+1

si (ψ̃i) = (T Qpsi)(ψ̃i). The iteration process

125



Fig. 2: Comparison of the total payoff for the proposed scheme and
theoretical Competitive Equilibrium.

ends until |Qp+1
si (ψ̃i) − Qpsi(ψ̃i)| ≤ ε, for all ψ̃i ∈ S,

where ε is the error bound for Q∗
si

(ψ̃i).
Intuitively, the basic idea behind our dynamic pricing

approach for spectrum allocation with budget constraints
can be explained as follows: Considering the overall
budget constraints, the users make their spectrum sharing
decisions not only based on their current payoffs but
also based on expected future payoffs. Specifically, if
the competition for spectrum resources is high at current
stage, the users prefer to save their monetary budgets
for future usage, which will yield higher overall payoffs
for the users. Therefore, by using our proposed dynamic
pricing approach, the spectrum allocation can be opti-
mized not only in the space and frequency domains but
also in the the time domain.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the
proposed belief-assisted dynamic spectrum sharing ap-
proach in wireless networks. Considering a wireless
network covering 100 × 100 area, we simulate J pri-
mary users by randomly placing them in the network.
These primary users can be the base stations serving for
different wireless network operators or different access
points in a mesh network. Here we assume the primary
users’ locations are fixed and their unused channels are
available to the secondary users within the distance of
50. Then, we randomly deploy K secondary users in
the network, which are assumed to be mobile devices.
The mobility of the secondary users is modeled using
a simplified random waypoint model [18], where we
assume the “thinking time” at each waypoint is close
to the effective duration of one channel-leasing agree-
ment, the waypoints are uniformly distributed within the

Fig. 3: Comparison of the overhead between the proposed scheme
and continuous double auction scheme.

distance of 10, and the traveling time is much smaller
than the “thinking time”. Let the cost of an available
channel in the spectrum pool be uniformly distributed
in [10, 30], the reward payoff of leasing one channel
be uniformly distributed in [20, 40]. If a channel is not
available to some secondary users, let the corresponding
reward payoffs of this channel be 0. Note that J = 5
and 103 pricing stages have been simulated. Let ni =
4, ∀i ∈ {1, 2, ..., J} and γ = 0.99.

We first focus our simulation studies on dynamic
spectrum sharing without budget constraints, which can
be used to illustrate the efficiency of the proposed
belief-assisted pricing algorithm for spectrum allocation.
In our simulation, the local bid/ask information within
the transmission range of each node is used for belief
construction and update. In Figure 2, we compare the
total payoff of all users of our proposed approach with
that of the theoretical CE outcomes for different number
of secondary users. It can be seen from this figure that
the performance loss of our approach is very limited
compared to that of the theoretical optimal solutions.
Moreover, when the number of secondary users in-
creases, our approach is able to approach the optimal CE.
It is because that the belief function reflects the spectrum
demand and supply more accurately when more users are
involved in spectrum sharing.

Now we study the overhead of our pricing approach.
Here we measure the pricing overhead by showing
the average number of bids and asks for each stage.
In Figure 3, the overhead of our pricing approach is
compared to that of the traditional continuous double
auction when the same total payoff is achieved. Assume
the minimal bid/ask step δ of the continuous double
auction to be 0.01. It can be seen from the figure
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Fig. 4: Comparison of the total payoffs of the proposed scheme
with those of the static scheme.

that our approach substantially decreases the pricing
communication overhead. Note that when decreasing the
overhead, our proposed approach may introduce extra
complexity to update the beliefs.

Then, we study the dynamic spectrum allocation when
each secondary user is constrained by his/her monetary
budget. For comparison, we define a static scheme in
which the secondary users make their spectrum-leasing
decisions without considering their budget limits. With-
out loss of generality, we assume that the budget con-
straints for the secondary users are the same. In Figure 4,
we compare the total payoffs of our proposed dynamic
programming scheme with those of the static scheme
for different budget constraints. It can be seen from the
figure that our proposed scheme achieves significant per-
formance gains over the static scheme when the budget
constraints are taken into consideration. Also, when the
budget limits increase, the proposed scheme achieves
higher gain by further exploiting the time diversity.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have studied dynamic pricing for
efficient spectrum allocation in wireless networks with
selfish users. We model the dynamic spectrum allocation
as a multi-stage game and propose a belief-assisted
dynamic pricing approach to maximize the users’ payoffs
while providing them the participating incentives via
double auction rules. Further, the dynamic pricing under
the budget constraints of secondary users is analyzed
using dynamic programming. Simulation results show
that the proposed scheme can approach the optimal
performances by only using limited overhead. Moreover,
the time diversity of spectrum resources can be fully
exploited when budget constraints exist.

There are several avenues for future research. We
intend to further perform the equilibrium analysis of
the solution obtained by the proposed dynamic spectrum
allocation scheme. Also, we would like to study how
to adapt our scheme to mesh, cellular or combined
networks under practical constraints caused by the nature
of wireless networking. Further, security issues need
to be extensively investigated for dynamic spectrum
allocation. Not only the security threats caused by the
designed mechanism itself such as bidding ring problems
[13] need to be considered, but also the threats due to
the limitations of wireless systems and radio interface.
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