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Abstract—In self-organized mobile ad hoc networks
(MANETs) where each user is its own authority, fully cooperative
behaviors, such as unconditionally forwarding packets for each
other or honestly revealing its private information, cannot
be directly assumed. The pricing mechanism is one way
to provide incentives for the users to act cooperatively by
awarding some payment for cooperative behaviors. In this
paper, we consider efficient routing in self-organized MANETs
and model it as multi-stage dynamic pricing games. A game
theoretical framework for dynamic pricing-based routing in
MANETs is proposed to maximize the sender/receiver’s payoff
by considering the dynamic nature of MANETs. Meanwhile, the
forwarding incentives of the relay nodes can also be maintained
by optimally pricing their packet-forwarding services based
on the auction rules and introducing the Cartel Maintenance
enforcing mechanism. The simulation results illustrate that
the proposed dynamic pricing-based routing approach has
significant performance gains over the existing static pricing
approaches.

Index Terms—Ad Hoc Network, Pricing, Game Theory, Rout-
ing.

I. INTRODUCTION

IN RECENT years, mobile ad hoc networks (MANET) havereceived much attention due to their potential applications
and the proliferation of mobile devices [1], [2]. In general,
mobile ad hoc networks refer to wireless multi-hop networks
formed by a set of mobile nodes without requiring centralized
administration or fixed network infrastructure, in which nodes
can communicate with other nodes out of their direct transmis-
sion ranges through cooperatively forwarding packets for each
other. In traditional crisis or military situations, the nodes in a
MANET usually belong to the same authority and work in a
fully cooperative way of unconditionally forwarding packets
for each other to achieve their common goals. Recently, the
MANETs are also envisioned in civilian applications [3]–[9],
where nodes typically do not belong to a single authority and
may not pursue a common goal. Furthermore, such a network
could be completely self-organizing, where the network would
be run solely by the operation of the end-users. Consequently,
fully cooperative behaviors cannot be directly assumed as the
nodes are selfish to maximize their own interests. We refer to
such networks as self-organized MANETs.
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In order to analyze the selfish behaviors of network users
for efficient self-organized wireless networking, game theo-
retical study is important to understanding and analyzing the
interactions among intelligent users. Generally speaking, game
theory [10], [11] models strategic interactions among agents
using formalized incentive structures. It not only provides
game models for efficient self-enforcing distributed design
but also derives well-defined equilibrium criteria to mea-
sure the optimality of game outcomes for various scenarios.
Considering self-organized MANETS, two types of game
theoretical approaches have been proposed to analyze the
interactions among network users and stimulate cooperation
for self-organized networking: the reputation-based methods
and pricing-based methods. In reputation-based methods such
as [3]–[5], [7], [12], a node determines whether it should
forward packets for other nodes or request other nodes to
forward packets for it based on their past behaviors. In such
schemes, by keeping monitoring packet forwarding activities,
reputation effects and retribution are allowed to detect and
isolate the misbehaving nodes from the rest of the network,
thus enforcing the selfish nodes to behave cooperatively for
better payoffs. In the pricing-based methods such as [6], [8], a
selfish node will forward packets for other nodes only if it can
get the properly-priced payment from those requesters as com-
pensation. Although the above approaches have extensively
studied the cooperation stimulation in self-organizedMANETs
for the packet forwarding among selfish users, cooperation
stimulation for more advanced and sophisticated networking
functionalities has not been fully addressed. One important
fundamental issue needs to be further studied is how to carry
out efficient self-organized routing in the dynamic scenarios
of MANETs with selfish users.

Although the routing process is built upon successful packet
forwarding among the nodes, the self-organized routing is
much more complicated than packet forwarding for several
reasons. First, the routing in ad hoc networks involves many
selfish nodes at the same time for multi-hop packet forwarding
and the behaviors of the selfish nodes may be correlated.
Moreover, in MANETs, there usually exist multiple possible
routes from the source to the destination. Furthermore, due
to mobility, the available routes between the sources and
the destinations may change frequently. In this paper, we
refer to path diversity as the fact that in general there exist
multiple routes between a pair of nodes, each with different
characteristics, such as the number of hops, cost (or requested
price), and valid time of this route. We refer to time diversity
as the fact that due to the mobility, dynamic topology, and
traffic variations, the routes between two nodes will keep
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changing over time. In order to achieve efficient routing in
self-organized MANETs, a comprehensive study needs to be
carried out considering the above aspects.
Several approaches have been proposed to exploit the

path diversity during the routing process in self-organized
MANETs such as [13]–[15]. Based on the ideas of the auction-
like pricing and routing protocols for the Internet [16], [17],
the authors in [13]–[15] have introduced some auction-like
methods for the cost-efficient and truthful routing in MANETs,
where the sender-centric Vickrey auction has been adopted
to discover the most cost-efficient routes, which has the
advantage that its incentive compatible property ensures the
truthful routing among the nodes. Router-based auction ap-
proaches [18], [19] have also been proposed to encourage the
packet-forwarding in MANETs, where each router constitutes
an auction market instead of submitting bids to the sender.
Besides, a strategy-proof pricing algorithm for the truthful
multi-cast routing has been proposed in [20].
Although the existing pricing-based approaches [13]–[15]

have achieved some success in cost-efficient and incentive-
compatible routing for MANETs with selfish nodes, most
of them assume that the network topology is fixed or the
routes between the sources and the destinations are known
and pre-determined. Further, none of the existing approaches
have addressed how to exploit the time diversity for efficient
routing. In order to have optimal pricing-based routing, both
path diversity and time diversity of MANETs should be
exploited. Specifically, the source (here we assume the source
pays to the forwarding nodes) is responsible for exploiting
the path diversity, such as introducing competition among the
multiple available routes through auction, to minimize the
payment needed at the current stage. Each node also needs to
exploit the time diversity to maximize its overall payoff over
time. In each stage the source adaptively decides the number
of packets being transmitted according to the price it needs to
pay, which is determined by the current routing conditions. For
instance, when the routing conditions are good (i.e., the cost to
transmit a packet is low), more packets should be transmitted
in the current stage; otherwise, less or no packets should be
transmitted in the current stage.
In this paper, we consider the routing process as multi-stage

dynamic games and propose an optimal pricing-based ap-
proach to dynamically maximize the sender/receiver’s payoff
over multiple routing stages considering the dynamic nature
of MANETs, meanwhile, keeping the forwarding incentives of
the relay nodes by optimally pricing their packet-forwarding
actions based on the auction rules. The main contribution
of this paper are multi-fold: First, by modeling the pricing-
based routing as a dynamic game, the senders are able to
exploit the time diversity in MANETs to increase their payoffs
by adaptively allocating the packets to be transmitted into
different stages. Considering the mobility of the nodes, the
possible routes for each source-destination pair are changing
dynamically over time. According to the path diversity, the
sender will pay a lower price for transmitting packets when
there are more potential routes. Thus, the criterion for allo-
cation can be developed based on the fact that the sender
prefers to send more packets in the stage with lower costs.
The Cartel Maintenance mechanism is introduced to ensure

the cooperation within each route. Second, an optimal dynamic
programming approach is proposed to implement efficient
multi-stage pricing for self-organized MANETs. Specifically,
the Bellman equation is used to formulate and analyze the
above dynamic programming problem by considering the
optimization goal in terms of two parts: current payoffs and
future opportunity payoffs. A simple allocation algorithm is
developed and its optimality is proved based on the auction
structure and routing dynamics. Third, the path diversity of
MANETs is exploited using the optimal auction mechanism in
each stage. The application of the optimal auction [21] makes
it possible to separately study the optimal allocation problem
and the mechanism design of the auction protocol based on
the well-known Revenue Equivalence Theorem [21], which
simplifies the dynamic algorithm while keeping the optimality.
The reminder of this paper is organized as follows: The

system model of self-organized MANETs are illustrated in
Section 2. In Section 3, we formulate the pricing process as
dynamic games based on the system model. In Section 4,
the optimal dynamic auction framework is proposed for the
optimal pricing and allocation of the multi-stage packet trans-
mission. In Section 5, extensive simulations are conducted
to study the performance of the proposed approach. Finally,
conclusions are drawn in Section 6.

II. SYSTEM MODEL

In this paper we consider self-organized mobile ad hoc
networks where nodes belong to different authorities and have
different goals. We assume that each node is equipped with
a battery with limited power supply, can freely move inside
a certain area, and communicates with other nodes through
wireless connections. For each node, packets are scheduled to
be generated and delivered to certain destinations with each
packet having a specific delay constraint, that is, if a packet
cannot reach the destination within its delay constraint, it will
become useless.
In our system model, we assume all nodes are selfish and

rational, that is, their objectives are to maximize their own
payoff, not to cause damage to other nodes. However, node
are allowed to cheat whenever they believe cheating behaviors
can help them increasing their payoff. Since nodes are selfish
and forwarding packets on behalf of others will incur some
cost, without necessary compensation, nodes have no incentive
to forward packets for others. In our system model, we assume
that if a packet can be successfully delivered to its destination,
then the source and/or the destination of the packet can get
some benefits, and when a node forwards packets for others,
it will ask for some compensation, such as virtual money or
credits [6], from the requesters to at least cover its cost. In our
system model, to simplify our illustration, we assume that the
source of a packet pays to the intermediate nodes who have
forwarded the packet for it. However, the proposed schemes
can also be easily extended to handle the situation that the
destinations pay. Like in [6], we assume that there exist some
bank-like centralized management points, whose only function
is to handle the billing information, such as performing credit
transfer among nodes based on the submitted information by
these nodes. Each node only needs to contact these central
banking points periodically or aperiodically.
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Fig. 1: Pricing-based routing in self-organized MANETs.

In general, due to the multi-hop nature of ad hoc networks,
when a node wants to send a packet to a certain destination,
a sequence of nodes need to be requested to help forwarding
this packet. We refer to the sequence of (ordered) nodes as a
route, the intermediate nodes on a route as relay nodes, and the
procedure to discover a route as route discovery. The routing
protocols are important for MANETs to establish communica-
tion sessions between each source-destination pair. Here, we
consider the on-demand (or reactive) routing protocols for ad
hoc networks, in which a node attempts to establish a route
to some destination only when it needs to send packets to
that destination. Since on-demand routing protocols are able
to handle many changes of node connectivity due to the node’s
mobility, they perform better than periodic (or proactive)
routing protocols in many situations [22]–[24] by having
much lower overheads. In MANETs, due to the mobility,
nodes need to frequently perform route discovery. In this
paper, we refer to the interval between two consecutive route
discovery procedures as a routing stage, and assume that for
each source-destination pair, the selected route between them
will keep unchanged in the same routing stage. Furthermore,
to simplify our analysis, we assume that for each source-
destination pair, the discovered routes in different routing
stages are independent.
After performing route discovery in each stage, multiple

forwarding routes can be exploited between the source and the
destination. Assume there are � possible routes and let vi,j be
the forwarding cost of the jth node on the ith route, which
is also referred to as the node type in this paper. Considering
possible node mobility in MANET, � and vi,j are no longer
fixed values, which can be modelled as random variables. Let
the probability mass function (PMF) of � be f̃(�) and the cor-
responding cumulative density function (CMF) be F̃ (�). And,
vi,j is characterized by its probability density function (PDF)
f̂i,j and the cumulative density function (CDF) F̂i,j . Define
the cost vector of the ith route as vi = {vi,1, vi,2, ..., vi,hi},
where hi is the number of forwarding nodes on the ith route.
Thus, we have the total cost on the ith route ri =

∑hi

j=1 vi,j ,

Fig. 2: Dynamic pricing-based routing considering time diver-
sity.

which is also a random variable. Let the PDF and CDF of ri

be fi and Fi, respectively.
Figure 1 illustrates our system model by showing a network

snapshot of pricing-based multi-hop routing between a source-
destination pair. It can be seen from this figure that there
are three routing candidates with different number of hops
and routing costs (such as energy-related forwarding costs)
between the source-destination pair. Each route will bid as
one entity for providing the packet forwarding service for
the source-destination pair at this routing stage. Then, the
source will choose the route with the lowest bid to transmit the
packets. The price that the source pays to the selected route
may be equivalent to the asked price or include a premium than
the true forwarding cost. Note that the asking prices from each
route and the payment from the source may vary according
to the applied pricing mechanisms. Further, the payment that
the source provides to the selected route needs to be shared
among the nodes on the selected route in a way that no
node on the selected route has incentive to deviate from the
equilibrium strategy. Considering the network dynamics due
to the node mobility, dynamic topology or channel fading, the
number of available routes, the number of required hops and
the forwarding costs will change over time. In Figure 2, we
consider a dynamic scenario and illustrate the relationship of
the number of packets to be transmitted and the lowest cost
of the available routes at each stage. In order to maximize
its payoff by utilizing the time diversity, the source tends to
transmit more packets when the cost is lower and transmit
less packets when the cost is higher. The optimal relationship
between them will be derived in later sections.

III. PRICING GAME MODELS

In this paper, we model the process of establishing a route
between a source and a destination node as a game. The
players of the game are the network nodes. With respect to a
given communication session, any node can play only one of
the following roles: sender, relay node, or destination. In self-
organized MANET, each node’s objective is to maximize its
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own benefits. Specifically, from the sender’s point of view,
he/she aims to transmit its packets with the least possible
payments; from the relaying nodes’ points of view, they want
to earn the payment which not only covers their forwarding
cost but also gain as much extra payment as possible; while
from the network designers’ point of view, they prefer that
the network throughput and/or lifetime can be maximized.
Therefore, the source-destination pair and the nodes on the
possible forwarding routes construct a non-cooperative pricing
game [10]. Since the selfish nodes belong to different author-
ities, the nodes only have the information about themselves
and will not reveal their own types to others unless efficient
mechanisms have been applied to guarantee that truth-telling
does not harm their interests. Generally, such non-cooperation
game with imperfect information is complex and difficult to
study as the players do not know the perfect strategy profile
of others. But based on our game setting, the well-developed
auction theory can be applied to analyze and formulate the
pricing game.
The auction games belong to a special class of game with

incomplete information known as games of mechanism design,
in which there is a “principal” who would like to condition
his actions on some information that is privately known by
the other players, called “agents”. In auction, according to
an explicit set of rules, the principle (auctioneer) determines
resource allocation and prices on the basis of bids from the
agents (bidders). In the pricing game, the source can be viewed
as the principle, who attempts to buy the forwarding services
from the candidates of the forwarding routes. The possible
forwarding routes are the bidders who compete with each
other for serving the source node, by which they may gain
extra payments for future use. In order to maximize their
own interests, the selfish forwarding nodes will not reveal
their private information, i.e., the actual forwarding costs, to
others. They compete for the forwarding request by eliciting
their willingness of the payments in the forms of bids. Thus,
because of the path diversity of MANET, the sender is able to
lower its forwarding payment by the competition among the
routing candidates based on the auction rules. It is important
to note that instead of considering each node as a bidder
[13], [15], we consider each route as a bidder in this paper,
which has the following advantages: First, by considering
the nodes on the same forwarding route as one entity, the
sender can fully exploit the path diversity to maximize its
own payoffs by lowering the bidding premium for ensuring the
truth-telling for each node [13] on the route. Second, since it
has been proved in [15] that there does not exist a forwarding-
dominant protocol for ad hoc pricing games, we analyze the
pricing-based routing in a two-step approach: first study the
payoff-maximization allocation by considering the route-based
bidding, and then derive the truth-telling profit-sharing among
the nodes on the selected route based on repeated game theory.
Moreover, less bidding information is required for route-based
approach compared to [13] as each route is considered as only
one bidding entity.
In this section, we first consider the static pricing game

(SPG), which is only played once for the fixed topology. Then,
the dynamic pricing game (DPG) is studied and formulated
considering playing the pricing game for multiple stages.

A. The Static Pricing Game

In this subsection, we study the static pricing game model.
By taking advantage of the auction approach, our goal is to
maximize the profits of the source-destination communication
pair for transmitting packets while keeping the forwarding
incentives of the forwarding routes. Specifically, considering
an auction mechanism (Q,M) consists of a pair of functions
Q : D → P and M : D → RN , where D is the set
of announced bids, P is the set of probability distributions
over the set of routes L. Note that Qi(d) is the probability
that the ith route candidate will be selected for forwarding
and Mi(d) is the expected payment for the ith route, where
d is the vector of bidding strategies for all routes, i.e.,
d = {d1, d2, .., d�} ∈ D. Then, the payoff function of the
ith forwarding route can be represented as follows

Ui(di, d−i) = Mi(di, d−i) − Qi(di, d−i) · ri. (1)

Before studying the equilibria of the auction game, we first
define the direct revelation mechanism as the mechanism in
which each route bids its true cost, di = ri. The Revelation
Principle [21] states that given any feasible auction mech-
anism, there exists an equivalent feasible direct revelation
mechanism which gives to the auctioneer and all bidders the
same expected payoffs as in the given mechanism. Thus, we
can replace the bids d by the cost vector of the routes, i.e.,
r = {r1, r2, ..., rL} without changing the outcome and the
allocation rule of the auction game. Therefore, the equilib-
rium of the SPG can be obtained by solving the following
optimization problem to maximize the sender’s payoff while
providing incentives for the forwarding routes

E�,r

[
max
Q,M

{
g ·

�∑
i=1

Qi(r) −
�∑

i=1

Mi(r)
}]

(2)

s.t. Ui(ri, d−i) ≥ Ui(di, d−i), ∀di ∈ D (3)

Qi(r) ∈ {0, 1},
�∑

i=1

Qi(r) ≤ 1.

where the constraint (3) is also referred as the incentive
compatibility (IC) constraint, which ensures the users to report
their true types, and g is the marginal profit of transmitting one
packet. Note that {0, 1} represents a set having two elements,
0 and 1.

B. The Dynamic Pricing Game

Considering the dynamic nature of MANET, the network
topology may change over time due to the mobility of the
nodes. Thus, the route discovery needs to be performed fre-
quently. Moreover, for different routing stages, there may exist
different number of available routes with different number
of hops. It is important for each source-destination pair to
decide the transmission and payment behaviors for each stage
according to the route conditions. Therefore, the pricing game
under such dynamic situation can no longer be modelled as
static games. Game theorists use the concept of dynamic
games to model such multi-stage games and analyze the long-
run behaviors of players. In dynamic games, the strategies
of the players not only depend on the opponents’ current
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strategies but also the past outcomes of the game and the
future possible actions of other players. Our pricing game for
MANET falls exactly into the category of dynamic games.
In this paper, we will focus on studying the dynamic pricing
game.
Intuitively, the sender prefers to transmit more packets

when more routing candidates are available and the number
of hops is small. Because, considering the application of
auction protocols in each stage, the sender has a higher
probability to get the service with a lower price when there
are more bidders (routes) with lower type values. Moreover,
the practical constraints in MANET need to be considered in
DPG, such as the delay constraint of packet transmission or
the bandwidth constraint of the maximal number of packets
being able to be transmitted within an unit time duration.
Therefore, in order to maximize their profits, the source-
destination pair needs not only to optimally allocate the
packets to the routes within one time period but also to
schedule the packets for all periods. In our DPG, it is important
to note that the optimal packet transmission strategy for each
source-destination pair is affected by both the past plays
and the future possible outcomes. Generally speaking, the
packet transmission decision is made by comparing the current
transmission profit and future opportunity profits. Also, due
to the delay and bandwidth constraints, the past transmission
plays affect current decision-making. Capturing the dynamics
becomes the key to the optimal solution of our DPG. Let �t

denote any realization of the route number at the tth stage
and rt be a realization of the types of all routing candidates
at the tth stage. The probabilistic structures of �t and rt

are different for different ad hoc networking scenarios. By
properly choosing the stage time-duration, the dependency of
routing dynamics across stages can be negligible. Consider
a T -period dynamic game, the overall payoff maximization
problem for the source-destination pair can be formulated as
follows.
T∑

t=1

βt · E�t,rt

[
max
Q,kt

{[
G(Kt) ·

�t∑
i=1

Qi − kt ·
�t∑

i=1

Mi(rt)
]}]

s.t. Ui,t(ri,t, d−i,t) ≥ Ui,t(di,t, d−i,t), ∀di,t ∈ D

Qi ∈ {0, 1},
L∑

i=1

Qi ≤ 1.

kt ≤ B,

T∑
t=1

kt = M. (4)

where kt is the number of packets transmitted in the tth stage
and Kt is the vector of the numbers of the transmitted packets
in the first T − t + 1 stages, which can be represented as
Kt = {kT , kT−1, ..., kt}. Note that a smaller t in this paper
stands for a later time stage. Here, G(Kt) is the profit that the
sender gains in the tth stage, which may not only depend on
how many packets are transmitted in current stage, i.e., kt, but
also be affected by how many packets have been transmitted in
previous stages, Kt+1. Considering the rate-distortion theory
[25], we assume the profit function is concave in kt. For
example, the marginal profit of transmitting one more packet
when a lot of packets have already been transmitted should

be limited. Also, the subscript t indicates the tth routing stage
and β is the discount factor for multistage games. Considering
different applications, β needs to be determined differently:
for real-time applications such as video streaming or voice,
β is a smaller value less than 1 so that the payoff at current
stage contributes most to the overall payoff; for non-realtime
applications such as data transmission, β can be chosen to
be very close to 1 so that the overall payoff is almost evenly
affected by the payoff at each stage. Note that T and B are
the delay constraint and the bandwidth constraint, respectively.
M is the total number of packets to be transmitted within T
stages.
The above DPG formulation (4) extends the optimal pricing

problem to the time dimension, which can exploit the potential
of time diversity in the self-organized ad hoc network con-
sidering its dynamic nature. For example, if current routing
condition is not good, the user could hold its transmission for
the future, during which the routing cost may become lower.
Thus, seemingly current payoff loss can be compensated by
much higher future payoff so that the overall payoff can be
optimized.
It is worth mentioning that directly solving the nonlinear

integer programming problem is very difficult. Because, not
only does the current routing realization affect the allocation
decision, but also the past play and allocation decision influ-
ence the feasible actions and payoff functions in the current
period.

IV. OPTIMAL DYNAMIC PRICING-BASED ROUTING

In order to achieve efficient self-organized routing in the
DPG considering the dynamic nature of MANETs, we propose
the optimal pricing-based routing approach in this section.
First, the optimal auction mechanism is considered for max-
imizing the payoffs for the source-destination pair while
keeping the forwarding incentives of the relaying nodes. Then,
the dynamic multi-stage game is further formulated using the
optimal auction and dynamic programming approach. Finally,
the mechanism design and the profit-sharing among the nodes
on the selected route are considered for the proposed approach.

A. The Optimal Auction for Static Pricing-Based Routing

In Section 2, we have formulated the static pricing game
based on the auction principles as the optimization problem
(2). Here, we further utilize the results of the optimal auction
[26] to simplify the optimization problem. From [26], we
know that by considering the optimal auction, the sender’s
expected total payoff can be expressed only in terms of the
allocation Q, which is independent of the payment to each
route candidate. Specifically, the optimization problem (2) can
be rewritten as follows.

E�,r

[
max
Q

{
g ·

�∑
i=1

Qi(r) −
�∑

i=1

Ji(ri)Qi(r)
}]

, (5)

s. t. Qi(r) ∈ {0, 1},
�∑

i=1

Qi(r) ≤ 1.
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where J(ri) = ri + 1/ρ(ri), and ρ(ri) = fi(ri)/Fi(ri) is the
hazard rate [26] function associated with the distribution of the
routing cost. Note that J(ri) is also called the virtual type of
the ith player. It’s proved in [26] that the solution of the above
optimization also satisfies the incentive compatible constraint.
The assumptions for the above formulation are rather general:
(1) F is continuous and strictly increasing, (2) the allocations
Qi(ri, r−i) are increasing in ri. From (5) and the Revenue
Equivalence Theorem, it follows that all mechanisms that
result in the same allocations Q for each realization of r
yield the same expected payoff. Thus, in order to obtain
the optimal pricing strategies, the mechanism design process
proceeds in two steps: First, find the optimal allocation Q(r);
second, find an implementable mechanism that produces Q
for each realization r. By using the optimal auction approach
for pricing, the payoff-maximized allocation for the sender
is to choose the route with the minimal virtual type J(ri)
when g − J(ri) ≥ 0, otherwise the sender will not transmit
the packet as it will cause negative payoff and violate his
individual rationality. Therefore, if we assume J(v) is strictly
increasing in v, we can define v∗ = maxv{(g − J(v)) = 0}
as the reserved price for the sender, which is the largest
payment he/she can offer for transmitting a packet. Note that
the distributions that have increasing J(v) include the uniform,
normal, logistic, exponential distributions, etc.
Based on the above discussion, we find that the static pricing

game is not efficient if the current routing realization shows a
high cost. Considering the dynamic properties of MANET, a
more efficient pricing mechanism can be achieved by studying
it as a multistage game and optimally allocating the packet
transmissions over multiple time periods.

B. The Optimal Dynamic Auction for Dynamic Pricing-Based
Routing

Considering the optimal auction results in the DPG model
formulated in Section 2, we further propose the optimal
dynamic auction framework for pricing in self-organized
MANET. As it is difficult to directly solve (4), we study the
dynamic programming approach in our proposed framework
to simplify the multistage optimization problem.
Define the value function Vt(x) as the maximum expected

profit obtainable from periods t, t − 1, ..., 1 given that there
are x packets to be transmitted within the constraint of time
periods. Simplifying (4) using the Bellman equation, we have
the maximal expected profit Vt(x) written as follows

Vt(x) = E�t,r

[
max
Q,kt

{[
G(Kt) ·

�t∑
i=1

Qi − kt ·
�t∑

i=1

J(vi)Qi

]

+ β · Vt−1(x − kt)
}]

, (6)

s.t. Qi(r) ∈ {0, 1},
�t∑

i=1

Qi(r) = 1, kt ≤ B.

Moreover, the boundary conditions for the above dynamic
programming problem are

V0(x) = 0, x = 1, ..., M, (7)

Recall that we have the delay constraint T of the maximal
allowed time stages and the bandwidth constraint B of the
maximal number of packets able to be transmitted for each
stage. Based on the principle of optimality in [27], an alloca-
tion Q that achieves the maximum in (6) given x, t and r is
also the optimal solution for the overall optimization problem
(4). Note that the above formulation is similar to that of the
multi-unit sequential auction [28] studied by the economists.

First, note that from (6) and the monotonicity of J(·), it is
clear that if the sender transmits k packets within one time
period, these packets should be all awarded to the forwarding
route with the lowest cost ri. Therefore, define

Rt(k) = max
Q

{
G(Kt) ·

�t∑
i=1

Qi(r) − k ·
�t∑

i=1

J(ri)Qi(r) :

Qi(r) ∈ {0, 1},
∑

i

Qi(r) = 1

}
, (8)

which can also be solved and written as

Rt(k) =
{

0 if k = 0,
G(k,Kt+1) − k · J(r(1)) if k > 0,

(9)

where r(1) means the lowest cost of the forwarding routes.
Thus, the dynamic optimization objective (6) can therefore be
rewritten in terms of Rt(k) as follows:

Vt(x) = E�t,r

[
max

0≤kt≤min{B,x}
{Rt(kt) + β · Vt−1(x − kt)}

]
,

(10)
which is also subject to (7). Let k∗

t (x) denote the optimal
solution above, which is the optimal number of packets to
be transmitted on the winning route at the tth stage given
remaining capacity x. Letting �Rt(i) ≡ Rt(i) − Rt(i − 1)
and �Vt(i) ≡ Vt(i) − Vt(i − 1), we can rewrite the maximal
expected profit Vt(x) as

Vt(x) = E�t,r

[
max

0≤kt≤min{B,x}

{ kt∑
i=1

[�Rt(i)

− β · �Vt−1(x − i + 1)]
}]

+ β · Vt−1(x). (11)

The above formulation will help us to simplify the optimal
dynamic pricing problem.

Then, in order to solve the dynamic pricing problem (6)-
(7), we need to first introduce the following lemmas based on
(11).

Lemma 1: If �Vt−1(x) ≥ �Vt−1(x + 1), then k∗
t (x) ≤

k∗
t (x + 1) ≤ k∗

t (x) + 1, ∀x ≥ 0.
Proof: We study the left hand side (LHS) inequality

first. If k∗
t (x) = 0, the inequality holds true. If k∗

t (x) > 0
and considering the assumption �Vt−1(x) ≥ �Vt−1(x + 1),
the optimal allocation k∗

t (x + 1) may be higher due to the
additional packet in queue. Hence, k∗

t (x + 1) ≥ k∗
t (x).

As for the right hand side (RHS) inequality, we prove it
by contradiction. Assume k∗

t (x + 1) ≥ k∗
t (x) + 2. From (9),

we know that R(k) is decreasing in its argument. Further,
from (11) and the assumption of this lemma �Vt−1(x) ≥
�Vt−1(x + 1), we obtain that achieving the optimal k for
the tth stage in (11) is equivalent to finding the maximal k
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satisfying the following inequality

�Rt(k) > β · �Vt−1(x − k + 1). (12)

Therefore, given the optimal k∗
t (x + 1), we have

�Rt(m) > β·�Vt−1(x+1−m+1), form = 1, 2, ..., k∗
t (x+1).
(13)

As we assume k∗
t (x+1) ≥ k∗

t (x)+2 and lettingm = k∗
t (x)+2

in (13), we obtain

�Rt(k∗
t (x) + 2) > β · �Vt−1(x + 1 − (k∗

t (x) + 2) + 1)
= β · �Vt−1(x − (k∗

t (x) + 1) + 1).(14)

Since R(k) is decreasing in k, (14) can be further written as

�Rt(k∗
t (x) + 1) ≥ �Rt(k∗

t (x) + 2)
> β · �Vt−1(x − (k∗

t (x) + 1) + 1).(15)

Considering the optimality criterion of k∗
t (x) in (12), k∗

t (x)
should be the largest number of packets satisfying (12).
Therefore, (15) contradicts the optimality of k∗

t (x). The RHS
inequality is proved.
It can be seen from the proof of Lemma 1 that the optimal

allocation of packet transmission over multiple stages can also
be determined under the condition�Vt−1(x) ≥ �Vt−1(x+1).
Then, we will prove the above condition holds for all t in the
following lemma.
Lemma 2: �Vt(x) is decreasing in x for any fixed t and

is increasing in t for any fixed x.
Proof: See the Appendix.

The idea of this lemma can also be illustrated in an intuitive
way as follows. At any fixed time period, the marginal
benefit �Vt(x) of each additional packet declines because
the future possible routes are limited; therefore, the chance of
transmitting the additional packet at low prices also decreases.
Similarly, for any given remaining packet number x, the
marginal benefit of an additional packet increases with t,
because more number of possible future routes are available
when more remaining time periods; therefore, the chance of
getting a higher marginal benefit goes up. Also, Lemma 2
relaxes the assumption of Lemma 1 and we always have
k∗

t (x) ≤ k∗
t (x + 1) ≤ k∗

t (x) + 1, ∀x ≥ 0.
Considering Lemma 1 and Lemma 2, the optimal allocation

of packet transmission for the proposed dynamic auction
framework can be characterized by the following theorem.
Theorem 1: For any realization (�t, r) at the tth stage, the

optimal number of packets to transmit in state (x, t) is given
by

k∗
t (x) =

⎧⎪⎪⎨
⎪⎪⎩

max{1 ≤ k ≤ min{x,B} :
�Rt(k) > β · �Vt−1(x − k + 1)}

if Rt(1) > β · �Vt−1(x),
0 otherwise.

(16)

Moreover, it is optimal to allocate these k∗
t (x) packets to the

route with the lowest cost ri.
Proof: Vt(x) is the summation of two terms in (11). As

the second term is fixed given x, the optimal k∗
t maximizing

the first term needs to be studied. Based on the definition
(9), �R(·) is decreasing in its argument. Also, �Vt−1(·) is
decreasing in its argument from Lemma 2. Thus, �R(k) −

β · �Vt−1(x − k + 1) is also monotonically decreasing in
k. Therefore, the optimal allocation at tth time period with
x packets in queue, k∗

t (x), is the largest k for which this
difference is positive.
Theorem 1 shows how the source node should allocate

packets into different time periods. The basic idea is to
progressively allocate the packets to the route with the smallest
realization of J(r(1)) until the marginal benefit �Rt(i) drops
below the marginal opportunity cost �Vt−1(x − i + 1).
In order to have the optimal allocation strategies using

Theorem 1, we first need to know the expected profit function
�Vt(x), ∀t, x. For finite number of time periods, T , in prob-
lem (6), the optimal dynamic programming proceeds backward
using the Bellman equation [27] to obtain �Vt(x). Due to the
randomness of the route number and its type, it is difficult to
obtain the close-form expression of �Vt(x). Thus, we use
simulation to approximate the values of �Vt(x) for different
t and x, which proceeds as follows: Start from the routing
stage 0. For each stage t, generate N samples of the number
of available routes and their types, which follow the PDF
f�(�) and fi(ri), respectively. For each realization and for
each pair of values (x, t), calculate k∗

t (x) using Theorem
1. By using the conclusion of Lemma 1, we simplify the
computation of k∗

t (x) and only need O(NM) operations to
calculate Vt(x) for all x at fixed t time period. Therefore,
O(NMT ) operations are required for the whole algorithm.
Note that the computation of Vt(x) can be done off-line,
which will not increase the complexity of finding the optimal
allocation for each realization.
We then study the expected profit function for infinite

number of routing stages. Such scenario gives the upper-bound
of the expected profit, because the source node can wait until
low-cost routes being available for transmission. For infinite
horizon, the maximal profit Vt(x) in (6) can be rewritten as

V ∗(x) = E�,r

[
min
Q,k

{
�t∑

i=1

(G(K) − k · J(ri))Qi(r) + β · V ∗(x − k)

}]
(17)

or, equivalently, V ∗ = T V ∗, where T is the operator updating
V ∗ using (17). Assuming S is the feasible set of states,
The convergence proposition of the dynamic programming
algorithm [27] states that: for any bounded function V :
S → R, the optimal profit function satisfies V ∗(x) =
limp→∞(T pV )(x), ∀x ∈ S. As V (x) is bounded in our
algorithm, we are able to apply the value iteration method
to approximate the optimal V (x), which proceeds as follows:
Start from some initial function for V (x) as V 0(x) = g(x),
where the superscript stands for the iteration number. Then,
iteratively update V (x) by letting V p+1(x) = (T V p)(x). The
iteration process ends until |V p+1(x)−V p(x)| ≤ ε, for all x,
where ε is the error bound for V ∗(x).

C. Mechanism Design

In the previous part, we have developed the optimal dy-
namic pricing-based routing approach. Next, our task is to find
auction mechanisms that achieve the derived optimal strategy.
Many auction forms can be applied to achieve the optimal
strategy. Considering the truth-telling property of the second-
price auction, we focus on this mechanism in our paper.
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In a traditional second-price auction, the bidder with the
highest bid wins the item and pays the second highest bid
for it. In our framework, the source node is trying to find
the route with the lowest cost, which implies the application
of reverse second-price auction. The source node allocates
the packet transmission to the route with the lowest payment
bid and actually pay the second-lowest bid to the selected
route. Moreover, the auction mechanism can be performed in
many forms, such as open auctions and sealed-bid auctions.
Open auctions allows the bidders to submit bids many times
until finally only one bidder stays in the game. In sealed-bid
auctions, the bidders only submit their bids once. Considering
the sealed-bid auctions require less side-information and hence
save the wireless resources, we analyze the sealed-bid second-
price auction for our optimal allocation policy.
It is important to note that the straightforward application of

the reverse second-price auction can not guarantee the truth-
telling property of the bidders. Let J̃t(r) = G(1,Kt+1)−J(r)
and r̃t = J̃−1

t (�Vt−1(xt)), where xt is the packets to be
transmitted from the tth stage. Considering the scenario where
the lowest cost of the routes rt

(1) > r̃t, it can be seen from
Theorem 1 that no packet will be assigned for forwarding
within current time period. Hence, the route with the lowest
cost may have incentive to bid below their true cost and
satisfy the threshold constraint. In this way, this route will
win the packet and get positive payoff as the sender awards
it the second lowest bid. But the expected profit of the
sender will decrease according to (11). Therefore, we need
to modify the second-price mechanism by using r̃t as the
reserved price for every stage, which is the highest price
that the sender agrees to pay for transmitting one packet
within current time period. Specifically, given the submitted
bid vector, dt = {d1,t, d2,t, ..., d�,t}, the sender allocates the
packet to the route with lowest bid below the reserved price
and the selected route gets the payment max{d(2), r̃}, where
d(2) is the second lowest type of the forwarding routes.
Note that the mechanism we developed above can prevent

the single route from not reporting the true cost. But in
the presence of collusion of the routes, it may be not able
to maintain the truth-telling property. This problem can be
fixed from two aspects: First, the greediness of the selfish
routes can help to prevent the collusion. Assume two routes
collude to increase their profits. The collusion requires the
two routes to act and share the extra gain cooperatively. But,
the greediness of the routes decide that the cooperative game
can not be carried out between them. The noncooperative
behaviors will eventually lead to an inefficient outcome and
break the collusion of the players. Second, in our scheme,
the sender can discourage the collusion among the routes
by setting a higher reserve price. The collusion behaviors of
bidders is also referred as the bidding ring in the context of
the auction theory. The optimal reserve price is analyzed in
[21] to combat the collusion of bidders, which can be directly
applied to our scheme for handling the route collusion.

D. Profit Sharing among the Nodes on a Selected Route

In the above sections, we have developed the optimal
dynamic routing approach through multi-stage pricing in

MANETs and designed the mechanism of the second-price
auction with reserved prices to assure the truth-telling property
of each route. But, in this paper, we consider each route as
an entity. Thus, the residual problem is that how to share
the forwarding profits of the route defined as in (1) among
the forwarding nodes on the route. Although the proposed
mechanism can ensure the truth-telling of each route as one
bidder, the cooperation among the nodes on one route can
not be pre-assumed and truth-telling mechanisms need to be
further designed for the profit-sharing problem. In this part, we
will first prove that no dominant truth-telling strategy exists
for each node on the selected multi-hop forwarding route in
static profit-sharing scenarios. Then, the truth-telling profit-
sharing mechanisms are designed to enforce the cooperation
among the nodes on the selected route in dynamic scenarios.
As the nodes on the same forwarding route belong to their

own authorities, they will act greedily to get more profits
from the total profits that the route gains, which forms a
static profit-sharing game (SPSG). The players in the profit-
sharing game are all the nodes on the same forwarding route.
The payoff of each node is defined as the profits it obtained
through packet forwarding efforts, which is represented as Pi,j

for the jth node on the ith route. The action strategy of the
jth node on the ith discovered route can be represented as
{αi,j , v̂i,j}, where αi,j is the the percentage of profits that
this node will get for its packet forwarding efforts and v̂i,j is
the forwarding cost that it reported while performing the route-
based pricing. Note that v̂i,j may not be the true forwarding
cost and our aim is to design mechanisms to enforce the
truth-telling behaviors. Assume the number of hops on the
ith route is hi. Let the profit-sharing vector for the ith route
be αi = {αi,1, αi,2, ..., αi,hi}, where

∑hi

j=1 αi,j = 1. Denote
the reported cost vector of the nodes on the ith route as
v̂i = {v̂i,1, v̂i,2, ..., v̂i,hi}. Recall that the type vector of the
nodes on the ith route is defined as vi = {vi,1, vi,2, ..., vi,hi}
and the PDF of vi is f̂i, which we assume to be identical
for all nodes without loss of generality. Then, we study
the existence of the dominant truth-telling strategies in the
following theorem.
Theorem 2: There exists no dominant truth-telling strategy

{αi, v̂i} in the static profit-sharing game.
Proof: We prove this theorem by contradiction. Assume

α∗
i is a dominant truth-telling profit-sharing strategy in the
static profit-sharing game, which means by using α∗

i , every
forwarding node’s dominant strategy on the ith route is to
report its true type (or cost). Equivalently, if the jth node
reports a higher cost, v̂i,j = vi,j + ε, than its true type vi,j

while other nodes report the true value, the jth node will get
a lower profit. In order to show the dominant strategy α∗

i ,
we need to calculate and compare the node’s profit when it
is cheating or not. First, the total profits of the ith route are
obtained and then we study the profit of each node. Based
on our second-price mechanism and considering (1), the total
profits of the ith route can be represented as follows.

Ui(r̂i) = Prob(r̂i < r(1)(r−i)) · (Er−i [r(1)(r−i)|r̂i < r(1)(r−i)]− r̂i),
(18)

where r̂i is the bidding cost of the ith route, which the ith
route believes to be the true cost, but may be not if some node
on the ith route is cheating by reporting a higher type value,
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and r(1)(r−i) represents the lowest cost of all routes except
the ith route. Without loss of generality, we assume the PDF
of ri to be identical for all routes as f . By using the results
of order statistics [29], we have the condition expectation of
the payment as follows.

Er−i [r(1)(r−i)|r̂i < r(1)(r−i)] =
1

[1 − F (r̂i)]�−1

∫ ∞

r̂i

[1−F (x)]�−1dx.

(19)

Noting that the probability of winning the auction for the ith
route is

Prob(r̂i < r(1)(r−i)) = [1 − F (r̂i)]�−1. (20)

Substituting (19) and (20) into (18), the total profits can be
written as

Ui(r̂i) =
∫ ∞

r̂i

[1 − F (x)]�−1dx. (21)

Then, using the profit-sharing strategy α∗
i , the profit of the

jth node on the ith route can be calculated. We consider two
cases: (a) the node reports the true type vi,j ; (b) the node
cheats and reports a higher value v̂ = vi,j + ε. For case (a),
the profit of the jth node on the ith route is represented as
follows.

Ui,j(vi,j) = α∗
i,j · Ui(ri)

= α∗
i,j ·

∫ ∞

ri

[1 − F (x)]�−1dx. (22)

For case (b), the profit includes the cheating profit of reporting
an extra cost ε and the allocated profit from the ith route,
which can be written as

Ui,j(v̂i,j) = ε · Prob(r̂i < r(1)(r−i)) + α∗
i,j · Ui(r̂i)

= ε · [1 − F (ri + ε)]�−1 +

α∗
i,j ·

∫ ∞

ri+ε

[1 − F (x)]�−1dx. (23)

Subtracting (22) from (23), we have

Ui,j(v̂i,j) − Ui,j(vi,j) = [1 − F (ri + ε)]�−1

×
{

ε − αi,j

∫ ri+ε

ri

[1 − F (x)]�−1

[1 − F (ri + ε)]�−1
dx

}
. (24)

From the Mean Value Theorem, we know that there exists
some λ ∈ [0, 1] satisfying∫ ri+ε

ri

[1 − F (x)]�−1

[1 − F (ri + ε)]�−1
dx = ε ·

(
[1 − F (ri + λε)]
[1 − F (ri + ε)]

)�−1

.

(25)
And, for simplicity, let

Ψ(ε) =
(

[1 − F (ri + λε)]
[1 − F (ri + ε)]

)�−1

, (26)

which is a decreasing function in ε, and has the limit

lim
ε→0

Ψ(ε) = 1. (27)

Thus, there always exists a positive value δ. When ε < δ,
Ψ(ε) < 1/α∗

i,j . Further, by putting (25) into (24), we have

Ui,j(v̂i,j)−Ui,j(vi,j) = ε · [1−F (ri + ε)]�−1[1−α∗
i,j ·Ψ(ε)].

(28)

Therefore, ∃δ, for ε < δ, Ui,j(v̂i,j) − Ui,j(vi,j) > 0, which
contradicts the assumption that α∗

i,j is a dominant truth-telling
strategy. Considering such contradiction holds for any α∗

i,j , we
finally prove that there does not exist a cheat-proof strategy
for the profit-sharing game.
Since there is no dominant truth-telling strategy in static

profit-sharing games as Theorem 2 shows, it is necessary to
design certain mechanisms to enforce the cooperation among
the forwarding nodes on the same forwarding route. There
are many ways to design such mechanisms. For instance,
an intuitive idea is to provide over-payment to the nodes on
the winning route as the compensation for their cooperative
behaviors. The over-payment should be more than the cheating
gain the nodes can obtain. But who is responsible for the
over-payment? It is not reasonable to ask the sender for the
payment-compensation. Because, in this way, the sender may
have incentives to switch his/her transmission to the route
with higher true cost, which asks for less over-payment. It
is also a rational behavior for such route to require a less
over-payment, which may make them have a positive payoff
instead of losing the auction with zero payoffs. Therefore,
a more practical way is to let the central-bank periodically
compensate the forwarding nodes with some payments. The
over-payment amount can be decided based on the Vickrey-
Clarke-Groves (VCG) mechanism [13], [21], which pays each
node the difference between the routing cost without this node
and the other nodes’ routing cost with the presence of this
node. It is important to note that the application of the VCG
mechanism here does not conflict with our dynamic pricing
mechanism. They are carried out separately by the central bank
and the sender for ensuring the cooperation of forwarding
nodes on one route and maximizing the total profits of the
sender, respectively.

However, the over-payment method still requires some
information of the overall topology and forward costs, which
may not be available in dynamic scenarios. In order to have
enforceable truth-telling mechanisms, it is reasonable to model
the profit-sharing interactions as a repeated game for each
route. Generally speaking, repeated games belong to the
dynamic game family, which play a similar static game many
times. The overall payoff in a repeated game is represented
as a normalized discounted summation of the payoff at each
stage game. A strategy in the repeated game is a complete
plan of action, that defines the players’ actions in every stage
game. At the end of each stage, all the players can observe
the outcome of the stage game and decide the future actions
using the history of plays. The repeated profit-sharing game
(RPSG) can be defined as follows.

Definition 1: Let Γ be a static profit-sharing game and β be
a discount factor. The T -period profit-sharing repeated game,
denoted as Γ(T, β), consists of game Γ repeated T times. The
repeated game payoff is given by

Pi,j =
T−1∑
t=0

βtP t
i,j , (29)

where P t
i,j denotes the payoff of the jth node on the i the

route in period t. If T goes infinity, then Γ(∞, β) is referred
to as the infinite repeated game.
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Note that Nash Equilibrium [10], [11] is an important
concept to measure the outcome of the SPSG, which is a
set of strategies, one for each player, such that no selfish
player has incentive to unilaterally change his/her action.
However, the selfishness of players will result in inefficient
non-cooperative Nash Equilibriums in static games. As for
dynamic games, Subgame Perfect Equilibrium (SPE) can be
used to study the game outcomes, which is an equilibrium such
that users’ strategies constitute a Nash equilibrium in every
subgame [10], [11] of the original game. In the RPSG, since
the game is not played only once, the players is able to make
decisions conditioning on past moves for better outcomes, thus
allowing for reputation effects and retribution. Therefore, in
order to measure the outcome of the RPSG, we apply the Folk
Theorems [10], [30] of the infinite repeated games to have the
following theorem.
Theorem 3: In RPSG, there exists a discount factor β̂ < 1

such that any feasible and individually rational payoff can be
enforced by an equilibrium for any discount factor β ∈ (β̂, 1).
The above theorem illustrates that feasible profit-sharing

outcomes can be enforced in the RPSG when no dominant
strategy is available. However, it didn’t answer the question
that how the feasible profit-sharing outcomes can be enforced,
that is, how to design the enforcing mechanisms in the RPSG.
First, we define two strategies: the cooperative strategy and
non-cooperative strategy. In cooperative strategy, the node will
report the true forwarding cost; in non-cooperative strategy,
the node will report a very high forwarding cost so that the
route with this node will not be selected for packet forwarding.
Similar to [30]–[32], we propose the following mechanism to
enforce truth-telling strategies for the RPSG.
CArtel Maintenance Profit-sharing (CAMP) mecha-

nism:
(1) Each node on the selected route plays the cooperative

strategy at the first stage;
(2) If the cooperation strategy is played in stage t and Ui =∑hi

j=1 Pi,j ≥ Ũ , each node plays the cooperative strategy in
stage t + 1;
(3) If the cooperation strategy is played in stage t and Ui <

Ũ , each node switches to a punishment phase for T −1 stages,
in which the non-cooperative strategy is played regardless of
the realized outcomes. At the T th period, each node switches
back to the cooperative strategy.
Note that Ũ is the cartel maintenance threshold. Similar

to [30]–[32], the optimal Ũ and T can be obtained using
the routing statistics. The proposed CAMP mechanism uses
the non-cooperative punishment launched by all nodes to
prevent any deviating strategies from the cooperative strategy.
Specifically, although the deviating behaviors may benefit a
node at current stage, its payoff will be decreased more in
future stages. By using the CAMP mechanism, the truth-telling
profit sharing is enforceable among the nodes on the selected
route. Based on Theorem 3, we can enforce any feasible profit
sharing strategy such as equal sharing or proportional sharing
according to the effort of each node.

V. SIMULATION STUDIES

In this section, we evaluate the performance of the proposed
dynamic pricing approach in multi-hop ad hoc networks. We

TABLE I: Simulation Parameters

Node Density 10, 20, 30
Minimum Velocity (vmin) 10 m/s
Maximum Velocity (vmax) 30 m/s
Average Pause time 100 seconds
Dimensions of Space 1000m × 1000m
Maximum Transmission Range 100 m
Average Packet Inter-Arrival Time 1 seconds
Data Packet Size 1024 bytes
Link Bandwidth 8 Mbps

consider an ad hoc network where N nodes are randomly
deployed inside a rectangular region of 10γ m × 10γ m
according to the 2-dimension uniform distribution with the
maximal transmission range γ = 100m for each node. Let
λ = Nπ/100 denote the normalized node density, that
is, the average number of neighbors for each node in the
network. Each node moves according to the random waypoint
model [33]: a node starts at a random position, waits for
a duration called the pause time, then randomly chooses a
new location and moves toward the new location with a
velocity uniformly chosen between vmin and vmax. When
it arrives at the new location, it waits for another random
pause time and repeats the process. The physical layer assumes
that two nodes can directly communicate with each other
successfully only if they are in each other’s transmission
range. The MAC layer protocol simulates the IEEE 802.11
Distributed Coordination Function (DCF) with a four-way
handshaking mechanism [34]. Table I shows all simulation
parameters. Note that each source-destination pair is formed
by randomly picking two nodes in the network. And, multiple
routes with different hop number may exist for each source-
destination pair. Since the routes with the least hop number
have much higher probabilities to achieve lower costs, without
loss of generality, we only consider the least-hop routes as the
bidding routes for simplicity in the proposed optimal dynamic
auction framework. Considering the mobility of each node,
its forwarding cost is no longer a fixed value and we assume
that its PDF f̂(v) follows the uniform distribution U [ū, u],
which has the mean μ and the variance σ2. Thus, using the
Central Limit Theorem [29], the cost of a h-hop route can
be approximated by the normal distribution with the mean
h ·μ and variance h · σ2. In our simulation, we first study the
dynamics of MANET and then illustrate the performance of
our proposed framework for different network settings.
In order to study the dynamics of MANET, we first conduct

simulations to study the hop number on the least-hop route
for source-destination pairs. Let h̄(ni, nj) = �dist(ni, nj)/γ
denote the minimum number of hops needed to traverse from
node i to node j, where dist(ni, nj) denotes the physical
distance between node i and j, and let ˜̄h(ni, nj) denote the
number of hops on the actual least-hop route between the
two nodes. Note that we simulate 106 samples of topologies
to study the dynamics of MANET. Firstly, Figure 3 shows
the approximated cumulative probability mass function (CMF)
of the difference between the ˜̄h(ni, nj) and h̄(ni, nj) for
different node densities. Based on these results, the average
number of hops associated to the least-hop route from node i
to j can be approximated using the dist(ni, nj), γ, and the
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Fig. 3: The cumulative probability mass function of the hop-
number difference between the h(u, v) and r(u, v).
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Fig. 4: The cumulative probability mass function of the
number of the least-hop route when the node density is 10.

corresponding CMF of hop difference. Also, it can be seen
from Figure 3 that lower node density results in having a larger
number of hops for the least-hop routes, since the neighbor
nodes are limited for packet forwarding in such situations.
Secondly, we study the time and path diversity of MANET
by finding the maximum number of least-hop routes for the
source-destination pair. Note that there may exist the scenarios
where the node may be on multiple least-hop forwarding
routes for the same source-destination pair. For simplicity,
we assume during the route discovery phase, the destination
randomly picks one of such routes as the routing candidates
and feedbacks the routing information of node-disjoint least-
hop routes to the source. Figure 4 shows the CMF of the
number of the least-hop routes for different hop number when
the node density is 10. The results for the node density 20 and
30 are shown in Figure 5 and Figure 6, respectively. It can
be seen from the above figures that when the node density is
increasing, the probability of having more routes between each
source-destination pair is becoming much higher. Such facts
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Fig. 5: The cumulative probability mass function of the
number of the least-hop route when the node density is 20.
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Fig. 6: The cumulative probability mass function of the
number of the least-hop route when the node density is 30.

also indicate a higher order of path diversity can be exploited
when each node has more neighbors. Moreover, the possibility
of getting more routes for the route with more hops is much
lower since the path diversity for multi-hop routing is limited
by the forwarding node with the worst neighboring situation.
Therefore, the number of routing candidates and their types
can be approximated using the above results.
In the following parts, we consider the performance for

three different schemes: our scheme with finite time horizon,
our scheme with infinite time horizon and the fixed allocation
scheme. Note that the infinite time horizon can not be achieved
in real application. But it can serve as a upper bound for
measuring the performance of our scheme. The fixed scheme
allocates a fixed number of packets into each stage while
also using the optimal auction at each stage. Assume the
cheat-proof profit sharing mechanisms are in place to ensure
the cooperation of the forwarding nodes on the same route.
Let the benefit function be G(K) = g · k, where g is the
benefit of successfully transmitting one packet. Note that the
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Fig. 8: The average profits of our scheme with finite time
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simulation parameters are set as T = 20, M = 100 and
B = 10. Let g = 60, ū = 10, and u = 15. In Figure
7, we compare the overall profits of the three schemes for
different node densities. The concavity of the simulated value
functions of our scheme matches the theoretical statement in
Lemma 2. It can be seen from the figure that our scheme
achieves significant performance gains over the fixed scheme,
which mainly comes from the time diversity exploited by the
dynamic approach. We observe that the performance gap of the
two schemes becomes larger when the node density decreases.
Thus, in order to increase the profits under the situations of low
node densities, it becomes much more important to exploit the
time diversity. Also, the total profits of our scheme increases
with the increment of the node density due to the higher order
of path diversity. Besides, since the performance gap between
the schemes with finite and infinite time horizon is small, only
a few routing stages are required to exploit the time diversity.

0 2 4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

Time stage

O
ve

ra
ll 

pr
of

it

M=100
M=80
M=60
M=40

Fig. 9: The overall profits of our scheme with different packets
to be transmitted when the node density is 10.
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Fig. 10: The overall profits of our scheme with different time
stages when the node density is 10.

In Figure 8, the average profits of the three schemes are
shown for different node densities. This figure shows that the
average profit of transmitting one packet decreases as there
are more packets to be transmitted. It is because the packets
need to share the limited routing resources from both the
time diversity and path diversity. When the node density is
30, the average profit degrades much slower than other cases
since the potential of utilizing both the time diversity and
path diversity is high. The overall profits of our scheme with
finite time horizon are compared for different total packets in
Figure 9 for node density being 10. This figure shows that the
overall profits increases with more routing stages due to the
time diversity. Also, the saturation behavior can be observed
when using more stages. In Figure 10, the overall profits are
compared for different time stages. Considering the limited
routing resource, the overall profits saturate when the packet
number is high.
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VI. CONCLUSIONS

In this paper, we study how to conduct efficient pricing-
based routing in self-organized MANET by assuming that
the packet-forwarding will incur a cost to the relay node
and the successful transmission brings benefits to the source-
destination pairs. Considering the dynamic nature of MANET,
we model the routing procedure as a multi-stage pricing
game and propose an optimal dynamic pricing-based routing
approach to maximize the payoffs of the source-destination
pair while keeping the forwarding incentives of the relay
nodes on the selected routes by optimally pricing their packet-
forwarding services through the auction protocol. It is impor-
tant to notice that not only the path diversity but also the
time diversity in MANETs can be exploited by our dynamic
pricing-based approach. Also, the optimal dynamic auction
algorithm is developed to achieve the optimal allocation of
packets to be transmitted, which provides the corresponding
pricing rules while taking into consideration of the node’s
mobility and the routing dynamics. Extensive simulations have
been conducted to study the performances of the proposed
approach. The results illustrate that the proposed approach
achieves significant performance gains over the existing static
routing approaches.

APPENDIX

Proof of Lemma 2
Proof: First, we prove that �Vt(x) is decreasing in x at

any fixed time period t. Note that the induction method is used
to prove this part of Lemma 2. For t = 0, the lemma obviously
holds since V0(x) = 0 for all x. Assume the inductive
hypothesis for period t − 1 as �Vt−1(x) ≥ �Vt−1(x + 1).
Then, we will show that if the inductive hypothesis holds,
�Vt(x) also decreases.
Consider a realization of �t routes and their cost vector

r = (r1, r2, ..., r�t). Define the inner maximized term in (10)
as follows

Ut(x, �t, r) = max
0≤k≤min{B,x}

{Rt(k) + β · Vt−1(x− k)}, (30)

and define the difference function as

�Ut(x, �t, r) = Ut(x, �t, r) − Ut(x − 1, �t, r). (31)

Thus �Vt(x) can be obtained as

�Vt(x) = E�t,r[�Ut(x, �t, r)]. (32)

For simplicity and without loss of generality, we omit the
arguments �t, r in �Ut(x, �t, r) and simply use �Ut(x).
Moreover, it can be seen from (32) that it is sufficient to prove
that �Ut(x) is decreasing in x for the proof that �Vt(x) is
decreasing in x.
Using the inductive hypothesis and Lemma 1, we have the

constraint on k∗
t (x + 1) as

k∗
t (x) ≤ k∗

t (x + 1) ≤ k∗
t (x) + 1. (33)

Based on the constraint, we then study the value of �Ut(x +
1) for the two possible outcomes, k∗

t (x + 1) = k∗
t (x) and

k∗
t (x + 1) = k∗

t (x) + 1:

1). If k∗
t (x + 1) = k∗

t (x), then �Ut(x + 1) = β ·
�Vt−1(x − k∗

t (x) + 1) from (30) and (31). Also, from the
optimal condition of k in (12), we know

�Rt(k∗
t (x+1)+1) ≤ β ·�Vt−1(x+1−(k∗

t (x+1)+1)+1).
(34)

Considering k∗
t (x + 1) = k∗

t (x), (34) can be rewritten as

�Rt(k∗
t (x) + 1) ≤ β · �Vt−1(x − k∗

t (x) + 1). (35)

2). Similarly, If k∗
t (x+1) = k∗

t (x)+1, then �Ut(x+1) =
�Rt(k∗

t (x) + 1) from (30) and (31), and

�Rt(k∗
t (x) + 1) > β · �Vt−1(x − k∗

t (x) + 1). (36)

Thus, it can be concluded from the above two cases that
�Ut(x + 1) satisfies

�Ut(x+1) = max{�Rt(k∗
t (x)+1), β·�Vt−1(x−k∗

t (x)+1)}.
(37)

Consider now �Ut(x + 1) and �Ut(x) and compare their
values. Given the constraint on k∗

t (x) by Lemma 1, the value
of �Ut(x + 1) in (37), and considering that �Rt(m) and
�Vt−1(m) decrease in their arguments, we have the following
expressions.

�Ut(x)
= max{�Rt(k∗

t (x − 1) + 1),
β · �Vt−1(x − 1 − k∗

t (x − 1) + 1)}
≥ max{�Rt(k∗

t (x) + 1), β · �Vt−1(x − (k∗
t (x) − 1))}

= �Ut(x + 1). (38)

Therefore, the first part of Lemma 2 is proved by the above
discussion.
Next, we show that �Vt(x) is increasing in t for any fixed

x. Similarly, it suffices to prove the statement for a particular
realization �t, r. Following the results in (37), we get that

�Ut(x) ≥ β · �Vt−1(x − k∗
t (x)), (39)

and from the fact that �Vt−1(·) is decreasing, we have

�Ut(x) ≥ β · �Vt−1(x). (40)

As taking the expectation with respect to �t, r on both sides
of (40) does affect the inequality, we prove

�Vt(x) ≥ �Vt−1(x). (41)
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