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Abstract— In autonomous mobile ad hoc networks (MANET)
where each user is its own authority, fully cooperative behaviors,
such as unconditionally forwarding packets for each other or,
honestly revealing its private information, cannot be directly
assumed. The pricing mechanism is one way to provide incentives
for the users to act cooperatively by rewarding some payment
for cooperative behaviors. In this paper, we model the pricing
and routing as multi-stage dynamic games. By taking into
consideration that the packet-forwarding will incur a cost to
the relay user and the successful transmission brings benefits to
the sender/receiver, we propose a dynamic pricing framework
to maximize the sender/receiver’s payoff by considering the
dynamic nature of MANETs, meanwhile, keeping the forwarding
incentives of the relay nodes by providing the optimal payments
based on the auction rules. The contributions of this paper are
multi-folds: Firstly, by modeling the pricing and routing as a
dynamic game, the sender is able to exploit the time diversity
in MANET to increase their payoffs by adaptively allocating the
packets to be transmitted into different stages. Secondly, based
on the auction structure and routing dynamics, a simple optimal
dynamic programming algorithm is developed to implement
efficient multi-stage pricing for autonomous MANETs. Thirdly,
the path diversity of MANET is exploited using the optimal
auction mechanism in each stage. The simulation results illustrate
that the proposed dynamic pricing framework has significant
performance gains over the existing static pricing algorithms.

I. INTRODUCTION

In recent years, mobile ad hoc networks (MANET) have
received much attention due to their potential applications
and the proliferation of mobile devices [1], [2]. In general,
mobile ad hoc networks refer to wireless multi-hop net-
works formed by a set of mobile nodes without requiring
centralized administration or fixed network infrastructure, in
which nodes can communicate with other nodes out of their
direct transmission ranges through cooperatively forwarding
packets for each other. In traditional emergency or military
situations, the nodes in a MANET usually belong to the
same authority and have the common goals. To maximize the
overall system performance, nodes usually work in a fully
cooperative way, and will unconditionally forward packets
for each other. Recently, emerging applications of MANETs
are also envisioned in civilian usage [3]–[9], where nodes
typically do not belong to a single authority and may not
pursue a common goal. Furthermore, such a network could
be completely self-organizing, where the network would be
run solely by the operation of the end-users. Consequently,
fully cooperative behaviors such as unconditionally forwarding

packets for other nodes cannot be directly assumed. On the
contrary, in order to save limited resources, such as battery
power, nodes may tend to be “selfish”. We refer to such
networks as autonomous (or self-organized) MANETs.

Before MANETs can be successfully deployed in a self-
organized way, the issue ofcooperation stimulationmust
be resolved first. In the literature, two types of schemes
have been proposed to stimulate cooperation among selfish
nodes: reputation-based schemes and payment-based schemes.
In reputation schemes, such as [4]–[7], [10]–[12], a node
determines whether it should forward packets for other nodes
or request other nodes to forward packets for it based on their
past behaviors. In such schemes, by keeping monitoring packet
forwarding activities, the misbehaving nodes may be detected
and isolated from the rest of the network. The advantage of
these schemes is that they do not require central management
points, while the disadvantage is that these schemes usually
cannot handle well the dynamically changing topology and
asymmetric packet forwarding request demands, for example,
a node with few packets to send has no incentive to forward
all the packets for another node with a lot of packets to send.
In the payment-based schemes, such as [8], [9], [13], [14],
a selfish node will forward packets for other nodes only if it
can get some payment from those requesters as compensation.
Compared with those reputation-based schemes, the advantage
of the payment-based schemes lies in that they can work
under various situations, such as the network with dynamically
changing topology or asymmetric request demands, while the
disadvantage is that they may require some management points
to handle billing information.

In this paper we focus on the payment-based mechanisms.
In autonomous MANETs, each node’s objective is to max-
imize its own benefits. Specifically, from the sender’s point
of view, he/she aims to transmit their packets with the least
possible payments; from the relaying nodes’ points of view,
they want to earn as much as possible payments through for-
warding packets for other nodes; from the network designers’
point of view, they prefer that the network throughput and/or
lifetime can be maximized. By taking into consideration the
utility-maximization goal of the selfish users and the dynamic
nature of MANETs, to obtain good system performance, such
as energy efficiency, throughput, and network lifetime, the
following important issues in autonomous MANETs should
be addresses first: How to perform route selection among



multiple routes? How many packets should be sent through
the selected routes? And how much payment will be assigned
to the forwarding nodes?

Although the existing payment-based schemes, such as
[9], [13], [14], have achieved some success in autonomous
MANETs, most of them assume that the network topology is
fixed or the routes between the sources and the destinations
are known and pre-determined. However, in MANETs, there
usually exist multiple possible routes from the source to
the destination; furthermore, due to mobility, the available
routes between the sources and the destinations may change
frequently. In this paper, we refer topath diversityas the fact
that in general there exist multiple routes between a pair of
nodes, each with different characteristics, such as the number
of hops, cost (or requested payment), and valid time of this
route. We refer totime diversityas the fact that due to mobility
and dynamic traffic patterns, the routes between two nodes will
keep changing over time.

For each node, to achieve its goal with ultimate perfor-
mance, both path diversity and time diversity of MANETs
should be exploited. The source (here we assume the source
pays to the forwarding nodes) can exploit the path diversity,
such as introducing competition among the multiple available
routes through auction, to minimize the payment needed at the
current stage. Each node can also exploit the time diversity to
maximize its overall payoff over time. The basic idea is that in
each stage the source can adaptively determine the number of
packets needed to be transmitted according to the current route
condition, for example when the route condition is good (i.e.,
the cost to transmit a packet is low), more packets should be
transmitted in the current stage, while when the route condition
is not good, less or no packets should be transmitted.

Some preliminary works have been proposed to exploit
the path diversity, such as [13], [14]. Based on the ideas of
the auction-like pricing and routing protocols for the Internet
[15], [16], the authors in [13], [14], [17] have introduced
some auction-like methods for the cost-efficient and truthful
routing in MANETs, where the sender-centric Vickrey auction
has been adopted to discover the most cost-efficient routes,
which has the advantage that its incentive compatible property
ensures the truthful routing among the nodes. Router-based
auction approaches [18], [19] have also been proposed to
encourage the packet-forwarding in MANETs, where each
router constitutes an auction market instead of submitting bids
to the sender. Besides, a strategy-proof pricing algorithm for
the truthful multi-cast routing has been proposed in [20].

However, none of the existing schemes have addressed how
to exploit the time diversity, which we expect can significantly
improve the system performance. In this paper, we consider
the routing as multi-stage dynamic games and propose a
dynamic pricing framework to maximize the sender’s payoff
over multiple routing stages considering the dynamic nature
of MANETs, meanwhile, keeping the forwarding incentives of
the relay nodes by providing the optimal payments based on
the auction rules. The main contribution is as follows: Firstly,
by modeling the pricing and routing as a dynamic game, the

sender is able to exploit the time diversity in MANET to
increase their payoffs by adaptively allocating the packets to
be transmitted into different stages. Considering the mobility
of the nodes, the possible routes for each transmission pair
are changing dynamically over time. According to the path
diversity, the sender will pay a lower price for transmitting
packets when there are more potential routes. Thus, the
criterion for allocation can be developed based on the fact
that the sender prefers to send more packets in the stage
with lower costs. Secondly, an optimal dynamic program-
ming approach is proposed to implement efficient multi-stage
pricing for autonomous MANETs. Specifically, the Bellman
equation is used to formulate and analyze the above dynamic
programming problem by considering the optimization goal
in terms of two parts: current profit and future opportunity
profits. A simple optimal allocation algorithm is developed and
proved based on the auction structure and routing dynamics.
Thirdly, the path diversity of MANET is exploited using the
optimal auction mechanism in each stage. The application of
the optimal auction makes it possible to separately study the
optimal allocation problem and the mechanism design of the
auction protocol based on the well-known Revenue Equiva-
lence Theorem [21], which simplifies the dynamic algorithm
while keeping the optimality.

The reminder of this paper is organized as follows: The
system model of autonomous MANETs are illustrated in
Section 2. In Section 3, we formulate the pricing process
as dynamic games based on the system model. In Section
4, the optimal dynamic auction framework is proposed for
the optimal pricing and allocation of the multi-stage packet
transmission. In Section 5, extensive simulations are conducted
to study the performance of the proposed approach. Finally,
conclusions are drawn in Section 6.

II. SYSTEM MODEL

An ad hoc network consists of a group of wireless mobile
nodes, in which individual nodes cooperate by forwarding
packets for each other to allow nodes to communicate beyond
direct wireless transmission range. Prior research in ad hoc
networking has generally studied the routing problem in a
non-adversarial trusted environment. In this paper we consider
autonomous mobile ad hoc networks where nodes belong to
different authorities and have different goals. We assume that
each node is equipped with a battery with limited power
supply, can freely move inside a certain area, and communi-
cates with other nodes through wireless connections. For each
node, packets are scheduled to be generated and delivered to
certain destinations with each packet having a specific delay
constraint, that is, if a packet cannot reach the destination
within its delay constraint, it will become useless.

In our system model, we assume all nodes are selfish and
rational, that is, their objectives are to maximize their own
payoff, not to cause damage to other nodes. However, node are
allowed to cheat whenever they believe cheating behaviors can
help them increasing their payoff. Since nodes are selfish and
forwarding packets on behalf of others will incur some cost,



without necessary compensation, nodes have no incentive to
forward packets for others. In our system model, we assume
that if a packet can be successfully delivered to its destination,
then the source and/or the destination of the packet can get
some benefits, and when a node forwards packets for others,
it will ask for some compensation, such as virtual money or
credits [9], [22], from the requesters to at least cover its cost. In
our system model, to simplify our illustration, we assume that
the source of a packet pays to the intermediate nodes who have
forwarded the packet for it. However, the proposed schemes
can also be easily extended to handle the situation that the
destinations pay. Like in [9], we assume that there exist some
bank-like centralized management points, whose only function
is to handle the billing information, such as performing credit
transfer among nodes based on the submitted information by
these nodes. Each node only needs to contact these central
banking points periodically or aperiodically.

The routing protocols are important for MANET to establish
communication sessions between each source-destination pair.
Here, we consider the on-demand (or reactive) routing proto-
cols for ad hoc networks, in which a node attempts to establish
a route to some destination only when it needs to send packets
to that destination. Since on-demand routing protocols are able
to handle many changes of node connectivity due to the node’s
mobility, they perform better than periodic (or proactive)
routing protocols in many situations [23]–[25] by having much
lower overheads. In MANETs, due to the mobility, nodes
need to frequently perform route discovery. In this paper, we
refer to the interval between two consecutive route discovery
procedures as a routing stage, and assume that for each source-
destination pair, the quality of the selected route between them
will keep unchanged in the same routing stage. Furthermore,
to simplify our analysis, we assume that for each source-
destination pair, the discovered routes in different routing
stages are independent.

III. PROBLEM FORMULATION

After performing route discovery at each stage, multiple
forwarding routes can be exploited between the source and the
destination. Assume there are` possible routes and letvi,j be
the forwarding cost of thejth node on theith route, which
is also referred to as the node type in this paper. Considering
possible node mobility in MANET,̀ and vi,j are no longer
fixed values, which can be modelled as random variables. Let
the probability mass function (PMF) of` be f̃(`) and the cor-
responding cumulative density function (CMF) bẽF (`). And,
vi,j is characterized by its probability density function (PDF)
f̂i,j and the cumulative density function (CDF)̂Fi,j . Define
the cost vector of theith route asvi = {vi,1, vi,2, ..., vi,hi},
wherehi is the number of forwarding nodes on theith route.
Thus, we have the total cost on theith routeri =

∑hi

j=1 vi,j ,
which is also a random variable. Let the PDF and CDF ofri

be fi andFi, respectively.
In this paper, we model the process of establishing a route

between a source and a destination node as a game. The
players of the game are the network nodes. With respect to

a given communication session, any node can play only one
of the following roles: sender, relay node, or destination. In
autonomous MANET, each node’s objective is to maximize
its own benefits. Specifically, from the sender’s point of view,
he/she aims to transmit its packets with the least possible
payments; from the relaying nodes’ points of view, they want
to earn the payment which not only covers their forwarding
cost but also gain as much extra payment as possible; while
from the network designers’ point of view, they prefer that the
network throughput and/or lifetime can be maximized. There-
fore, the source-destination pair and nodes on the possible
forwarding routes construct a non-cooperative pricing game
[26]. Since the selfish nodes belong to different authorities,
they only have the information about themselves and will not
reveal their own types to others unless some mechanisms have
been applied to guarantee that truth-telling does not harm
their interests. Generally, such non-cooperation game with
imperfect information is complex and difficult to study as the
players do not know the perfect strategy profile of others. But
based on our game setting, the well-developed auction theory
can be applied to analyze and formulate the pricing game.

The auction games belong to a special class of game with
incomplete information known as games of mechanism design,
in which there is a “principal” who would like to condition
his actions on some information that is privately known by
the other players, called “agents”. In auction, according to
an explicit set of rules, the principle (auctioneer) determines
resource allocation and prices on the basis of bids from the
agents (bidders). In the pricing game, the source can be viewed
as the principle, who attempts to buy the forwarding services
from the candidates of the forwarding routes. The possible
forwarding routes are the bidders who compete with each
other for serving the source node, by which they may gain
extra payments for future use. In order to maximize their
own interests, the selfish forwarding nodes will not reveal
to others their private information, i.e., the actual forwarding
costs. They compete for the forwarding request by eliciting
their willingness of the payments in the forms of bids. Thus,
because of the path diversity of MANET, the sender is able to
lower its forwarding payment by the competition among the
routing candidates based on the auction rules. It is important
to note that instead of considering each node as a bidder
[13], [17], we consider each route as a bidder in this paper,
which has the following advantages: First, by considering
the nodes on the same forwarding route as one entity, the
sender can fully exploit the path diversity to maximize its
own payoffs. Second, since it has been proved in [17] that
there does not exist a cheat-proof forwarding protocol for ad
hoc pricing games, the route-based bidding approach makes it
possible to study the utility-maximization allocation and cheat-
proof mechanism design sequentially. Moreover, less bidding
information is required for route-based approach.

In this section, we first consider the static pricing game
(SPG), which is only played once for the fixed topology. Then,
the dynamic pricing game (DPG) is studied and formulated
considering playing the pricing game for multiple stages.



A. The Static Pricing Game

In this subsection, we study the static pricing game model.
By taking advantage of the auction approach, our goal is to
maximize the profits of the source-destination communication
pair for transmitting packets while keeping the forwarding
incentives of the forwarding routes. Specifically, considering
an auction mechanism(Q,M) consists of a pair of functions
Q : D → P and M : D → RN , whereD is the set of
announced bids,P is the set of probability distributions over
the set of routesL. Note thatQi(d) is the probability that the
ith route candidate will be selected for forwarding andMi(d)
is the expected payment for theith route, whered is the vector
of bidding strategies for all routes, i.e.,d = {d1, d2, .., d`} ∈
D. Let d−i denote the strategy vector of routei’s opponents.
Then, the utility function of theith forwarding route can be
represented as follows

Ui(di, d−i) = Mi(di, d−i)−Qi(di, d−i) · ri. (1)

Before studying the equilibria of the auction game, we first
define thedirect revelation mechanismas the mechanism in
which each route bids its true cost,di = ri. The Revelation
Principle [21] states that given any feasible auction mech-
anism, there exists an equivalent feasible direct revelation
mechanism which gives to the auctioneer and all bidders the
same expected utilities as in the given mechanism. Thus, we
can replace the bidsd by the cost vector of the routes, i.e.,
r = {r1, r2, ..., rL} without changing the outcome and the
allocation rule of the auction game. Therefore, the equilib-
rium of the SPG can be obtained by solving the following
optimization problem to maximize the sender’s payoff while
providing incentives for the forwarding routes

max
Q,M

{
E`,r

[
g ·

∑̀

i=1

Qi(r)−
∑̀

i=1

Mi(r)

] }
(2)

s.t. Ui(ri, d−i) ≥ Ui(di, d−i), ∀di ∈ D (3)

Qi(r) ∈ {0, 1},
∑̀

i=1

Qi(r) ≤ 1.

where the constraint (3) is also referred as the incentive
compatibility (IC) constraint, which ensures the users to report
their true types, andg is the marginal profit of transmitting
one packet.

B. The Dynamic Pricing Game

Considering the dynamic nature of MANET, the network
topology may change over time due to the mobility of the
nodes. Thus, the route discovery needs to be performed fre-
quently. Moreover, for different routing stages, there may exist
different number of available routes with different number
of hops. It is important for each source-destination pair to
decide the transmission and payment behaviors for each stage
according to the route conditions. Therefore, the pricing game
in such dynamic situation can no longer be modeled as static
games. Game theorists use the concept of dynamic games

to model such multi-stage games and analyze the long-run
behaviors of players. In dynamic games, the strategies of the
players not only depend on the opponents’ current strategies
but also the past outcomes and the future possible actions of
other players. Our pricing game for MANET falls exactly into
the category of dynamic games. In this paper, we will focus
on studying the dynamic pricing game.

Intuitively, the sender prefers to transmit more packets
when more routing candidates are available and the number
of hops is small. Because, considering the application of
auction protocols at each stage, the sender has a higher
probability to get the service with a lower price when there
are more bidders (routes) with lower type values. Moreover,
the practical constraints in MANET need to be considered in
DPG, such as the delay constraint of packet transmission or the
bandwidth constraint of the maximal number of packets being
able to be transmitted within an unit time duration. Therefore,
in order to maximize their profits, the source-destination pair
needs not only to optimally allocate the packets to the routes
within one time period but also to schedule the packets for all
periods. In our DPG, it is important to note that the optimal
packet transmission strategy for each source-destination pair
is affected by both the past plays and the future possible out-
comes. Generally speaking, the packet transmission decision is
made by comparing the current transmission profit and future
opportunity profits. Also, due to the delay and bandwidth
constraints, the past transmission plays affect current decision-
making. Capturing the dynamics becomes the key to the
optimal solution of our DPG. Let̀ t denote any realization
of the route number at thetth stage andr be a realization
of the types of all routing candidates. Consider aT -period
dynamic game, the overall utility maximization problem for
the source-destination pair can be formulated as follows.

max
Q,kt

{
T∑

t=1

βt · E`t,rt

[
G(Kt) ·

`t∑

i=1

Qi(r)− kt ·
`t∑

i=1

Mi(rt)
]}

(4)

s.t. Ui,t(ri,t, d−i,t) ≥ Ui,t(di,t, d−i,t), ∀di,t ∈ D

Qi(r) ∈ {0, 1},
L∑

i=1

Qi(r) ≤ 1.

kt ≤ B,

T∑
t=1

kt = M. (5)

wherekt is the number of packets transmitted in thetth stage
andKt is the vector of the numbers of the transmitted packets
in the firstT − t+1 stages, which can be represented asKt =
{kT , kT−1, ..., kt}. Note that a smallert in this paper stands
for a later time stage. In general, the physical meaning ofT
can be the delay constraint of the packets to be transmitted.
Thus, the pricing game needs to be constrained within aT -
period time window as the above formulation shows. Here,
G(Kt) is the profit that the sender gains in thetth stage, which
may not only depend on how many packets are transmitted in
current stage, i.e.,kt, but also be affected by how many packets



have been transmitted in previous stages,Kt+1. Considering
the rate-distortion theory [27], we assume the profit function is
concave inkt. For example, the marginal profit of transmitting
one more packet when a lot of packets have already been
transmitted should be limited. Also,β is the discount factor for
multistage games, and the subscriptt indicates thetth routing
stage. Note thatT and B are the delay constraint and the
bandwidth constraint, respectively.M is the total number of
packets to be transmitted withinT stages.

The above DPG formulation (5) extends the optimal pricing
problem to the time dimension, which can exploit the po-
tential of time diversity in the autonomous ad hoc network
considering its dynamic nature. However, directly solving
the nonlinear integer programming problem is very difficult.
Because, not only does the current routing realization affect
the allocation decision, but also the past play and allocation
decision influence the feasible actions and payoff functions in
the current period.

IV. T HE OPTIMAL DYNAMIC AUCTION FRAMEWORK FOR

EFFICIENT PRICING IN MANET

In order to obtain the optimal strategies for the DPG and
exploit the dynamic features of MANET, we propose the
optimal dynamic auction framework for efficient pricing in
MANET in this section. First, the optimal auction mechanism
is considered for maximizing the utilities for the sending nodes
while keeping the forwarding incentives for the relaying nodes.
Then, the dynamic multi-stage game is further formulated
using the optimal auction and studied using dynamic program-
ming approach. Finally, the mechanism design is considered
for the proposed framework.

A. The Optimal Auction for Static Pricing Game

In Section 2, we have formulated the static pricing game
based on the auction principles as the optimization problem
(2). Here, we further utilize the results of the optimal auction
[28] to simplify the optimization problem. From [28], we know
that by considering the optimal auction, the sender’s expected
total payoff can be expressed only in terms of the allocationQ,
which is independent of the payment to each route candidate.
Specifically, the optimization problem (2) can be rewritten as
follows.

max
Q

{
E`,r

[
g ·

∑̀

i=1

Qi(r)−
∑̀

i=1

Ji(ri)Qi(r)

] }
, (6)

s. t. Qi(r) ∈ {0, 1},
∑̀

i=1

Qi(r) ≤ 1. (7)

whereJ(ri) = ri + 1/ρ(ri), andρ(ri) = fi(ri)/Fi(ri) is the
hazard rate [28] function associated with the distribution of the
routing cost. Note thatJ(ri) is also called the virtual type of
the ith player. It’s proved in [28] that the solution of the above
optimization also satisfies the incentive compatible constraint.
The assumptions for the above formulation are rather general:
(1) F is continuous and strictly increasing, (2) the allocations
Qi(ri, r−i) are increasing inri. From (6) and theRevenue

Equivalence Theorem, it follows that all mechanisms that
result in the same allocationsQ for each realization ofr
yield the same expected utility. Thus, in order to obtain
the optimal pricing strategies, the mechanism design process
proceeds in two steps: First, find the optimal allocationQ(r);
second, find an implementable mechanism that producesQ
for each realizationr. By using the optimal auction approach
for pricing, the utility-maximized allocation for the sender
is to choose the route with the minimal virtual typeJ(ri)
when g − J(ri) ≥ 0, otherwise the sender will not transmit
the packet as it will cause negative utility and violate his
individual rationality. Therefore, if we assumeJ(v) is strictly
increasing inv, we can definev∗ = maxv{(g − J(v)) = 0}
as the reserved price for the sender, which is the largest
payment he/she can offer for transmitting a packet. Note that
the distributions that have increasingJ(v) include the uniform,
normal, logistic, exponential distributions, etc.

Based on the above discussion, we find that the static pricing
game is not efficient if the current routing realization shows a
high cost. Considering the dynamic properties of MANET, a
more efficient pricing mechanism can be achieved by studying
it as a multistage game and optimally allocating the packet
transmissions over multiple time periods.

B. The Optimal Dynamic Auction Framework

Considering the optimal auction results in the DPG model
formulated in Section 2, we further propose the optimal dy-
namic auction framework for pricing in autonomous MANET.
As it is difficult to directly solve (5), we study the dynamic
programming approach in our proposed framework to simplify
the multistage optimization problem.

Define the value functionVt(x) as the maximum expected
profit obtainable from periodst, t − 1, ..., 1 given that there
are x packets to be transmitted within the constraint of time
periods. Simplifying (5) using the Bellman equation, we have
the maximal expected profitVt(x) written as follows.

Vt(x) = max
Q,kt

{
E`t,r

[[
G(Kt) ·

`t∑

i=1

Qi − kt ·
`t∑

i=1

J(vi)Qi

]

+ β · Vt−1(x− kt)
]}

, (8)

s.t. Qi(r) ∈ {0, 1},
`t∑

i=1

Qi(r) = 1, kt ≤ B.

Moreover, the boundary conditions for the above dynamic
programming problem are

V0(x) = 0, x = 1, ..., M, (9)

Recall that we have the delay constraintT of the maximal
allowed time stages and the bandwidth constraintB of the
maximal number of packets able to be transmitted for each
stage. Based on the principle of optimality in [29], an alloca-
tion Q that achieves the maximum in (8) givenx, t andr is
also the optimal solution for the overall optimization problem



(5). Note that the above formulation is similar to that of the
multi-unit sequential auction [30] studied by the economists.

First, note that from (8) and the monotonicity ofJ(·), it is
clear that if the sender transmitsk packets within one time
period, these packets should be all awarded to the forwarding
route with the lowest costri. Therefore, define the marginal
benefits from thetth stage as

Rt(kt) = max
Q

{
G(Kt) ·

`t∑

i=1

Qi(r)− kt ·
`t∑

i=1

J(ri)Qi(r) :

Qi(r) ∈ {0, 1},
∑

i

Qi(r) = 1
}

, (10)

which can also be solved and written as

Rt(kt) =
{

0 if k = 0,
G(kt,Kt+1)− kt · J(r(1)) if k > 0,

(11)
where r(1) means the lowest cost of the forwarding routes.
Thus, the dynamic optimization objective (8) can therefore be
rewritten in terms ofRt(kt) as follows:

Vt(x) = max
0≤kt≤min{B,x}

{
E`t,r[Rt(kt) + β · Vt−1(x− kt)]

}
, (12)

which is also subject to (9). Letk∗t (x) denote the optimal
solution above, which is the optimal number of packets to
be transmitted on the winning route at thetth stage given
remaining capacityx. Letting 4Rt(i) ≡ Rt(i) − Rt(i − 1)
and4Vt(i) ≡ Vt(i)− Vt(i− 1), we can rewrite the maximal
expected profitVt(x) as

Vt(x) = max
0≤kt≤min{B,x}

{
E`t,r

[ kt∑

i=1

[4Rt(i)−

β · 4Vt−1(x− i + 1)]
]}

+ β · Vt−1(x). (13)

The above formulation will help us to simplify the optimal
dynamic pricing problem. Then, in order to solve the dynamic
pricing problem (8)-(9), we need to first introduce the follow-
ing lemmas based on (13).

Lemma 1: If 4Vt−1(x) ≥ 4Vt−1(x + 1), then k∗t (x) ≤
k∗t (x + 1) ≤ k∗t (x) + 1, ∀x ≥ 0.

Proof: We study the left hand side (LHS) inequality
first. If k∗t (x) = 0, the inequality holds true. Ifk∗t (x) > 0
and considering the assumption4Vt−1(x) ≥ 4Vt−1(x + 1),
the optimal allocationk∗t (x + 1) may be higher due to the
additional packet in queue. Hence,k∗t (x + 1) ≥ k∗t (x).

As for the right hand side (RHS) inequality, we prove it
by contradiction. Assumek∗t (x + 1) ≥ k∗t (x) + 2. From (11),
we know thatR(k) is decreasing in its argument. Further,
from (13) and the assumption of this lemma4Vt−1(x) ≥
4Vt−1(x + 1), we obtain that achieving the optimalk for
the tth stage in (13) is equivalent to finding the maximalk
satisfying the following inequality

4Rt(k) > β · 4Vt−1(x− k + 1). (14)

Therefore, given the optimalk∗t (x + 1), we have

4Rt(m) > β ·4Vt−1(x + 1−m + 1), for m = 1, 2, ..., k∗t (x + 1).
(15)

As we assumek∗t (x+1) ≥ k∗t (x)+2 and lettingm = k∗t (x)+2
in (15), we obtain

4Rt(k∗t (x) + 2) > β · 4Vt−1(x + 1− (k∗t (x) + 2) + 1)
= β · 4Vt−1(x− (k∗t (x) + 1) + 1).(16)

SinceR(k) is decreasing ink, (16) can be further written as

4Rt(k∗t (x) + 1) ≥ 4Rt(k∗t (x) + 2)
> β4Vt−1(x− (k∗t (x) + 1) + 1).(17)

Considering the optimality criterion ofk∗t (x) in (14), k∗t (x)
should be the largest number of packets satisfying (14).
Therefore, (17) contradicts the optimality ofk∗t (x). The RHS
inequality is proved.

It can be seen from the proof of Lemma 1 that the optimal
allocation of packet transmission over multiple stages can also
be determined under the condition4Vt−1(x) ≥ 4Vt−1(x+1).
Then, we will prove the above condition holds for allt in the
following lemma.

Lemma 2:4Vt(x) is decreasing inx for any fixedt and is
increasing int for any fixedx.

Proof: See the Appendix.
The idea of Lemma 2 can also be illustrated in an intuitive

way as follows. At any fixed time period, the marginal
benefit4Vt(x) of each additional packet declines because
the future possible routes are limited; therefore, the chance of
transmitting the additional packet at low prices also decreases.
Similarly, for any given remaining packet numberx, the
marginal benefit of an additional packet increases witht,
because more number of possible future routes are available
when more remaining time periods; therefore, the chance of
getting a higher marginal benefit goes up. Also, Lemma 2
relaxes the assumption of Lemma 1 and we always have
k∗t (x) ≤ k∗t (x + 1) ≤ k∗t (x) + 1, ∀x ≥ 0.

Considering Lemma 1 and Lemma 2, the optimal allocation
of packet transmission for the proposed dynamic auction
framework can be characterized by the following theorem.

Theorem 1:For any realization(`t, r) at thetth stage, the
optimal number of packets to transmit at state(x, t) is given
by

k∗t (x) =





max{1 ≤ k ≤ min{x,B} :
4Rt(k) > β · 4Vt−1(x− k + 1)}

if Rt(1) > β · 4Vt−1(x),
0 otherwise.

(18)

Moreover, it is optimal to allocate thesek∗t (x) packets to the
route with the lowest costri.

Proof: Vt(x) is the summation of two terms in (13). As
the second term is fixed givenx, the optimalk∗t maximizing
the first term needs to be studied. Based on the definition
(11),4R(·) is decreasing in its argument. Also,4Vt−1(·) is
decreasing in its argument from Lemma 2. Thus,4R(k) −
β · 4Vt−1(x − k + 1) is also monotonically decreasing in



k. Therefore, the optimal allocation attth time period with
x packets in queue,k∗t (x), is the largestk for which this
difference is positive.

Theorem 1 shows how the source node should allocate
packets into different time periods. The basic idea is to
progressively allocate the packets to the route with the smallest
realization ofJ(r(1)) until the marginal benefit4Rt(i) drops
below the marginal opportunity cost4Vt−1(x− i + 1).

In order to have the optimal allocation strategies using
Theorem 1, we first need to know the expected profit function
4Vt(x), ∀t, x. For finite number of time periods,T , in prob-
lem (8), the optimal dynamic programming proceeds backward
using the Bellman equation [29] to obtain4Vt(x). Due to the
randomness of the route number and its type, it is difficult
to obtain the close-form expression of4Vt(x). Thus, we use
simulation to approximate the values of4Vt(x) for different
t and x, which proceeds as follows: Start from the routing
stage 0. For each staget, generateN samples of the number
of available routes and their types, which follow the PDF
f`(`) and fi(ri), respectively. For each realization and for
each pair of values(x, t), calculatek∗t (x) using Theorem
1. By using the conclusion of Lemma 1, we simplify the
computation ofk∗t (x) and only needO(NM) operations to
calculateVt(x) for all x at fixed t time period. Therefore,
O(NMT ) operations are required for the whole algorithm.
Note that the computation ofVt(x) can be done off-line,
which will not increase the complexity of finding the optimal
allocation for each realization.

We then study the expected profit function for infinite
number of routing stages. Such scenario gives the upper-bound
of the expected profit, because the source node can wait until
low-cost routes being available for transmission. For infinite
horizon, the maximal profitVt(x) in (8) can be rewritten as

V ∗(x) = E`,r

[
min
Q,k

{
`t∑

i=1

(G(K)− k · J(ri))Qi(r) + β · V ∗(x− k)

}]

(19)

or, equivalently,V ∗ = T V ∗, whereT is the operator updating
V ∗ using (19). AssumingS is the feasible set of states,
The convergence proposition of the dynamic programming
algorithm [29] states that: for any bounded functionV :
S → R, the optimal profit function satisfiesV ∗(x) =
limp→∞(T pV )(x), ∀x ∈ S. As V (x) is bounded in our
algorithm, we are able to apply the value iteration method
to approximate the optimalV (x), which proceeds as follows:
Start from some initial function forV (x) as V 0(x) = g(x),
where the superscript stands for the iteration number. Then,
iteratively updateV (x) by lettingV p+1(x) = (T V p)(x). The
iteration process ends until|V p+1(x)− V p(x)| ≤ ε, for all x,
whereε is the error bound forV ∗(x).

C. Mechanism Design for the Optimal Dynamic Pricing

Thus far, we have developed the optimal allocation al-
gorithm for packet transmission. Next, our task is to find
auction mechanisms that achieve the derived optimal policy.
Many auction forms can be applied to achieve the optimal

policy. Considering the truth-telling property of the second-
price auction, we focus on this mechanism in our paper.

In a traditional second-price auction [21], the bidder with
the highest bid wins the item and pays the second highest
bid for it. In our framework, the source node is trying to find
the route with the lowest cost, which implies the application
of reverse second-price auction. The source node allocates
the packet transmission to the route with the lowest payment
bid and actually pay the second-lowest bid to the selected
route. Moreover, the auction mechanism can be performed in
many forms, such as open auctions and sealed-bid auctions.
Open auctions allows the bidders to submit bids many times
until finally only one bidder stays in the game. In sealed-bid
auctions, the bidders only submit their bids once. Considering
the sealed-bid auctions require less side-information and hence
save the wireless resources, we analyze the sealed-bid second-
price auction for our optimal allocation policy.

It is important to note that the straightforward application of
the reverse second-price auction can not guarantee the truth-
telling property of the bidders. Let̃Jt(r) = G(1,Kt+1)−J(r)
and r̃t = J̃−1

t (4Vt−1(xt)), where xt is the packets to be
transmitted from thetth stage. Considering the scenario where
the lowest cost of the routesrt

(1) > r̃t, it can be seen from
Theorem 1 that no packet will be assigned for forwarding
within current time period. Hence, the route with the lowest
cost may have incentive to bid below their true cost and
satisfy the threshold constraint. In this way, this route will
win the packet and get positive utility as the sender awards it
the second lowest bid. But the expected profit of the sender
will decrease according to (13). Therefore, we need to modify
the second-price mechanism by usingr̃t as the reserved price
for every stage, which is the highest price that the sender
agrees to pay for transmitting one packet within current time
period. Specifically, given the submitted bid vector,dt =
{d1,t, d2,t, ..., d`,t}, the sender allocates the packet to the route
with lowest bid below the reserved price and the selected
route gets the paymentmax{d(2), r̃}, whered(2) is the second
lowest type of the forwarding routes.

Note that the mechanism we developed above can prevent
the single route from not reporting the true cost. But in
the presence of collusion of the routes, it may be not able
to maintain the truth-telling property. This problem can be
fixed from two aspects: First, the greediness of the selfish
routes can help to prevent the collusion. Assume two routes
collude to increase their profits. The collusion requires the
two routes to act and share the extra gain cooperatively. But,
the greediness of the routes decide that the cooperative game
can not be carried out between them. The noncooperative
behaviors will eventually lead to an inefficient outcome and
break the collusion of the players. Second, in our scheme,
the sender can discourage the collusion among the routes
by setting a higher reserve price. The collusion behaviors of
bidders is also referred as the bidding ring in the context of
the auction theory. The optimal reserve price is analyzed in
[21] to combat the collusion of bidders, which can be directly
applied to our scheme for handling the route collusion.



D. Profit Sharing among the Nodes in a Selected Route

In the above sections, we developed the optimal dynamic
auction framework for multi-stage pricing in MANET and
designed the mechanism of the second-price auction with
reserved price for assuring the truth-telling property of each
route. But, in this paper, we consider each route as an entity.
Thus, the residual problem is that how to share the forwarding
profits of the route among the forwarding nodes on the routes.
Although the proposed mechanism can ensure the truth-telling
of each route as one bidder, the cooperation among the
nodes on one route can not be pre-assumed and cheat-proof
mechanisms need to be further designed for the profit-sharing
problem. In this part, we will first prove that no dominant
cheat-proof strategy exists for each node on the same multi-
hop forwarding route. Then, the profit-sharing mechanisms are
designed to enforce the cooperation behaviors of the nodes on
the same route.

As the nodes on the same forwarding route belong to their
own authorities, they will act greedily to get more profits
from the total profits that the route gains, which forms a
profit-sharing game. Let the profit sharing vector for theith
route beαi = {αi,1, αi,2, ..., αi,hi}, where αi,j represents
the percentage of profits that thejth forwarding node on
the ith route can get and

∑hi

j=1 αi,j = 1. Recall that the
type vector of the nodes on theith route is defined asvi =
{vi,1, vi,2, ..., vi,hi} and the PDF ofvi is f̂i, which we assume
to be identical for all nodes without loss of generality. Then,
we study the existence of the dominant cheat-proof strategies
in the following theorem.

Theorem 2:There does not exist a dominant cheat-proof
strategyα for the profit-sharing game consisting of the nodes
on the same multi-hop forwarding route.

Proof: We prove this theorem by contradiction. Assume
α∗i is a dominant cheat-proof profit-sharing strategy for the
ith route, which means by usingα∗i , every forwarding node’s
dominant strategy on theith route is to report its true type
(or cost). Equivalently, if thejth node reports a higher cost,
v̂i,j = vi,j + ε, than its true typevi,j while other nodes report
the true value, thejth node will get a lower profit. In order
to show the dominant strategyα∗i , we need to calculate and
compare the node’s profit when it is cheating or not. First, the
total profits of theith route are obtained and then we study
the profit of each node. Based on our second-price mechanism
and considering (1), the total profits of theith route can be
represented as follows.

Ui(r̂i) = Prob(r̂i < r(1)(r−i)) · (Er−i [r(1)(r−i)|r̂i < r(1)(r−i)]− r̂i),
(20)

wherer̂i is the bidding cost of theith route, which theith route
believes to be the true cost, but may be not if some node on
the ith route is cheating by reporting a higher type value, and
r(1)(r−i) represents the lowest cost of all routes except the
ith route. Without loss of generality, we assume the PDF of
ri to be identical for all routes asf . By using the results of
order statistics [31], we have the condition expectation of the

payment as follows.

Er−i [r(1)(r−i)|r̂i < r(1)(r−i)] =
1

[1− F (r̂i)]`−1

∫ ∞

r̂i

[1−F (x)]`−1dx.

(21)

Noting that the probability of winning the auction for theith
route is

Prob(r̂i < r(1)(r−i)) = [1− F (r̂i)]`−1. (22)

Substituting (21) and (22) into (20), the total profits can be
written as

Ui(r̂i) =
∫ ∞

r̂i

[1− F (x)]`−1dx. (23)

Then, using the profit-sharing strategyα∗i , the profit of the
jth node on theith route can be calculated. We consider two
cases: (a) the node reports the true typevi,j ; (b) the node
cheats and reports a higher valuev̂ = vi,j + ε. For case (a),
the profit of thejth node on theith route is represented as
follows.

Ui,j(vi,j) = α∗i,j · Ui(ri)

= α∗i,j ·
∫ ∞

ri

[1− F (x)]`−1dx. (24)

For case (b), the profit includes the cheating profit of reporting
an extra costε and the allocated profit from theith route, which
can be written as

Ui,j(v̂i,j) = ε · Prob(r̂i < r(1)(r−i)) + α∗i,j · Ui(r̂i)

= ε · [1− F (ri + ε)]`−1 + α∗i,j ·
∫ ∞

ri+ε

[1− F (x)]`−1dx. (25)

Subtracting (24) from (25), we have

Ui,j(v̂i,j)− Ui,j(vi,j) = [1− F (ri + ε)]`−1 ×{
ε− αi,j

∫ ri+ε

ri

[1− F (x)]`−1

[1− F (ri + ε)]`−1
dx

}
. (26)

From the Mean Value Theorem, we know that there exists
someλ ∈ [0, 1] satisfying
∫ ri+ε

ri

[1− F (x)]`−1

[1− F (ri + ε)]`−1
dx = ε·

(
[1− F (ri + λε)]

[1− F (ri + ε)]

)`−1

. (27)

And, for simplicity, let

Ψ(ε) =
(

[1− F (ri + λε)]
[1− F (ri + ε)]

)`−1

, (28)

which is a decreasing function inε, and has the limit

lim
ε→0

Ψ(ε) = 1. (29)

Thus, there always exists a positive valueδ. When ε < δ,
Ψ(ε) < 1/α∗i,j . Further, by putting (27) into (26), we have

Ui,j(v̂i,j)−Ui,j(vi,j) = ε · [1−F (ri +ε)]`−1[1−α∗i,j ·Ψ(ε)]. (30)

Therefore,∃δ, for ε < δ, Ui,j(v̂i,j) − Ui,j(vi,j) > 0, which
contradicts the assumption thatα∗i,j is a dominant cheat-proof
strategy. Considering such contradiction holds for anyα∗i,j , we
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finally prove that there does not exist a cheat-proof strategy
for the profit-sharing game.

Since there is no dominant cheat-proof strategy as Theorem
2 shows, it is necessary to design certain mechanisms to
enforce the cooperation among the forwarding nodes on the
same forwarding route. There are many ways to design such
mechanisms. For instance, an intuitive idea is to provide
over-payment [13] to the nodes on the winning route as
the compensation for their cooperative behaviors. The over-
payment should be more than the cheating gain the nodes can
obtain. But who is responsible for the over-payment? It is not
reasonable to ask the sender for the payment-compensation.
Because, in this way, the sender may have incentives to switch
his/her transmission to the route with higher true cost, which
asks for less over-payment. It is also a rational behavior
for such route to require a less over-payment, which may
make them have a positive profit instead of losing the auction
with zero payoffs. Therefore, a more practical way is to
let the central-bank periodically compensate the forwarding
nodes. The over-payment amount can be decided based on the
Vickrey-Clarke-Groves (VCG) mechanism [13], [21], which
pays each node the difference between the routing cost without
this node and the other nodes’ routing cost with the presence
of this node. It is important to note that the application of
the VCG mechanism here does not conflict with our dynamic
pricing mechanism. They are carried out separately by the
central bank and the sender for ensuring the cooperation
of forwarding nodes on one route and maximizing the total
profits of the sender, respectively. Besides, the punishment-
based mechanisms [11], [32] or the cryptographic mechanism
[17] can also be applied together with our proposed scheme
to enforce the cooperative behaviors of the nodes.

V. SIMULATION STUDIES

In this section, we evaluate the performance of the proposed
dynamic pricing approach in multi-hop ad hoc networks. We
use an event-driven simulator to simulate mobile ad hoc
networks.N nodes are randomly deployed inside a rectangular
region of 10γ m × 10γ m according to the 2-dimension
uniform distribution with the maximal transmission rangeγ =
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Fig. 2: The cumulative probability mass function of the
number of the least-hop route when the node density is 10.

100m for each node, and each node moves according to the
random waypoint model [33]. Dynamic Source Routing (DSR)
[33] is used as the underlying routing to discover possible
routes. Letλ = Nπ/100 denote the normalized node density,
that is, the average number of neighbors for each node in the
network. Note that each source-destination pair is formed by
randomly picking two nodes in the network. And, multiple
routes with different hop number may exist for each source-
destination pair. Since the routes with the least hop number
have much higher probabilities to achieve lower costs, without
loss of generality, we only consider the least-hop routes as the
bidding routes for simplicity in the proposed optimal dynamic
auction framework. Considering the mobility of each node,
its forwarding cost is no longer a fixed value and we assume
that its PDF f̂(v) follows the uniform distributionU [ū, u],
which has the meanµ and the varianceσ2. Thus, using the
Central Limit Theorem [31], the cost of ah-hop route can
be approximated by the normal distribution with the mean
h · µ and varianceh · σ2. In our simulation, we first study the
dynamics of MANET and then illustrate the performance of
our proposed framework for different network settings.

In order to study the dynamics of MANET, we first conduct
simulations to study the hop number on the least-hop route
for source-destination pairs. Leth̄(ni, nj) = ddist(ni, nj)/γe
denote the minimum number of hops needed to traverse from
node i to node j, where dist(ni, nj) denotes the physical
distance between nodei and j, and let ˜̄h(ni, nj) denote the
number of hops on the actual least-hop route between the
two nodes. Note that we simulate106 samples of topologies
to study the dynamics of MANET. Firstly, Figure 1 shows
the approximated cumulative probability mass function (CMF)
of the difference between thē̃h(ni, nj) and h̄(ni, nj) for
different node densities. Based on these results, the average
number of hops associated to the least-hop route from nodei
to j can be approximated using thedist(ni, nj), γ, and the
corresponding CMF of hop difference. Also, it can be seen
from Figure 1 that lower node density results in having a larger
number of hops for the least-hop routes, since the neighbor
nodes are limited for packet forwarding in such situations.
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Fig. 3: The cumulative probability mass function of the
number of the least-hop route when the node density is 20.
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Fig. 4: The cumulative probability mass function of the
number of the least-hop route when the node density is 30.

Secondly, we study the time and path diversity of MANET
by finding the maximum number of least-hop routes for the
source-destination pair. Note that there may exist the scenarios
where the node may be on multiple least-hop forwarding
routes for the same source-destination pair. For simplicity,
we assume during the route discovery phase, the destination
randomly picks one of such routes as the routing candidates
and feedbacks the routing information of node-disjoint least-
hop routes to the source. Figure 2 shows the CMF of the
number of the least-hop routes for different hop number when
the node density is 10. The results for the node density 20
and 30 are shown in Figure 3 and Figure 4, respectively. It
can be seen from the above figures that when the node density
is increasing, the probability of having more routes between
each source-destination pair is becoming much higher. Such
facts also indicate a higher order of path diversity can be
exploited when each node has more neighbors. Moreover, the
possibility of getting more routes for the route with more hops
is much lower since the path diversity for multi-hop routing is
limited by the forwarding node with the worst neighboring
situation. Therefore, the number of routing candidates and
their types can be approximated using the above results. In
the following parts, we consider the performance for three
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different schemes: our scheme with finite time horizon, our
scheme with infinite time horizon and the fixed allocation
scheme. Note that the infinite time horizon can not be achieved
in real application. But it can serve as a upper bound for
measuring the performance of our scheme. The fixed scheme
allocates a fixed numberM/T of packets into each stage while
also using the optimal auction at each stage. Assume the cheat-
proof profit sharing mechanisms are in place to ensure the
cooperation of the forwarding nodes on the same route. Let
the benefit function beG(K) = g ·k, whereg is the benefit of
successfully transmitting one packet. Note that the simulation
parameters are set asT = 20, M = 100 and B = 10. Let
g = 60, ū = 10, andu = 15.

In Figure 5, we compare the overall profits of the three
schemes for different node densities. The concavity of the sim-
ulated value functions of our scheme matches the theoretical
statement in Lemma 2. It can be seen from the figure that our
scheme achieves significant performance gains over the fixed
scheme, which mainly comes from the time diversity exploited
by the dynamic approach. For instance, our scheme with time
diversityT = 20 in the scenario of node density being 10 can
even achieve similar performance of the fixed scheme with
node density 30. We observe that the performance gap of the
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two schemes becomes larger when the node density decreases.
Thus, in order to increase the profits under the situations of low
node densities, it becomes much more important to exploit the
time diversity. Also, the total profits of our scheme increases
with the increment of the node density due to the higher order
of path diversity. Besides, since the performance gap between
the schemes with finite and infinite time horizon is small,
only a few routing stages are required to exploit the time
diversity. In Figure 6, the average profits of the three schemes
are shown for different node densities. This figure shows that
the average profit of transmitting one packet decreases as there
are more packets to be transmitted. It is because the packets
need to share the limited routing resources from both the
time diversity and path diversity. When the node density is
30, the average profit degrades much slower than other cases
since the potential of utilizing both the time diversity and
path diversity is high. The overall profits of our scheme with
finite time horizon are compared for different total packets in
Figure 7 for node density being 10. This figure shows that the
overall profits increases with more routing stages due to the
time diversity. Also, the saturation behavior can be observed
when using more stages. In Figure 8, the overall profits are
compared for different time stages. Considering the limited
routing resource, the overall profits saturate when the packet
number is high.

VI. CONCLUSIONS

In this paper, we have investigated the pricing mechanisms
for efficient routing in autonomous MANET. We model the
pricing procedure as a multi-stage game by considering the
dynamic nature of MANET. A dynamic pricing framework
is proposed to maximize the profits of the transmission pair
and simultaneously provide the forwarding incentives for the
forwarding routes by auction. The proposed framework can
enable the sender to fully exploit the time diversity in MANET,
which substantially increases his payoff by dynamically allo-
cating the packets to be transmitted into different stages. The
optimal dynamic auction algorithm is developed to achieve
optimal packet allocation and route selection, meanwhile pro-
viding the corresponding payment rules considering the node’s
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mobility and the routing dynamics. The simulation results
illustrate that the proposed scheme achieves significant per-
formance gains over the fixed one under different simulation
settings. For instance, only by using a small number of time
stages, the proposed scheme with node density 10 is able to
achieve similar overall profits as the fixed scheme with node
density 30 which degree of node density allows nodes to have
much higher freedom to choose forwarding routes.

APPENDIX

Proof of Lemma 2
Proof: First, we prove that4Vt(x) is decreasing inx at

any fixed time periodt. Note that the induction method is used
to prove this part of Lemma 2. Fort = 0, the lemma obviously
holds sinceV0(x) = 0 for all x. Assume the inductive
hypothesis for periodt − 1 as4Vt−1(x) ≥ 4Vt−1(x + 1).
Then, we will show that if the inductive hypothesis holds,
4Vt(x) also decreases.

Consider a realization of̀t routes and their cost vectorr =
(r1, r2, ..., r`t). Define the inner maximized term in (12) as
follows

Ut(x, `t, r) = max
0≤k≤min{B,x}

{Rt(k) + β · Vt−1(x− k)}, (31)

and define the difference function as

4Ut(x, `t, r) = Ut(x, `t, r)− Ut(x− 1, `t, r). (32)

Thus4Vt(x) can be obtained as

4Vt(x) = E`t,r[4Ut(x, `t, r)]. (33)

For simplicity and without loss of generality, we omit the
arguments`t, r in 4Ut(x, `t, r) and simply use4Ut(x).
Moreover, it can be seen from (33) that it is sufficient to prove
that4Ut(x) is decreasing inx for the proof that4Vt(x) is
decreasing inx.

Using the inductive hypothesis and Lemma 1, we have the
constraint onk∗t (x + 1) as

k∗t (x) ≤ k∗t (x + 1) ≤ k∗t (x) + 1. (34)



Based on the constraint, we then study the value of4Ut(x +
1) for the two possible outcomes,k∗t (x + 1) = k∗t (x) and
k∗t (x + 1) = k∗t (x) + 1:

1). If k∗t (x + 1) = k∗t (x), then 4Ut(x + 1) = β ·
4Vt−1(x − k∗t (x) + 1) from (31) and (32). Also, from the
optimal condition ofk in (14), we know

4Rt(k
∗
t (x+1)+1) ≤ β ·4Vt−1(x+1−(k∗t (x+1)+1)+1). (35)

Consideringk∗t (x + 1) = k∗t (x), (35) can be rewritten as

4Rt(k∗t (x) + 1) ≤ β · 4Vt−1(x− k∗t (x) + 1). (36)

2). Similarly, If k∗t (x+1) = k∗t (x)+1, then4Ut(x+1) =
4Rt(k∗t (x) + 1) from (31) and (32), and

4Rt(k∗t (x) + 1) > β · 4Vt−1(x− k∗t (x) + 1). (37)

Thus, it can be concluded from the above two cases that
4Ut(x + 1) satisfies

4Ut(x+1) = max{4Rt(k
∗
t (x)+1), β ·4Vt−1(x−k∗t (x)+1)}. (38)

Consider now4Ut(x + 1) and4Ut(x) and compare their
values. Given the constraint onk∗t (x) by Lemma 1, the value
of 4Ut(x + 1) in (38), and considering that4Rt(m) and
4Vt−1(m) decrease in their arguments, we have the following
expressions.

4Ut(x)
= max{4Rt(k∗t (x− 1) + 1),

β · 4Vt−1(x− 1− k∗t (x− 1) + 1)}
≥ max{4Rt(k∗t (x) + 1), β · 4Vt−1(x− (k∗t (x)− 1))}
= 4Ut(x + 1). (39)

Therefore, the first part of Lemma 2 is proved by the above
discussion. Next, we show that4Vt(x) is increasing int for
any fixedx. Similarly, it suffices to prove the statement for
a particular realizatioǹt, r. Following the results in (38), we
get that

4Ut(x) ≥ β · 4Vt−1(x− k∗t (x)), (40)

and from the fact that4Vt−1(·) is decreasing, we have

4Ut(x) ≥ β · 4Vt−1(x). (41)

As taking the expectation with respect to`t, r on both sides
of (41) does affect the inequality, we prove

4Vt(x) ≥ 4Vt−1(x). (42)
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