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Abstract— Dynamic spectrum allocation becomes a promising
approach to increase the spectrum efficiency for wireless net-
works. In this paper, we consider the spectrum allocation in
wireless networks with multiple selfish legacy spectrum holders
and unlicensed users as multi-stage dynamic games. A dynamic
pricing approach is proposed to optimize overall spectrum
efficiency while keeping the participating incentives of the users
based on double-auction rules. Moreover, a belief system is
developed to assist selfish users to dynamically update their
strategies adaptive to the network dynamics and substantially
decrease the pricing overhead. The simulation results show that
our proposed scheme not only approaches optimal outcomes but
also has low overhead.

I. INTRODUCTION

Current static spectrum allocation can be very inefficient
considering the bandwidth demands may vary highly along the
time dimension or the space dimension. With the development
of cognitive radio technologies, dynamic spectrum access
becomes a promising approach to increase the efficiency of
spectrum usage, which allows unlicensed wireless users to
dynamically access the licensed bands from legacy spectrum
holders based on leasing agreements.

The FCC began to consider more flexible and comprehen-
sive use of available spectrum in [1], [2]. Then, great attentions
have been drawn to explore the open spectrum systems [3],
[4] for dynamic spectrum sharing. Traditionally, network-wide
spectrum assignment is carried out by a central server, namely,
spectrum broker [5], [6]. Recently, distributed spectrum allo-
cation approaches [7], [8] have been well studied to enable
efficient spectrum sharing only based on local observations.

Although the existing dynamic spectrum access schemes
have achieved some success on enhancing the spectrum effi-
ciency and distributive design, most of them focus on efficient
spectrum allocation given fixed topologies and cannot adapt
to the dynamics of wireless networks due to node mobility,
channel variations or varying wireless traffic. Furthermore,
existing cognitive spectrum sharing approaches generally as-
sume that the network users will act cooperatively to maximize
the overall system performance. However, with the emerging
applications of mobile ad hoc networks envisioned in civilian
usage, the users may be selfish and aim to maximize their
own interests. Therefore, novel spectrum allocation approaches
need to be developed considering the dynamic nature of
wireless networks and users’ selfish behaviors.

Considering a general network scenario in which multiple
primary users (legacy spectrum holders) and secondary users
(unlicensed users) coexist, primary users attempt to sell unused

spectrum resources to secondary users for monetary gains
while secondary users try to acquire spectrum usage permis-
sions from primary users to achieve certain communication
goals, which generally introduces reward payoffs for them. In
order to solve the above issues, we consider the spectrum shar-
ing as multistage dynamic games and propose a belief-assisted
dynamic pricing approach to optimize the overall spectrum
efficiency, meanwhile, keeping the participating incentives
of the users based on double-auction rules. The simulation
results show that our proposed scheme not only approaches
optimal spectrum efficiency but also has low pricing overhead
compared to general continuous double auction mechanisms.

The reminder of this paper is organized as follows: The
system model of dynamic spectrum allocation is described in
Section II. In Section III, we formulate the spectrum allocation
as pricing games based on the system model. In Section IV,
the belief-based dynamic pricing approach is proposed for
the optimal spectrum allocation. The simulation studies are
provided in Section V. Finally, Section VI concludes this paper.

II. SYSTEM MODEL

We consider the wireless networks where multiple primary
users and secondary users operate simultaneously, which may
represent various network scenarios. For instance, the primary
users can be the spectrum broker connected to the core
network and the secondary users are the base stations equipped
with cognitive radio technologies; or the primary users are
the access points of a mesh network and the secondary users
are the mobile devices. On one hand, considering that the
authorized spectrum of primary users may not be fully utilized
over time, they prefer to lease the unused channels to the
secondary users for monetary gains. On the other hand, since
the unlicensed spectrums become more and more crowded, the
secondary users may try to lease some unused channels from
primary users for more communication gains by providing
leasing payments.

In our system model, we assume all users are selfish and
rational, that is, their objectives are to maximize their own
payoffs, not to cause damage to other users. However, users
are allowed to cheat whenever they believe cheating behaviors
can help them to increase their payoffs. Generally speaking,
in order to acquire the spectrum licenses from regulatory
bodies such as FCC, the primary users have certain operating
costs. In order to have the reward payoffs, secondary users
want to utilize more spectrum resources. The selfishness of
both primary and secondary users will prevent them from
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revealing their private information such as acquisition costs or
reward payoffs, which makes traditional spectrum allocation
approaches not applicable.

Specifically, we consider the collection of the available
spectrums from all primary users as a spectrum pool, which
totally consists of N non-overlapping channels. Assume there
are J primary users and K secondary users, indicated by the
set P = {p1, p2, ..., pJ} and S = {s1, s2, ..., sK}, respectively.
We represent the channels authorized to primary user pi

using a vector Ai = {aj
i}j∈{1,2,...,ni}, where aj

i represents
the channel index in the spectrum pool and ni is the total
number of channels which belong to user pi. Define A as
the set of all the channels in the spectrum pool. Moreover,
denote the acquisition costs of user pi’s channels as the vector

Ci = {caj
i

i }j∈{1,2,...,ni}, where the jth element represents the
acquisition cost of the jth channel in Ai. For simplicity, we

write c
aj

i
i as cj

i . As for secondary user si, we define her/his
payoff vector as Vi = {vj

i }j∈{1,2,...,N}, where the jth element
is the reward payoff if this user successfully leases the jth
channel in the spectrum pool.

III. PRICING GAME MODEL

In this paper, we model the dynamic spectrum allocation
problem as a pricing game to study the interactions among
the players, i.e., the primary and secondary users. Based on
the discussion in the previous section, we are able to have
the payoff functions of the players in our dynamic game.
Specifically, if primary user pi reaches agreements of leasing
all or part of her/his channels to secondary users, the payoff
function of this primary user can be written as follows.

Upi
(φAi

, αAi
i ) =

ni∑
j=1

(φaj
i
− cj

i )α
aj

i
i , (1)

where φAi
= {φaj

i
}j∈{1,2,...,ni} and φaj

i
is the payment that

user pi obtains from the secondary user by leasing the channel

aj
i in the spectrum pool. Note that αAi

i = {αaj
i

i }j∈{1,2,...,ni}
and α

aj
i

i ∈ {0, 1} which indicates if the jth channel of
user pi has been allocated to a secondary user or not. For

simplicity, we denote α
aj

i
i as αj

i . Similarly, the payoff function
of secondary user si can be modeled as follows.

Usi
(φA, βA

i ) =
N∑

j=1

(vj
i − φj)β

j
i , (2)

where φA = {φj}j∈{1,2,...,N}, βA
i = {βj

i }j∈{1,2,...,N}. Note
that βj

i ∈ {0, 1} illustrates if secondary user si successfully
leases the jth channel in the spectrum pool or not. Hence,
the strategies of the primary users and secondary users are
actually defined by αAi

i and βA
i , respectively.

From the above discussion, we can see that the players
may have conflict interests with each other. Specifically, the
primary users want to earn as much payments as possible
by leasing the unused channels and the secondary users aim
to accomplish their communication goals by providing the

least possible payments for leasing the channels. Moreover,
the spectrum allocation involves multiple channels over time.
Therefore, the spectrum users involved in the spectrum allo-
cation process construct a multistage non-cooperative pricing
game [9], [10]. Also, the selfish users will not reveal their
private information to others unless some mechanisms have
been applied to guarantee that it is not harmful to disclose
the private information. Generally, such non-cooperative game
with incomplete information is difficult to study as the players
do not know the perfect strategy profile of others. However,
based on our game setting, the well-developed auction theory
[11] can be applied to formulate and analyze our pricing game.

In auction games [11], according to an explicit set of
rules, the principles (auctioneers) determine resource alloca-
tion and prices on the basis of bids from the agents (bid-
ders). In our spectrum allocation pricing game, the primary
users (principles) attempt to sell the unused channels to the
secondary users and the secondary users (bidders) compete
with each other to buy the permission of using primary users’
channels. Moreover, multiple primary and secondary users
coexist, which indicates the double auction scenario [11],
[12]. It means that not only the secondary users but also the
primary users need to compete with each other to make the
beneficial transactions possible by eliciting their willingness
of the payments in the forms of bids or asks. Generally, the
double auction mechanism is highly efficient such as in the
New York Stock Exchange (NYSE) or Chicago Merchandize
Exchange (CME) and can respond dynamically to changing
conditions of auction participants. However, in our spectrum
allocation games, either powerful centralized authorities can
be pre-assumed or the bandwidth of control channels is very
limited. Therefore, we aim to develop an efficient pricing
approach for spectrum allocation, which adapts to spectrum
dynamics by simple message exchanges.

IV. DYNAMIC PRICING FOR EFFICIENT

SPECTRUM ALLOCATION

A. Static Pricing Game and Competitive Equilibrium

Assume that the available channels from the primary users
are leased for usage of certain time period T . Also, we assume
that the cost of the primary users and reward payoffs of the
secondary users remain unchanged over this period. Before
this spectrum sharing period, we define a trading period τ ,
within which the users exchange their information of bids and
asks to achieve agreements of spectrum usage. The time period
T + τ is considered as one stage in our pricing game. We first
study the interactions of the players in static pricing games.
Note that the users’ goals are to maximize their own payoff
functions. As for the primary users, the optimization problem
can be written as follows.

O(pi) = max
φAi

,α
Ai
i

Upi
(φAi

, αAi
i ), ∀i ∈ {1, 2, ..., J} (3)

s.t. Uŝ
a

j
i

({φ−aj
i
, φaj

i
}, βA

i ) ≥ Uŝ
a

j
i

({φ−aj
i
, φ̃aj

i
}, βA

i ),

ŝaj
i
�= 0, aj

i ∈ Ai. (4)
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where φ̃aj
i

is any feasible payment and φ−aj
i

is the payment
vector excluding the element of the payment for the channel
aj

i . Note that ŝaj
i

is defined as follows.

ŝaj
i

=

{
sk if β

aj
i

k = 1,

0 if β
aj

i

k = 0,∀k ∈ {1, 2, ...,K}.
(5)

Thus, (4) is the incentive compatible constraint [11]. It means
that the secondary users have incentives to provide the optimal
payment because they cannot have extra gains by cheating on
the primary users. Similarly, the optimization problem can be
written for the secondary users as follows.

O(si) = max
φA,βA

i

Usi
(φA, βA

i ), ∀i ∈ {1, 2, ...,K} (6)

s.t. Up̂j
({φ−j , φj}, βA

i ) ≥ Up̂j
({φ−j , φ̃j}, βA

i ),

p̂j �= 0, βj
i = 1. (7)

where p̂j is defined as

p̂j =
{

pk if βj
i = 1, j ∈ Ak, αj

k = 1
0 otherwise,∀k ∈ {1, 2, ..., J}. (8)

Similarly, (7) is the incentive compatible constraint for the
primary users, which guarantees that the primary user will
give the usage permission of their channels to the secondary
users so that they can receive the optimal payments.

From (3) and (6), we can see that in order to obtain the op-
timal allocation and payments, a multi-objective optimization
problem needs to be solved, which becomes extremely com-
plicated due to our game setting that only involves incomplete
information. Thus, in order to make this problem tangible, we
analyze it from the game theory point of view. Considering
the double auction scenarios of our pricing game, Competitive
Equilibrium (CE) [12] is a well-known theoretical prediction
of the outcomes. It is the price at which the number of buyers
willing to buy is equal to the number of sellers willing to sell.
Alternatively, CE can also be interpreted as where the supply
and demand match [11]. We describe the supply and demand
functions of spectrum resources in Figure 1. Note that CE is
also proved to be Pareto optimal in stationary double auction
scenarios [13].

B. Belief-Assisted Dynamic Pricing

Considering spectrum dynamics due to mobility, channel
variations or wireless traffic variations, the secondary users’
reward payoffs and primary users’ costs may change over time
or spectrum. Thus, cj

i and vj
i need to be considered as random

variables in dynamic scenarios. Without loss of generality, we
assume the homogeneous game settings for the statistics of cj

i

and vj
i , which satisfy the probability density functions (PDF)

fc(c) and fv(v), respectively. Therefore, considering dynamic
network conditions, we further model the spectrum sharing as
a multi-stage dynamic pricing game. Let γ be the discount
factor of our multi-stage pricing game. Based on (3) and (6),

Fig. 1: Illustration of supply and demand functions.

the objective functions for the primary users and secondary
users can be rewritten as follows.

Õ(pi) = max
φAi,t,α

Ai
i,t

Ecj
i ,vj

i
[
∞∑

t=1

γt · Upi,t(φAi,t, α
Ai
i,t )], (9)

Õ(si) = max
φA,t,βA

i,t

Ecj
i ,vj

i
[
∞∑

t=1

γt · Usi,t(φA,t, β
A
i,t)], (10)

where the subscript t indicates the tth stage of the multi-
stage game. Generally speaking, there may exist some overall
constraints of spectrum sharing such as each secondary user’s
total budget for leasing spectrum resources or each primary
user’s total available spectrum supply. Under these constraints,
the above problem needs to be further modeled as a dynamic
programming process [14], [15] to obtain optimal sequential
strategies. However, the major difficulty of dynamic spectrum
sharing lies in that how to efficiently and dynamically update
the spectrum sharing strategies according to the changing net-
work conditions only based on local information. Therefore,
in this paper we don’t assume the overall constraints and focus
on developing a belief-assisted dynamic pricing approach,
which can not only approach CE outcomes but also respond
dynamically to networking dynamics while only introducing
limited overhead.

Since our pricing game belongs to the non-cooperation
games with incomplete information [9], the players need
to build up certain beliefs of other players’ future possible
strategies to assist their decision making. Considering that
there are multiple players with private information in the
pricing game and what directly affect the outcome of the
game are the bid/ask prices, it is more efficient to define
one common belief function based on the publicly observed
bid/ask prices than generating specific belief of every other
player’s private information. Hence, enlightened by [12], we
consider the primary/secondary users’ beliefs as the ratio their
bid/ask being accepted at different price levels. At each time
during the dynamic spectrum sharing, the ratio of asks from
primary users at x that have been accepted can be written as
follows.

r̃p(x) =
µA(x)
µ(x)

, (11)
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where µ(x) and µA(x) are the number of asks at x and the
number of accepted asks at x, respectively. Similarly, at each
time during the dynamic spectrum sharing, the ratio of bids
from secondary users at y that have been accepted is

r̃s(y) =
ηA(y)
η(y)

, (12)

where η(y) and ηA(y) are the number of bids at y and the
number of accepted bids at y, respectively. Usually, r̃p(x)
and r̃s(y) can be accurately estimated if a great number of
buyers and sellers are participating in the pricing at the same
time. However, in our pricing game, only a relatively small
number of players are involved in the spectrum sharing at the
specific time. The beliefs, namely, r̃p(x) and r̃s(y) cannot be
practically obtained so that we need to further consider using
the historical bid/ask information to build up empirical belief
values. Considering the characteristics of double auction, we
have the following observations: if an ask x̃ < x is rejected,
the ask at x will also be rejected; if an ask x̃ > x is accepted,
the ask at x will also be accepted; if a bid ỹ > x is made, the
ask at x will also be accepted.

Based on the above observations, the players’ beliefs can be
further defined as follows using the past bid/ask information.

Definition 1: Primary users’ beliefs: for each potential ask
at x, define

r̂p(x) =




1 x = 0∑
w≥x µA(w)+

∑
w≥x η(w)∑

w≥x µA(w)+
∑

w≥x η(w)+
∑

w≤x µR(w)
x ∈ (0, M)

0 x ≥ M
(13)

where µR(w) is the number of asks at w that has been rejected,
M is a large enough value so that the asks greater than M
won’t be accepted. Also, it is intuitive that the ask at 0 will
be definitely accepted as no cost is introduced.

Definition 2: Secondary users’ beliefs: for each potential
bid at y, define

r̂s(x) =




0 y = 0∑
w≤y ηA(w)+

∑
w≤y µ(w)∑

w≤y ηA(w)+
∑

w≤y µ(w)+
∑

w≥y ηR(w)
y ∈ (0, M)

1 y ≥ M
(14)

where ηR(w) is the number of bids at w that has been rejected.
And, it is intuitive that the bid at 0 will not be accepted by
any primary users.

Noting that it is too costly to build up beliefs on every
possible bid or ask price, we can update the beliefs only at
some fixed prices and use interpolation to obtain the belief
function over the price space. Moreover, only local information
is needed for the users updating their beliefs, though public
information may accelerate the belief-updating process.

Before using our defined belief functions to assist the
strategy decisions, we first look at the Spread Reduction Rule
(SRR) of double auction mechanisms. Generally, before the
double auction pricing game converges to CE, there may exist
a gap between the highest bid and lowest ask, which is called
the spread of double auction. The SRR states that any ask
that is permissible must be lower than current lowest ask, i.e.,
outstanding ask [12], and then either each new ask results

TABLE I: Belief-assisted dynamic spectrum allocation

1. Initialize the users’ beliefs and bids/asks
� The primary users initialize their asks as large values close to M
and their beliefs as small positive values less than 1;
� The secondary users initialize their bids as small values close to 0
and their beliefs as small positive values less than 1.
2. Belief update based on local information:
Update primary and secondary users’ beliefs
using (13) and (14), respectively
3. Optimal bid/ask update:
� Obtain the optimal ask for each primary user by solving (16);
� Obtain the optimal bid for each secondary user by solving (17).
4. Update leasing agreement and spectrum pool:
� If the outstanding bid is greater than or equal to the outstanding ask,
the leasing agreement will be signed between the corresponding users;
� Update the spectrum pool by removing the assigned channel.
5. Iteration:
If the spectrum pool is not empty, go back to Step 2.

in an agreed transaction or it becomes the new outstanding
ask. A similar argument can be applied to bids. By defining
current outstanding ask and bid as ox and oy, respectively,
we let r̄p(x) = r̂p(x) · I[0,ox)(x) for each x and r̄s(y) =
r̂s(x)·I(oy,M ](y) for each y, which are modified belief function
considering the SRR. Note that I(a,b)(x) is defined as

I(a,b)(x) =
{

1 if x ∈ (a, b);
0 otherwise.

(15)

By using the belief function r̄p(x), the payoff maximization
of selling the ith primary user’s jth channel can be written as

max
x∈(oy,ox)

E[Upi
(x, j)], (16)

where Upi
(x, j) represents the payoff introduced by allocating

the jth channel when the ask is x, and then E[Upi
(x, j)] =

(x − cj
i ) · r̄p(x). Similarly, as for the secondary user si, the

payoff maximization of leasing the jth channel in the spectrum
pool can be written as

max
y∈(oy,ox)

E[Usi
(y, j)], (17)

where Usi
(y, j) represents the payoff introduced by leasing

the jth channel in the spectrum pool when the bid is y, and
then E[Usi

(y, j)] = (vj
i − y) · r̄s(y). Therefore, by solving

the optimization problem for each primary and secondary user
using (16) and (17), respectively, primary and secondary users
can make the optimal decision of spectrum allocation at every
stage conditional on dynamic spectrum demand and supply.
Based on the above discussions, we illustrate our belief-
assisted dynamic pricing algorithm for spectrum allocation in
Table I.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
belief-assisted dynamic spectrum sharing approach in wireless
networks. Considering a wireless network covering 100× 100
area, we simulate J primary users by randomly placing
them in the network. These primary users can be the base
stations serving for different wireless network operators or
different access points in a mesh network. Here we assume the
primary users’ locations are fixed and their unused channels
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Fig. 2: Comparison of the total payoff for the proposed scheme and
theoretical Competitive Equilibrium.

are available to the secondary users within the distance of 50.
Then, we randomly deploy K secondary users in the network,
which are assumed to be mobile devices. The mobility of
the secondary users is modeled using a simplified random
waypoint model [16], where we assume the “thinking time” at
each waypoint is close to the effective duration of one channel-
leasing agreement, the waypoints are uniformly distributed
within the distance of 10, and the traveling time is much
smaller than the “thinking time”. Let the cost of an available
channel in the spectrum pool be uniformly distributed in
[10, 30], the reward payoff of leasing one channel be uniformly
distributed in [20, 40]. If a channel is not available to some
secondary users, let the corresponding reward payoffs of this
channel be 0. Note that J = 5 and 103 pricing stages have
been simulated. Let ni = 4, ∀i ∈ {1, 2, ..., J} and γ = 0.99.
In our simulation, the local bid/ask information within the
transmission range of each node is used for belief construction
and update.

In Figure 2, we compare the total payoff of all users of our
proposed approach with that of the theoretical CE outcomes
for different number of secondary users. It can be seen from
this figure that the performance loss of our approach is very
limited compared to that of the theoretical optimal solutions.
Moreover, when the number of secondary users increases, our
approach is able to approach the optimal CE. It is because that
the belief function reflects the spectrum demand and supply
more accurately when more users are involved in spectrum
sharing.

Now we study the overhead of our pricing approach. Here
we measure the pricing overhead by showing the average
number of bids and asks for each stage. In Figure 3, the
overhead of our pricing approach is compared to that of the
traditional continuous double auction when the same total
payoff is achieved. Assume the minimal bid/ask step δ of
the continuous double auction to be 0.01. It can be seen
from the figure that our approach substantially decreases the
pricing communication overhead. Note that when decreasing
the overhead, our proposed approach may introduce extra
complexity to update the beliefs.

Fig. 3: Comparison of the overhead between the proposed scheme and
continuous double auction scheme.

VI. CONCLUSIONS

In this paper, we have studied dynamic pricing for efficient
spectrum allocation in wireless networks with selfish users.
We model the dynamic spectrum allocation as a multi-stage
game and propose a belief-assisted dynamic pricing approach
to maximize the users’ payoffs while providing them the
participating incentives via double auction rules. Simulation
results show that the proposed scheme can approach the
optimal spectrum efficiency by only using limited pricing
overhead.
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