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Abstract—By sensing wirelessly the radio propagation
environment and analyzing the channel state information (CSI),
one can extend human senses beyond our traditional reach and
enrich the insight into the surrounding environment and activi-
ties, with or without line-of-sight. On one hand, different indoor
activities bring distinctive perturbations to wireless radio propa-
gations. On the other hand, thanks to the nature of multipaths,
indoor environmental information is contained and embedded in
the wireless CSI. Since the occurrence of an indoor event lasts
for a certain period of duration and repeats a similar transition
pattern among different realizations, information is embedded
not only in each instantaneous CSI sample, but also in how
CSI changes along time, e.g., the CSI time series. Inspired by
that, this paper proposes an indoor monitoring system that mon-
itors the occurrence of different indoor events in real time with
commercial WiFi devices, by exploiting the temporal information
embedded in the CSI time series. Through extensive experiments,
this paper studies the robustness of the proposed system to vari-
abilities in event instances and human motion interference, and
its long-term performance in a one-month test.

Index Terms—Channel state information (CSI), indoor moni-
toring, radio analytics.

I. INTRODUCTION

IN THE era of Internet of Things (IoT), technologies and
systems have been developed to understand and decipher

the surrounding environment, by answering the question of
who, what, when, where, and how of everything happening.
Since the past decade, billions of smart objects, also known as
the “things,” have been deployed around each individual. As
the things form a giant network, it will be possible to com-
prehensively track and measure people’s daily life and even
monitor the entire world through IoT.

Thanks to the ubiquitous deployment of wireless radio
devices and the development of emerging wireless sensing
technologies, it has enabled plenty of IoT applications that uti-
lize wireless signals, or more specifically the wireless channel
state information (CSI), to perceive the information hidden in
the indoor environment. Radio analytics has been proposed
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as an emerging technology that infers the propagation envi-
ronment and extends the human sense over the world [1].
The feasibility of wireless passive sensing relies on multipath
propagation. During the wireless transmission, wireless signals
propagate through a multipath channel such that the received
signal consists of copies of the transmitted signal reflected
and scattered by different objects in the environment. When
an object in the indoor environment moves, the resulted prop-
agation path changes accordingly, leading to a new multipath
profile.

It has gained a lot of attention for sensing with wireless
signals to detect indoor events and support smart-object-based
IoT applications [2], [3]. By utilizing the fact that the received
radio frequency (RF) signals can be altered by the propa-
gation environment, device-free indoor sensing systems are
capable of capturing activities in the environment through the
changes in the received RF signals. Existing research on wire-
less passive sensing can be categorized into different groups
based on the features extracted from the wireless channel. To
begin with, traditional wireless sensing systems mainly uti-
lize the received signal strength (RSS) for passive monitoring
applications [4]–[7] and active tracking applications [8], [9].
However, as the RSS is coarse-grained and can be easily
corrupted by multipath effect, RSS-based sensing systems
often require a line-of-sight (LOS) transmission, resulting in
a limited accuracy in indoor activity detection.

In order to improve the accuracy and expand the applica-
tion scenario of traditional wireless passive sensing, a much
more informative feature, the CSI, becomes prevalent. Since
the CSI typically is of high dimensions, it contains more
detailed information and thus supports fine-grained classifi-
cation applications. By analyzing the variations and statistics
of CSI, systems have been built to detect indoor human
motions [10]–[13] and small hand motions [14], [15]. Among
most of those works only amplitude of the CSI was used to
detect indoor activities, while the information in the phase
is ignored, due to the randomness of phase distortion in the
CSI. Later in [16]–[20], the first two largest eigenvalues of
the CSI correlation matrix were treated as features and a sup-
port vector machine (SVM) classifier was trained to detect
the presence of moving human. Although both the ampli-
tude and phase information of the CSI was utilized in [16],
it can only differentiate between the static and dynamic states
in an LOS setting and the phase information was sanitized
through linear fitting which has notable drawbacks. Moreover,
the Doppler frequency introduced by moving objects has been
extracted from CSI and one could utilize it to detect motion
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TABLE I
COMPARISON ON RECENT WIRELESS INDOOR MONITORING SYSTEMS

or motion directions [21]–[23]. However, in order to get an
accurate Doppler shift frequency, either a high sounding rate
over 1 kHz or a strict LOS transmission is required.

Another category of wireless passive sensing techniques
relies on the time-of-flight (ToF) information embedded in
the received signals to track changes of reflected objects
for motion detection or vital sign monitoring. Due to the
fact the spatial resolution of CSI is inversely proportional
to the bandwidth, in order to extract the fine-grained ToF
information, the ToF-based wireless sensing systems rely
on either extremely large sensing bandwidths [31], [32],
or specially designed frequency-modulated continuous-wave
(FMCW) signals [33], [34]. Hence, those techniques cannot
be implemented on off-the-shelf WiFi devices and their ability
of detecting multiple indoor events has not been studied yet.
In Table I, we summarize the discussion on recent wireless
indoor monitoring systems, including their applications and
features.

Considering the limitations of current studies we discussed
above and the proliferation of demands of IoT applications in
indoor monitoring, we are motivated to develop new radio ana-
lytic technique that cannot only fully utilize the information
embedded in multipath channels but also support simple
implementation with commercial WiFi devices. On the other
hand, the occurrence of an indoor event consists of multiple
states, each of which corresponds to a single multipath profile.
In other words, the evolving of an indoor event is equiva-
lent to a transition between multiple intermediate states, which
uniquely determines the order and composition of a sequence
of multipath profiles, as described by the CSI. Therefore, the
indoor event information is embedded not only in the CSI
domain but also in the temporal domain of a CSI time series.

In this paper, we propose an indoor monitoring system that
monitors the occurrence of different indoor events in real time
with commercial WiFi devices. Different from the existing
works that only used a single multipath profile to represent
an indoor event and/or state [35], [36], the system proposed
in this paper exploits the temporal information embedded in
the CSI time series and characterizes each indoor event as a
unique dynamic transition. Because each realization of indoor
event occurrences repeats a pattern of indoor state transition
and lasts a period of duration, information is embedded not
only in each instantaneous CSI sample but also in how CSI

changes along time, e.g., the CSI time series. Instead of treat-
ing each CSI as an independent feature, the time series of
CSI samples captured continuously is used for identifying and
classifying different indoor events. Algorithms are designed
to support real-time monitoring with high accuracy and the
capability of adapting to practical environmental changes. To
demonstrate the concept, we use the door opening and close
in the smart home scenario as a representative set of events
to study the CSI time series classification, and the technique
can be generalized to other types of events. To the best of our
knowledge, the proposed system is the first real-time indoor
monitoring system implemented on commercial WiFi devices
that has been deployed and tested in a real indoor environment
for over a month without human intervention. Moreover, the
proposed system does not require calibration or a high sound-
ing rate (>100 Hz). Over the 32-day test, the proposed system
successfully achieve a detection accuracy of 99.66%, which
to our knowledge outperforms the existing methods.

The rest of this paper is organized as follows. System model
is introduced in Section II. In Section III, we present the
detailed algorithms for the proposed system, including the
feature extraction algorithm, the classification algorithm for
real-time monitoring, and the proposed unsupervised retrain-
ing algorithm. The performance of the proposed system
is studied and evaluated through extensive experiments in
Sections IV and V. We draw the conclusion in Section VI.

II. CONTINUOUS TRAJECTORY IN CSI TIME SERIES

During the wireless transmission, wireless signals propa-
gate through a multipath channel such that the received signal
consists of copies of the transmitted signal reflected and scat-
tered by different objects in the environment. As stated in [1],
multipaths can be viewed as virtual antennas, surrounding the
receiver, each of which transmits an attenuated copy of the
original transmit signal. A demonstration is shown in Fig. 1,
where blue lines mark the reflected/scattered paths and the red
line denotes the LOS path. In other words, what contains in the
CSI are the characteristics of all multipaths. When an object
moves inside the indoor environment, multipaths reflected and
scattered by the object are changing accordingly, which can be
viewed as the virtual antennas are moving. In the following,
we study how the CSI, as represented by the channel frequency
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Fig. 1. Illustration of virtual antennas [37].

response (CFR), is affected by a moving object inside the prop-
agation environment. Each object can be viewed as a collection
of multiple scatterers, i.e., virtual antennas. Let us start from
the case where only one virtual antenna moves while others
are static. The corresponding CSI can be decomposed as

hF(l, t) = α�(t)e−j2πτ�(t)fl +
∑

k

αke−j2πτkfl ,

l = 0, 1, . . . , L− 1 (1)

where hF(l, t) is the time-varying CFR coefficient on subcar-
rier l with center frequency being fl, α�(t) and τ�(t) denote
the multipath coefficient and ToF associated to the moving
antenna at current time instance t.

When the virtual antenna is moving, a sequence of
(α�(t), τ�(t)) is uniquely associated to the moving path.
|α�(t)| > 0 and τ�(t) > 0. Hence, the CFR coefficient hF(l, t)
is determined by the moving path of the virtual antenna. Let
hF(t) denote the CFR vector as hF(t) = [hF(0, t), . . . , hF(L−
1, t)]. Because each indoor event Si involves a set of moving
virtual antennas, each Si uniquely determines a sequence of
CFR hF,i(t)’s. In other words, with the help of multipath
information in hF,i(t)’s, current indoor state can be deci-
phered by finding out which event is happening. Ultimately,
changes introduced by human activities and moving objects
can be extracted from the CSI and recognized through wireless
sensing.

The trajectory of a moving virtual antenna in the physical
space corresponds to a continuous logical trajectory in the TR
space, represented by a time sequence of CSI. Recall the CSI
definition in (1) at time instance t, then we can have the CFR
at time instance t + δt (δt > 0) as

hF(l, t + δt) = α�(t + δt)e−j2πτ�(t+δt)fl +
∑

k

αke−j2πτkfl .

(2)

Assuming α�(t + δt) = α�(t) during short time period, the
difference between hF(l, t + �t) and hF(l, t) on subcarrier l

becomes

|hF(l, t + δt)− hF(l, t)|
≤

∣∣∣∣α�(t)||e−j2π flτ�(t)
(

e−j2π
fl
c

∫ t+δt
t v(u)du − 1

)∣∣∣∣

=
∣∣∣∣α�(t)||e−j2π

fl
c

∫ t+δt
t v(u)du − 1

∣∣∣∣ (3)

where v(u) is the time-varying moving speed of the moving
virtual antenna with respect to the TX-RX link,

∫ t+δt
t v(u)du

represents path length change between time interval (t, t+ δt)
of the propagation path associated to the virtual antenna.
Furthermore, |e−j2π(fl/c)

∫ t+δt
t v(u)du − 1| = 0, if and only if

(fl/c)
∫ t+δt

t v(u)du ∈ Z where Z is the set of integer.
In other words, for any ε > 0, we have

∣∣∣∣e
−j2π

fl
c

∫ t+δt
t v(u)du − 1

∣∣∣∣ < ε/|α�(t)|

∀δt ∈
{
δt|

∫ t+δt

t
v(u)du = c

fl
k, k ∈ Z

}
. (4)

Here, (c/fl) is the wave length of EM waves under center
frequency fl, which is equal to 6 cm in WiFi 5G band. Hence,
∀ε > 0, ∃δ > 0 such that

|hF(l, t + δt)− hF(l, t)| < ε and δ > δt (5)

which proves the continuity of hF(l, t) on t.
Therefore, when a virtual antenna is moving, the corre-

sponding CSI time series changes continuously. The result
can be easily extended to the case of multiple moving vir-
tual antennas, i.e., the changes introduced to the CSI by one
or multiple moving objects indoors are continuous in time.
As stated in [36] and [38], each indoor location or an indoor
state can be viewed as a unique point in the TR space which
is represented by a multipath profile. Since each position of a
moving virtual antenna uniquely relates to a unique multipath
profile (as described by CFR), the moving trajectory in the
physical space corresponds to a unique continuous logical
trajectory in the TR space.

A simulation result that studies the continuous change in the
CSI time series due to moving scatterers is shown in Fig. 2.
In the simulation, 200 static scatters are uniformly distributed
in the area surrounding the transmitter (TX) and the receiver
(RX), whose locations are marked in Fig. 2(a). The TX and the
RX are transmitting under a 80-MHz bandwidth at the 5-GHz
carrier frequency. A group of 50 moving scatterers located
within a circle of a 5-m radius are moving under a random
time-varying speed, and its final trajectory is highlighted by the
color-changing blue circles in Fig. 2(a). In Fig. 2(b) and (c),
the changes introduced to the CSI is plotted along time in
the form of the channel impulse response (CIR) and the CFR,
respectively. For both representations of the CSI, the changes
due to multiple moving virtual antennas are continuous and
smooth, which validates the above derivation.

A. Multiantenna Diversity

MIMO transmission introduces a large number of degrees
of freedom delivered through spatial diversity for RF sensing.
Suppose there is a number of |S| indoor events to be mon-
itored and let h(m,n)

F,i [k] denote the kth complex-valued CSI
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(a) (b) (c)

Fig. 2. Simulation of changes in the CSI time series due to moving scatterers. (a) Simulation setup: scatterers. (b) Absolute changes in the CIR time series
introduced by moving scatterers. (c) Absolute changes in the CFR time series introduced by moving scatterers.

Fig. 3. System diagram.

vector, representing CFR, measured on the link between the
mth TX antenna and the nth RX antenna during event Si ∈ S.
h(m,n)

F,i [k] is captured at time instance kTs, with Ts being the
channel probing interval. To fully utilize the spatial diversity,
we concatenate CSI vectors from different links into a single
column vector as the augmented CSI by

HF,i[k] =
[
h(1,1)

F,i [k]T, . . . , h(NTX,NRX)
F,i [k]T

]T
. (6)

Here, HF,i[k] is a complex-valued column vector of length L×
NTX×NRX, L denotes the number of accessible subcarriers, the
superscript {·}T represents the transpose operator, and NTX and
NRX denote the number of TX and RX antennas, respectively.

A real-valued waveform vector Gi[k] is generated by
concatenating the real and imaginary part of the obtained
augmented CSI HF,i[k], i.e.,

Gi[k] = [�{
HF,i[k]T}

, �{HF,i[k]T}]T
(7)

where �{·} and �{·} are operations to take the real and
imaginary part of a complex value.

Even though information on all transmission links is
included in Gi[k]’s, the dimension of feature increases dra-
matically and makes the classification more difficult. In this
paper, we propose a feature extraction algorithm that performs
refinement and dimensionality reduction on Gi[k]’s.

III. SYSTEM DESIGN

In this section, the design of the proposed indoor moni-
toring system is presented. During the training phase, feature
extraction algorithms are designed to refine the most distinct
and representative sequence of CSI from the entire time series
as the training template. We also adopt principle component
analysis (PCA) to remove the correlation among different sub-
carriers and links, and to reduce the noise, in pursuit of a
compact representation for training series. Real-time moni-
toring faces several practical challenges, including unknown
start and end point of event occurrence, variabilities in event
instances, accurate detection with low latency. To address
those challenges, we propose in this paper a modified classifier
based on the k-nearest-neighbor (kNN) to overcome the per-
turbation and divergence in the real-time measurements. The
similarity between training and testing feature series can be
evaluated through either Euclidean distance or dynamic time
warping (DTW).

Long-term robustness is another challenge in a real-time
indoor monitoring system, due to the inevitable and unpre-
dictable changes in the environment along time. In this paper,
an automated unsupervised retraining algorithm is designed
for the proposed system that guarantees high accuracy against
environmental changes. The system diagram is illustrated in
Fig. 3 where through the proposed feature extraction algo-
rithm, effective features will be extracted from the raw training
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(a) (b)

Fig. 4. Waveform spectrogram: absolute value of waveform series before and after low pass filtering. (a) Before Gaussian filtering. (b) After Gaussian
filtering.

CSI time series collected during event occurrences and stored
in the training database. On the other hand, in the online
monitoring phase, the system first judges if the environ-
ment is dynamic based on the incoming testing CSI series
after preprocessing. Then an event detector is applied to the
testing feature generated from the raw CSI series to deter-
mine which event is happening, if the proposed dynamic
detector detects dynamics in the environment. The proposed
auto-updating algorithm works to unsupervisedly gather new
candidate training sequence from the testing time series. The
detailed algorithm design is discussed in the following.

A. Algorithms for Feature Extraction

In this part, we introduce the proposed algorithm that refines
the measured CSI time series and extracts distinct features for
all indoor events of interest during the training phase.

1) Refinement of CSI Time Series: The essential part of
the proposed algorithm is to extract the most representative
segment in the CSI time series captured during the occurrence
of each indoor event for building a good classifier later.

Low-Pass Filtering: CSI measurements provided directly
by commercial WiFi devices are often inherently noisy, due
to thermal noise, noise from analog-to-digital converters, and
changes in transmit power and rates. To make the measured
CSI training sequences helpful and useful in representing dif-
ferent indoor events, the noise must be first removed from
the CSI time series. In the proposed system, a Gaussian fil-
ter with length 1/3Ts is applied to the waveform sequence
Gi[k]’s for each event Si, where Ts is the channel probing
interval. The Gaussian filter provides a weighted averaging
smoothing approach where the central data points are given
with more weights and the neighbors have fewer weights. A
large window length of Gaussian smoothing window results
in a greater degree of filtering and a greater amount of noise
reduction. However, a larger filter length also degrades the
detailed information in a time series. With a length of 1/3Ts,
the moving average for the center point will only consider the
data points fall into the radius of 1/6Ts from the center, which
in our case corresponds to a duration of 0.33 s. Considering
the moving object has a speed of 1 m/s, 0.33 s is a reason-
able duration for the CSI perturbed by the moving object to

be highly correlated and can be used to smooth out the noise.
Hence, in this paper, we adopt the window length of 1/3Ts to
filter out noise in the CSI time series without sacrificing too
much detailed CSI transition information.

An example of waveform series before and after passing
through the Gaussian filter is shown in Fig. 4, where the
waveform series is measured during a door open/closed event.
Compared with Fig. 4(a), the waveform series in Fig. 4(b)
exhibits a much smoother transition pattern.

In the training phase, the CSI time series received at the RX
may capture some indoor status similar to other indoor events
at the beginning and the end part of the series. Resembling CSI
subsequences, captured from different indoor events, introduce
ambiguity into pattern matching and degrade the classification
performance. On the other hand, from our observation over
real data and the channel model in (1), information among
different subcarriers and links are highly correlated. Therefore,
it is necessary for applying PCA over the training waveform
series to generate a compact representation, given the high
dimension of data. In order to learn an efficient PCA projection
matrix, it is important to keep only the dynamic and distinct
transition pattern of the waveform series, and discard all the
static part. As shown in Fig. 4(b), it is clear that the significant
segment in Gi[k]’s approximately starts from the 70th sample
to the 240th sample, while others only contain useless static
information.

To address that, a waveform extraction algorithm is
proposed to track the change in waveform series and extract
the most representative and dynamic segment. Taking into
consideration that different links may capture different envi-
ronmental information, the proposed waveform extraction
evaluates link-wise dynamics. To do so, the waveform Gi[k]
is first decomposed into NTX × NRX sequences, and can be
rewritten as

Gi[k] =
[
G(1,1)

i [k]T, . . . , G(m,n)
i [k]T, . . . , G(NTX,NRX)

i [k]T
]T

,

k = 1, 2, . . . , M (8)

where M is the number of samples in the time series, and each
G(m,n)

i [k] is of dimension 2L× 1 with L being the number of
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(a) (b)

Fig. 5. Waveform spectrogram: absolute value of waveform series before and after PCA. (a) Waveform series after feature extraction. (b) Feature series
after PCA.

Algorithm 1 Waveform Extraction

Input: G(m,n)
i [k], k = 1, 2, . . . , M,∀(m, n) captured for event Si as

defined in (9) after Gaussian filtering.
Output: index ks,i and ke,i s.t. Gi[k], ks,i ≤ k ≤ ke,i only contains

significant variations
1: Step I: Calculate D(m,n)

δ [k] = F
{∣∣∣

(
G(m,n)

i [k + δ]−G(m,n)
i [k]

)
·

/G(m,n)
i [k]

∣∣∣
}
, k = 1, 2, . . . , M − δ, with “·/” denoting element-

wise division between vectors and F{·} being the function to take
median value among all elements in a vector.

2: Step II: Obtain the best link among all (m, n) ∈ {1 ≤ m ≤
NTX, 1 ≤ n ≤ NRX} by (m∗, n∗) = arg max

(m,n)

M−δ∑

k

D(m,n)
δ [k].

3: Step III: ks,i = arg min
k

{
k|D(m∗,n∗)

δ [k] > γ
}

and ke,i =
arg max

k

{
k|D(m∗,n∗)

δ [k] > γ
}
, with an empirical threshold γ .

accessible subcarriers on one link, given by

G(m,n)
i [k] =

[
�

{
h(m,n)

F,i [k]T
}
, �

{
h(m,n)

F,i [k]T
}]T

. (9)

Taking into consideration that due to spatial diversity, dif-
ferent links in an MIMO transmission may observe different
multipath changes introduced by the same event. Hence,
the proposed feature extraction algorithm evaluate transi-
tion dynamics on each link. The details are described as in
Algorithm 1. An example of applying feature extraction algo-
rithm onto the waveform series in Fig. 4 is shown in Fig. 5(a),
where static parts have been discarded.

2) Denoising and Compact Representation: Unfortunately,
only applying a Gaussian filter to the incoming waveform
series does not yield an effective and efficient denoising out-
come. Moreover, as we discussed in the previous section, the
channel information on all subcarriers are highly correlated.
Based on that, we proposed to apply PCA for the purpose of
noise removal, de-correlation, and dimension reduction. Also,
PCA is applied to waveform vectors of all indoor events after
the process in Section III-A1, in order to seek an efficient
feature representation that amplifies the distinction among
waveforms. The details are as follows.

Let 	all denote the super waveform matrix generated by

	all =
[
G1

[
ks,1 : ke,1

]
, . . . , Gi

[
ks,i : ke,i

]
, . . . , G|S|

× [
ks,|S| : ke,|S|

]]
(10)

where Gi[ks,i : ke,i] denotes the waveform series after feature
extraction for event Si and 	all has a dimension of 2L×K|S|.
The mean waveform vector G can be obtained by

G = 1

K|S|

K|S|∑

k=1

	all[k]. (11)

The PCA projection is learned with the correlation matrix of
(	all[k]−G)’s. By taking out the mean waveform G, we antic-
ipate the impact of environmental background information is
mitigated. Meanwhile, the projection matrix 
 of dimension
pc×P is obtained as the collection of normalized eigenvectors
of the correlation matrix of (	all[k] − G)’s, and pc repre-
sents the number of principal components (PCs) to be kept.
In practice, the value of pc is selected by picking the first
several largest eigenvalues that contain over 80% of the total
energy among all eigenvalues. Since only the first few PCs
are considered, the PCA can be computed efficiently through
thin-SVD.

Then, for each event Si, the final feature vector Zi[k] can
be obtained by

Zi[k] = 
×
(

Gi[k]−G
)
∀k (12)

where the projected feature vector Zi[k] is now of length pc.
An example of the comparison between Gi[k]’s and Zi[k]’s
is plotted in Fig. 5, where the projected feature series Zi[k]’s
exhibits a significant variation among all PC dimensions while
changes in original waveform series Gi[k]’s is too small and
too diffused to be observed.

After walking through all the preprocessing algorithms
proposed in Section III-A, the final feature waveform Zi[k]’s
will be stored in the training database for all event Si, as the
reference for the real-time monitoring.

B. Algorithms for Real-Time Monitoring

In this section, we present algorithms designed for real-
time monitoring phase, which addresses variabilities in event
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Fig. 6. Illustration of variability in event instances.

instances and difficulties in locating either the start or the end
point of event occurrence in the incoming testing stream.

1) Challenges in Real-Time Monitoring: Real-time indoor
monitoring faces a lot of challenges. On one hand, considering
the low latency requirement for a practical indoor monitor-
ing system, it is hard to locate either the start or the end
point of an event occurrence in the incoming infinite testing
CSI stream. The real-time indoor monitoring system should be
able to detect the trained event promptly, even before the event
stops. Furthermore, in the course of daily monitoring, the event
occurrence may be halted due to unknown reason. On the other
hand, because the duration of different events may vary, the
length of training feature series is different. In order to have a
fair similarity comparison between the same testing series and
different training series with varied lengths, the training fea-
ture sequences need to be trimmed to the same length. As one
of the typical trimming methods, downsampling over training
sequences fails to meet the requirement because of information
loss. Unlike downsampling, the original information can be
preserved and the problem of different training feature lengths
will be resolved by dividing the training series of varied
length into several equal-length subsequences. As only a part
of training information is contained in each subsequence,
the proposed system is required to be able to perform high
accuracy classification over partial training information.

On the other hand, in practice, the manner of how an event
occurs and evolves will be different when performed by dif-
ferent individuals, resulting in a testing feature series different
from the training one. Asynchronized sampling during the
event occurrence that is continuous in time also leads to an
altered testing feature. The proposed system should be capable
of handling variabilities in event instances as discussed above.

An example that illustrates the variabilities in event
instances is shown in Fig. 6. Incoming testing series Ztest[k]’s
is denoted by dashed curves where sampled points are marked
by black dots. The bottom two curves represent the fixed-
length training series Zi[k]’s and Zj[k]’s. By comparing the
dashed curve with both solid curves, it is observed that
Ztest[k]’s contains full information of the curve denoted by
Zi[k]’s. However, because of sampling problem, the sampled
version of Ztest[k]’s exhibits a pattern in the red dotted curve,
which is similar to Zj[k]’s.

2) Monitoring With Partial Training Information: To
address the first challenge of partial information monitoring, in
this paper, a sliding window with length Twin is applied over
the incoming testing stream. In practice, the window length

Fig. 7. Illustration of monitoring with partial information by sliding window.

Twin is selected to be 2 or 3 s, considering the fact that typically
an indoor event last for at least 3 s.

As demonstrated in Fig. 7, the incoming testing stream
Ztest[k]’s passes through a sliding window and the newest sam-
ple with its Twin/Ts − 1 preceding samples from the current
testing window Wtest. Similar to that, the training series Zi[l]’s
for every event is also partitioned into several shortened train-
ing window, denoted as Wi,l’s with Wi,l being the lth training
window for training series Zi[l]’s. Then the similarity com-
parison is made between testing window Wtest and all training
windows Wi,l’s, for all i’s and l’s.

By applying a sliding window over the income testing
stream, the proposed system is able to promptly report the
current indoor state. In practice, the length of the stride for
sliding window, i.e., the number of antecedent feature sam-
ples to be included in Wtest is set to be 1/Ts and the overlap
between consecutive training window Wi,1 and Wi,2 is set
to be 1/2Ts, for the purpose of avoiding misdetection and
unnecessary calculation complexity.

3) Similarity Comparison With Event Variability: In this
part, we will present how the proposed system detects current
indoor state based on the information in Wtest. The proposed
system adopts a two-stage detection algorithm: 1) a dynam-
ics detector works first over Wtest to see if the environment
is static or dynamic and 2) an event detector then works to
determine which trained event occurs if the motion detector
reports dynamic.

The dynamics detector measures and tracks the variations
within Wtest by

βtest =
|Wtest|∑

k=1

∥∥ZW,test[k]− ZW,test[1]
∥∥2 (13)

where ZW,test[k] denotes the kth sample in Wtest, |Wtest| rep-
resents the total number of samples in Wtest, and βtest is
the in-window dynamic metric. When βtest ≥ γdynamic, the
proposed dynamics detector considers current indoor environ-
ment to be dynamic and the event detector will respond and
work.

Once the system detects dynamics in the environment, it will
determine the current indoor event by comparing Wtest with
all training templates Wi,l,∀i&l. Taking into consideration of
possible variabilities in event instances, in this paper, we adopt
DTW to measure the similarity between testing and training
windows. As proposed in [39] and [40], DTW adopts dynamic
programming to obtain minimum distance alignment between
two time series. The DTW distance is indeed the Euclidean
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distance between two time series, calculated along the optimal
warping path and under the boundary conditions as well as
global constraints.

In the proposed algorithm, given two sequences of fea-
ture series Z1[l]’s and Z2[l]’s with equal length L, the DTW
optimal cost c is defined as the normalized distance of a
warping path, i.e.,

c(Z1, Z2) = 1

|P∗|
|P∗|∑

w=1

∥∥Z1
[
k∗1,w

]− Z2
[
k∗2,w

]∥∥2 (14)

where P∗ denotes the optimal warping path with length |P∗|,
and k∗1,w and k∗2,w are the indexes of Z1[k]’s and Z2[k]’s at the
wth point on the path P∗.

For all possible warping paths P with ( l1,w, l2,w)’s, P∗ is
the optimal one in that

1

|P∗|
|P∗|∑

w=1

∥∥Z1
[
k∗1,w

]− Z2
[
k∗2,w

]∥∥2

≤ 1

|P|
|P|∑

w=1

∥∥Z1
[
k1,w

]− Z2
[
k2,w

]∥∥2 ∀P. (15)

With a warping step-size � > 1, i.e., the allowable
largest stepsize for path advancing, the DTW algorithm is
able to overcome issues of missing feature samples intro-
duced by variabilities in event instances and WiFi traffic
collision. In addition, in the proposed algorithm, the Sakoe-
Chiba Band [39] is adopted which reduces the number of
searchable indexes and thus the proposed algorithm benefits
from a quick and low-complexity computation of DTW.

After that, the final distance between Wtest and all training
templates Zi’s is defined based on (14) as

ĉ(Wtest, Zi) = min
Wi,l⊆Z′is

c
(
Wtest, Wi,l

)
. (16)

With the help of DTW, a simple kNN classifier is suffi-
cient to classify testing window Wtest. The decision rule is as
follows:

Dtest(Wtest) =
⎧
⎨

⎩

arg minSi∈S ĉ(Wtest, Zi)

if minSi∈S ĉ(Wtest, Zi) ≤ γevent
Unknown, otherwise

(17)

where γevent is an empirical threshold and Dtest(Wtest) =
Unknown indicates the occurrence of an unrecognized indoor
event or indoor state.

C. Algorithms for Unsupervised Retraining

Another big challenge for real-time wireless indoor moni-
toring is unpredictable and inevitable changes in the indoor
propagation environment. Due to normal human activities
inside the monitored areas and channel fading, the estimated
multipath CSI keeps changing along time and it may result
in a mismatch between testing and training feature series.
It is crucial to design a real-time indoor monitoring system
that can adapt itself to environment changes and maintain its
performance in long-term. In this section, we propose an unsu-
pervised automatic retraining algorithm that keeps updating
the training database of the proposed system on the fly. The

Fig. 8. Experimental setup for setting 1.

Algorithm 2 Unsupervised Retraining for Dynamic Events
Input: Incoming testing stream ZW,test[k]’s as in Wtest, Dtest for

Wtest.
Output: Candidate training series Ŵ.

1: Initiate Wbuffer ← empty matrix of pc × 0.
2: Wbuffer ← ZW,test[k], if ĉ(Wtest, ZDtest ) ≤ γun.
3: while TRUE do
4: Dprev ← Dtest.
5: Wtest ← new testing features ZW,test[k]’s.
6: Obtain Dtest for current Wtest.
7: if Wbuffer is empty then
8: if ĉ(Wtest, ZDtest ) ≤ γun then
9: Wbuffer ← ZW,test[k].

10: end if
11: else
12: if Dprev == Dtest and Dtest ∈ S and ĉ(Wtest, ZDtest ) ≤

γun then
13: Wbuffer ← concatenate Wbuffer and ZW,test[k]’s with

repeated testing feature vectors discarded.
14: else
15: Wbuffer ← feature extraction over Gaussian filtered

Wbuffer.
16: if |Wbuffer| ≥ |Wtest| then
17: Ŵ ← Wbuffer for event Dtest and is put into

training database.
18: end if
19: Wbuffer ← empty matrix of pc × 0.
20: end if
21: end if
22: end while

proposed algorithm contains two part: 1) retraining for static
environment and 2) retraining for dynamic events. The details
are as follows.

1) Retraining for Static Environment: Feature sequence
from the static environment can be easily and reliably
labeled through the proposed dynamic detector. Hence,
in the proposed system, the training series Zi[l]’s that
represent a static environment is periodically updated
with the testing series Wtest which is classified as a static
state by the proposed system. In order to guarantee the
robustness of retraining for the static state, a boundary
condition is set for the candidate feature series Wtest
to be qualified in that the decision outputs before and
after Wtest must be static consistently for a certain period
(e.g., 1 h).

2) Retraining for Dynamic Events: The unsupervised
retraining procedure for trained dynamic events is much
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Fig. 9. Experimental setup for setting 2.

more complicated. The criterion to select a qualified test-
ing series as a new training series for an event can either
be too loose which may introduce more false alarms to
the system or be too strict which may reject all possible
candidates and make the proposed system incapable of
self-adapting to environmental changes. In the proposed
system, the retraining for dynamic events works under
the following protocols as listed in Algorithm 2.

During the monitoring phase, whenever the system detects
the current indoor states to be a trained events and the dis-
tance score ĉ(Wtest, ZDtest) ≤ γun, the corresponding testing
series Wtest will be stored temporarily in a buffer Wbuffer
and the system decision is put into Dprev. Subsequent Wtest’s
will be concatenated into the same buffer Wbuffer with
repeated feature samples being discarded, if their decision
Dtest is as same as Dprev and the distance score satisfies
ĉ(Wtest, ZDtest) ≤ γun. When the current Dtest is different from
Dprev or ĉ(Wtest, ZDtest) ≥ γun, one will apply the proposed
transition extraction algorithm over the stored testing features
in Wbuffer, and put the extracted feature sequence into the
database as a new training sequence Ŵ for event Dtest only
if the minimum length criterion is satisfied. Lastly, the buffer
Wbuffer is reset and ready for the next coming testing series.
In Algorithm 2, γun is an empirical threshold, chosen to sat-
isfy γun ≤ γevent such that the confidence of testing samples
in Wbuffer belonging to event Dtest is guaranteed. Moreover,
as the system works along time, the number of training series
for an event grows. Hence, the proposed system keeps for-
getting the oldest training series for each event obtained from
Algorithm 2 when the total number of training series for that
event exceeds a predefined capacity.

IV. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed algorithms,
extensive experiments have been conducted to protect a mul-
tiroom office from intrusion in various settings. In this paper,
we use the door open/closed event monitoring as an example
to illustrate the performance of the proposed algorithms. The
proposed real-time indoor monitoring system can be extended
to other applications. Contact sensors, as well as a video
recording system, are used to provide the ground truth in the
experiments.

A. Experimental Setup

A prototype of the proposed indoor monitoring system is
implemented using a pair of commercial WiFi devices, which
performs 2×3 MIMO transmission with the carrier frequency
being 5.8 GHz and under a 40-MHz bandwidth.

The experiments are carried out in the offices at the 10th
floor in a commercial building of 16 floors in total. The exper-
imental offices are surrounded by multiple offices and four
elevators. The experimental setting is shown in the floorplans
in Figs. 8 and 9 with location of the TX and RX marked. In
setting 1 the system is aimed to monitor both front door and
back door opening events, while the system only monitors the
front door in setting 2. The window length |Wtest| is set to
be 3 s.

We divide the experiment into two parts. First, the robust-
ness of the proposed system is evaluated under the variabilities
in event instances (Section IV-B), the existence of outdoor
activities (Section IV-C), and the existence of indoor activ-
ities (Section IV-D). Then, the long-term performance of
the proposed system is studied in an experiment lasting for
32 days.

B. Robustness to Event Variability

In this part, we deploy the system in setting 1 (as shown
in Fig. 8) and in the training phase, one trainer performs door
opening event from door close to door 90-degree open, at
both the front door and the back door once with a normal
speed. Then, in the testing phase, the tester, other than the
trainer, intentionally introduces variabilities in event instances,
by opening the door at the same training speed, twice of the
training speed, and half of the training speed. Moreover, the
tester also performs the door opening event at the same training
speed but pauses at a 45-degree. The system output is shown
in Fig. 10, where the x-axis is the time index in seconds and
the y-axis is the event name.

From Fig. 10, we have the following observations.
1) When the speed of door opening is slow, the proposed

system sometime may consider the current environment
as static.

2) By leveraging DTW, the proposed system can handle
the difference in training and testing speed.
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(a) (b)

Fig. 10. Experimental results on the robustness to variabilities in event instances in setting 1. (a) System output for front door opening test. (b) System
output for back door opening test.

3) With the help of the sliding window, the proposed
system can detect indoor state with partial training
information. Hence, even when the door opening pro-
cess is paused at half open which is the middle point of
the training series, the proposed system can still reliably
and promptly detect the occurrence of the event.

In general, the proposed system is robust to variabilities in
event instances.

C. Robustness to Outside Activities

In this part, we conduct experiments to evaluate how the
system responds to outside activities. The experimental setting
is the same as the one in Figs. 8 and 9, where the tester is
walking randomly in the horizontally shaded area [walking
area (2)], close to but outside the target event. The experiment
simulates a postman scenario.

With zero false alarm generated during the 5-min postman
experiment under both settings, the proposed real-time indoor
monitoring system is insusceptible to activities outside the
monitored area.

D. Robustness to Inside Activities

Because the amount of multipath energy leaks to the outside
of the monitored area is limited, the proposed real-time indoor
monitoring system is robust to outside activities. However, as
most of the multipaths concentrate inside the monitored area
and especially around the TX/RX device, inside activities per-
turb the measured multipath CSI and may introduce a lot of
false alarms, posing a great challenge to the wireless monitor-
ing. In this part, we conduct three sets of experiments to test
the robustness of the proposed system to inside activities.

1) In Scenario 1, whose setting is shown in Fig. 8, one
tester is asked to walk randomly in the foyer and along
the hallway, as shaded by the diagonal lines. The system
is trained only with the front and the back door opening
events. During the 1-min inside walking test, no false
alarm is triggered and the system works correctly along
time.

TABLE II
LONG-TERM TEST RESULTS

2) We then deploy the system under setting 2 and train it to
monitor the front door opening event. We start with the
case when one and two testers are asked to walk ran-
domly in the diagonally shaded area as shown in Fig. 9,
which is very close to the trained event and the TX/RX.
In the 6-min test, the system output is correct no matter
how many people are walking inside the monitored area.

3) In addition to the test of human walking in the shaded
area, we also perform a different door opening test to
investigate whether a similar but untrained event will
introduce false alarms to the proposed system. In this
scenario, one tester is asked to open and close doors
of room 3 and the closet four times, respectively. The
door locations are marked in Fig. 9 and both doors
are near the targeted front door. Nevertheless, accord-
ing to the system output during the test, no false alarm
is reported and the proposed system is robust in distin-
guishing between similar events even without full prior
knowledge.

Based on the experimental experiments in this part, we
can conclude that the proposed real-time monitoring system
guarantees its robustness to various indoor activities.

E. Long-Term Performance

To evaluate the long-term performance and the unsupervised
retraining algorithms of the proposed system, the prototype is
deployed in setting 2 for 32 days without human interven-
tion. The system is aimed to protect the front door and only
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(a) (b) (c)

Fig. 11. Examples of feature series generated by Algorithm 2. (a) Original feature series. (b) Example 1. (c) Example 2.

gets trained once on the first day. The front door is the major
entrance for the entire office area which is occupied by over 12
people. Moreover, during the testing, normal workday activi-
ties happen inside the testing area and the furniture inside the
foyer and room 3 gets moved from time to time. The result is
summarized in Table II.

According to the results listed in Table II, the proposed
system succeeds in maintaining a high accuracy of trained
event detection with the help of the proposed automatic unsu-
pervised training algorithm. Specifically, during the 547-h of
real-time monitoring test, the proposed system has a detection
rate of 99.66% while the false alarm rate is only 8.64e−6,
i.e., only has 17 s of false alarms out of 547 h. To the best of
our knowledge, this paper is the first real-time indoor moni-
toring system performing fine-grained event detection that has
been tested in a busy office environment for over one month
without human intervention.

During the 32-day experiments, the front door opening event
has been updated for 475 times in an unsupervised manner,
while the latest 19 and the original one are kept in the database.
Examples of new training feature series obtained from unsu-
pervised retraining during the long-term test are shown in
Fig. 11. Although the same trend exhibits in those three
sequences, the new feature series in either Fig. 11(b) or (c) is
slightly different from the original training series in Fig. 11(a)
captured at the initialization.

V. DISCUSSION

In this section, we will study the impact of the length of the
sliding window Wtest and the proposed unsupervised retrain-
ing algorithm. We will also demonstrate how the proposed
system can be utilized for future smart home or smart office
applications.

A. Impact of Sliding Window Length

We now revisit the experimental results in Section IV-D and
evaluate with different lengths of Wtest to study how different
lengths of Wtest will affect system performance. The false
alarm rate is studied based on different window length |Wtest|,
and the result is plotted in Fig. 12 for setting 1 and setting 2.

According to the result in Fig. 12, for both settings, the false
alarm rate increases significantly as the window length |Wtest|
decreases below 3 s. That is because the distinctive information
of events is embedded not only in each instantaneous CSI

Fig. 12. Experimental results on the impact of sliding window length.

TABLE III
LONG-TERM TEST RESULT WITHOUT UNSUPERVISED

RETRAINING FOR DYNAMIC EVENTS

sample but also in the transition information of the CSI time
sequence. As we increase the window length |Wtest|, more
environmental information in the CSI is included for event
recognition. Although two events may share resembling indi-
vidual CSI samples, the associated CSI time sequence should
be differentiable. Hence, as more information is included as
the representative pattern, higher detection accuracy can be
achieved and fewer false alarms will be triggered by nearby
human interference. On the other hand, with a larger |Wtest|,
the system latency increases which is undesirable for a real-
time system. Hence, in order to guarantee the performance
of the proposed system, the window length |Wtest| should be
carefully selected.

B. Impact of Unsupervised Retraining

In this part, the long-term system performance with and
without the proposed unsupervised retraining algorithms is
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TABLE IV
COMPARISON ON RECENT CSI-BASED INDOOR EVENT (OBJECT STATE) DETECTION SYSTEMS FOR SURVEILLANCE APPLICATIONS

compared and discussed. The result without unsupervised
retraining for dynamic events is summarized in Table III.

Comparing Tables II and III, the proposed unsuper-
vised retraining algorithm helps to maintain the detection
performance in long-term when the background environ-
ment changes along time. Without the proposed unsuper-
vised retraining, the detection rate drops from 99.66% to
88.44%. However, because of the nature of unsupervised label-
ing, the candidate training series extracted from testing CSI
stream may introduce slight false alarms coming from the
interference of human activities happening before or after the
trained events. Overall, the proposed system equipped with
the automatic unsupervised retraining scheme is promising for
real-time indoor monitoring applications.

C. Potential Application for Smart Home/Office

In this part, we discuss how the proposed real-time
indoor monitoring system can be deployed in future smart
home/office. By performing analytics over the monitoring
results generated by the proposed system, we can analyze
human behaviors in the monitored area and get the following
chart as shown in Fig. 13.

Fig. 13 indicates active and inactive hours of the office area
where the long-term experiment is conducted. That measured
human behavioral information can incorporate with such appli-
cations as smart air conditioner, smart lights, and other devices,
to create a smart office environment, which is energy efficient
and user-friendly.

D. Detection of Large Number of Events

In this paper, we propose an indoor monitoring system
based on the feature extracted from the CSI time series to
detect and differentiate between different events in real time.
Different kinds of events involve objects moving along dis-
tinct trajectories in the physical space. The changes due to the
occurrence of an event will be reflected in the CSI as discussed
in Section II. The original feature vector in the time series has
a dimension of NTX ×NRX × L, where NTX, NRX, and L rep-
resent the number of transmit antenna, the number of receive
antenna and the number of accessible subcarriers in the CSI,
respectively. Given the large feature dimension obtained from

Fig. 13. Smart office analysis.

the prototype mentioned in Section IV-A, the proposed system
should be able to detect multiple different events which bring
in different patterns to the CSI time series.

However, a critical issue in the indoor monitoring system is
that the perturbations or changes an indoor event introduces
to the CSI are negligible when it happens far away from the
WiFi transmitter-receiver link. This may result in a failure of
detecting that event. The impact of the locations of the trans-
mitter and the receiver on the indoor event detection system
has been studied in [36]. In order to detect multiple kinds of
events (>>2) happening in a large indoor area, one solution is
to deploy multiple transmitters or receivers distributively. With
multiple WiFi receiver-transmitter links available in the space,
we not only increase the feature dimension and degrees of free-
dom that enables to capture and distinguish more fine-grained
CSI changes, but also enlarge the coverage of the wireless
sensing system.

E. Comparison With Existing Approaches

In Table IV, we compare the existing CSI-based indoor
event detection systems for surveillance applications in
terms of the methodology, average accuracy, and limitations.
Compared with the existing works, the system we propose
in this paper characterizes each indoor event as a unique
dynamic transition, whose changes are recorded in the CSI
time series. To recognize different indoor events, algorithms
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are designed to support real-time monitoring with high accu-
racy and the capability of adapting to practical environmental
changes. No device calibration is required and the proposed
system can be implemented using commercial WiFi devices.
During a one-month evaluation deployed in a real office envi-
ronment, the proposed system can achieve an accuracy of
over 99%, which to our knowledge outperforms the existing
approaches.

Moreover, we also compare systems listed in Table IV, in
terms of the effort required for making the system detect-
ing accurately when being deployed in a new environment,
also known as, the set-up effort. The system proposed in [20]
requires the highest effort due to the training for the deep
learning network. The set-up effort for deploying the systems
proposed in [26] and [36] in a new environment is medium,
because hundreds of training samples are required to gen-
eralize features and build the classifier. On the other hand,
the system proposed in this paper is of low set-up effort.
When being deployed in a new environment, only one training
sequence for each event is needed and the system is able to col-
lect more training sequences during the real-time monitoring
phase in an unsupervised manner.

VI. CONCLUSION

In this paper, we have proposed a real-time indoor event
monitoring system that utilizes CSI time series to differentiate
between indoor states. We have designed a feature extraction
algorithm to extract and refine a low-dimensional feature from
the measured CFR sequences. To address practical issues of
real-time monitoring, including variabilities in event instances
and unknown start and end point in the incoming testing
stream, we have proposed a sliding window-based classifica-
tion algorithm with DTW measuring the similarity between
training and testing features. We also have developed an auto-
matic unsupervised retraining algorithm to improve the system
performance in long-time monitoring. Extensive experiments
were conducted and the proposed system achieved a detection
rate of 99.66% with a false alarm rate of only 8.64e−6 dur-
ing a 547-h of monitoring test. Experimental results further
demonstrate the potential of the proposed system in future
real-time indoor monitoring applications.
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