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ABSTRACT 

We propose three truncated QR methods for sinusoidal frequency 
cstiniation: (1) truncated QR without column pivoting (TQR); 
(2) truncated QR with pre-ordered columns (TQRR); and (3) 
tiuncated QR with column pivoting (TQRP). It is demonstrated 
that the benefit of truncated SVD (TSVD) for high frequency 
rcsolution is achievable under the truncated QR approach with 
much lower computational cost. Other attractive features of the 
proposed methods include the ease of updating, which is difficult 
for the SVD method, and numerical stability. Thus, the TQR 
nietliods offers efficient ways for identifying sinusoidals closedly 
clustered in frequencies under stationary and nonstationary con- 
ditions. Based on the FBLP model, computer simulations and 
comparisons are provided for different truncation methods under 
various SNR's. 

1 INTRODUCTION 

In recent years, there is much interest in seeking efficient meth- 
ods for spectral estimation. In general, the criteria for an effi- 
cient method may include: frequency resolution capability, com- 
putational efficiency, updating and downdating capability, and 
implementable parallel processing structure so that real-time ap- 
plications are possible. While the SVD-based method is well 
known for its robustness in resolving closely clustered sinusoids, 
it is not attractive from the other desirable features of an effi- 
cient method as considered above. In this paper, we consider 
several other promising approaches based on the truncated QR 
techniques. 

In resolving closely spaced frequencies from limited amount 
of data samples, Tufts and Kumaresan [l] proposed a SVD-based 
method to solve the forward-backward linear prediction(FBLP) 
least squares(LS) problem. By providing an excess order in the 
FBLP model and then truncating small singular values to zero, 
this truncated SVD method yields a very low SNR threshold 
and greatly suppresses spurious frequencies. However, the mas- 
sive computations required by SVD makes it unsuitable for real 
tzme super-resolution applications. We propose to  use truncated 
QR methods which are more amenable to  VLSI implementations, 
such as on systolic arrays, with insignificantly degraded perfor- 
mances as compared to the TSVD method. Three different trun- 
cated QR methods will be considered, depending on the ordering 
of the columns of the data  matrix. 
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A FBLP model for estimating sinusoidal frequencies is for- 
mulated first, followed by an introduction of different truncation 
methods and the minimum-norm solutions. Finally, comparisons 
of these three QR methods to  the TSVD method are given based 
on computer simulations. 

2 FBLPMODEL 

Consider a complex-valued data  sequence of length n,  

5; = ckeJZfffci + w; E x; + wi, i = 1,2, .  . . , n , (I) 
k=l 

where p is the number of sinusoids , complex-valued Ck comprises 
the amplitudes and phases of each sinusoid, and w; is an additive 
white Gaussian noise. We define the signal-to-noise ratio (SNR) 
as 

SNR (dB) = 2010g(11~112 / 11w112). (2) 

It can be shown [l] that under noise-free conditions, the frequency 
locations can be obtained by finding the roots of 

e 
S(z )  = 1 - gkz-k = 0 , (3) 

k=l 

on the unit circle, where the complex-valued coefficients gAs, k = 
1,2, .  . . ,!, satisfy the following system of FBLP equations 

91 
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se 

(4) 

with e 2 p representing the order of the prediction model, and * 
the complex conjugate. We will assume that 2(n - e )  > !. For 
simplicity, denote (4) as 

A g = b .  ( 5 )  

The rank of A is p if 2(n - !) 2 p and ! 2 p .  When the noise is 
present, we use an-on A and b, i.e., A" = A + E and 6 = b -I- e ,  
to  denote the noise-corrupted FBLP model and (5) now becomes 
the FBLP LS problem of 
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where A" usually has full rank due to  the perturbation of the 
noise. One standard approach [l] is t o  use the TSVD metho j  
on (5) to  obtain a rank-p approximation of the FBLP matrix A ,  
denoted by A"$$D, followed by solving for a minimum norm LS 
solution of g given by 

(7) 

Then the frequencies can be computed by finding the phases of 
the roots of (3) close to  the unit circle or searching for the peaks 
on the pseudo-spectrum l/IS(ezp(j2nf)l, 0 5 f 5 .5. Notice 
that the proper choice of the prediction order l depends on p, 
the number of sinusoids, which may or may not be known in 
advance. Fig. (1) depicts a flowchart diagram summarizing the 
estimation of harmonics frequencies based on the FBLP model. 
Next we consider the rank-p approximation of the FBLP matrix 
A" and subsequently solve for the minimum-norm solution @). 

3 TRUNCATION METHODS 

For many LS problems, ill-conditioning can be troublesome, and 
truncation methods are known to be useful in stablizing the so- 
lutions at the cost of slightly increased residual errors. 

Let 

and 

(9) 

be the SVD and QR decomposition (QRD) of the 2(n - l )  x 
e complex-valued matrix A" respectively, where denotes the 
Hermitian of a matrix or a vector. 21 = diag(b1,. . . , 5p) and 
Cz = diag( *,+I, . . . ,6g )  represent nonincreasing singular values. 

i is an upper-triangular matrix. 

- 
Ell E CP P, i12 E C P  and gzz E C Z ( " - e ) - P  X ((-PI, while 

- -  0 
e = 

= [U1 U21 = [iil,. . . , ii,, C,+l,. . . , i&] E CZ("-e)xe 3 (10) 

[V* VZ] = [ C l , .  . . ,a,, a,,,, . . . ,a4 E c e x e  , (11) 
- I  

and 

all have orthonormal columns, i.e., iifii, = EFE, = ijFQ2 = 6,,. 
In the absence of noise, %2 = 2 2 2  = 0. Here the permutation 

matrix II = [nl , .  . . , r e ]  is used to  represent different methods of 
performing QRD with column interchanges. Now we want to pre- 
serve as much of the energy as possible (with respect to the Frobe- 
nius norm defined below) in the trapezoidal matrix [Ell El21 of 
(9). Equivalently, we want to  leave as little as possible the en- 
ergy residing in the lower right submatrix R z z ,  which will be 
truncated. This approach amounts to selecting the columns of 
A"in an order such that those columns with largest linear inde- 
pendency will be selected first. 

For QRD with no pivoting, II is simply an identity matrix. 
QRD with pre-ordered columns [2] determines II according to  
a column index maximum-difference bisection rule. Here we se- 
lect the first and the tth columns, followed by the column [y] 
halfway between 1 and e. Then we pick the columns that lie 
in the midway of those ones which are already selected, i.e., 

[(l + [+1)/21 , [( [+)/2] + 4/21,  and so on. This selection 
rule does not depend on the real-time data in A". The underlying 
reason for this ad hoc fixed-ordering scheme is to  provide the se- 
lected columns with a possibly maximum differences or minimum 
linear dependency among these columns. This scheme was mo- 
tivated due to  the nature of the matrix A" arranged in the form 
of (4) consisting of perturbed sums of harmonic sinusoids. AS 
an example, suppose there are 5 columns, then the pre-ordering 
strategy leads t o  [1,5,3,2,4]. Thus we have II = [el, e5, e 3 ,  e2, e4], 

where e; is a dimension e column vector with all zero components 
except for an one at the i-th position. 

As for QRD with column pivoting [3, p. 2331, II is deter- 
mined during the QRD process, where r1 = edl and d l  € [Le] is 
the index such that has the largest norm. Continuing with 
this column-pivoting process on the lower right submatrix yet to  
be triangularized, we can determine the permutation matrix II 
which yields an optimum QRD column ordering strategy in the 
sense of preserving most energy in the upper trapezoidal subma- 
trix. However, this II is data-dependent and the extra cost for 
this pivoting makes it less desirable for some applications. 

After forcing those rank-weakly quantities to be zero and pre- 
serving the most significant p-rank, we can obtain a rank-p ap- 
proximate of A". For TSVD, %z is discarded and 

Similarly, for TQR, the lower-right submatrix is discarded 
and 

To account for the effect due to  truncation, we define the 
fractional truncated F-norm as 

F(P) = 1 - llA"'"'lF/ llA"llF (15) 
where 1 1  . I I F  is the Frobenius norm given by 

Thus we have 

and 

F$&=l - ) I " .  (18) IlM; + I l i l z l l ;  + llA22ll; 

The relationship among different truncation methods can be shown 
as follows: 

Therefore from the point of view of preserving the Frobenius 
norni(energy) of a matrix, SVD provides the optimum truncation, 
with TQRP being next, while TQR and TQRR truncate even 
more. 

4 MINIMUM-NORM SOLUTIONS 

After truncation, the FBLP LS problem becomes rank-deficient, 
hence the minimum-norm LS solution is desired. It can be shown 
that a minimum-norm solution vector g ( P )  must lie in the row 
space of the rank-reduced matrix A"(P), namely, the row space of 
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v? or [ k l~  k12]. For TSVD it is given by 5 SIMULATION RESULTS 

and for TQR it is 

To obtain &AR, we can perform QRD on the right of the 
trapezoidal upper-triangular matrix in (14) to  zero out 2 1 2  and 
also obtain the orthonormal row space, sr, of [ k l ~  &2]. That 
is 

where 21 = [ZI,. . . ,Zp]  E CexP has orthonormal columns and 
1111 E CPxP is an upper-triangular matrix. This is sometimes 
called a complete orthogonal factorization [3, p. 2361, and we 
can consider it as a two-sided direct unitary transformations on a 
rank-deficient matrix t o  compress all the energy of a matrix into a 
square upper-triangular matrix. This resembles the SVD method 
where two-sided iterative unitary transformations are applied t o  
reduce a matrix into a diagonalmatrix. Then the minimum-norm 
solution follows by 

It is noted that if no truncation is performed at all and 2 has 
full column rank e ,  then the LS solution from the FBLP model 
is either obtained from SVD as 

or from QRD as 

Because 9 2  and 8 2 2  are both nearly zero under a high SNR 
condition, slight variations on them will cause significant pertur- 
bations in the solution vector 3 and hence leads to many spurious 
frequencies in the pseudo-spectrum. Now it becomes clear why 
one truncates these rank-weakly quantities t o  remedy these ill- 
conditions from the view point of numerical stability and also 
prefilters some stray noise in an attempt to  guard against possi- 
ble contaminations in the pseudo-spectrum. 

(i.e., f! >> p )  is preferred [l, 41 to  taking f! 2 p ,  since we can later 
triincate some noises that reside in the null space which is orthog- 
onal to the signal space. The advantage of over-modeling is to 
provide some extra dimensions to trap the stray noises and then 
remove them by truncation. This is an effective way of enhancing 
the SNR. However, there is always the danger that some signal 
has bcen mistakably truncated in low SNR cases where ambigu- 
ous changes i n  the truncated F-norm is possible. On the other 
Iiand, spurious frequencies are still very likely to occur when there 
is insufficient truncation of the rank of the data matrix. 

For many problems, the conservative approach of over-modeling 

Finally, we present various computer simulations based on the 
following model. Let f; = cos(2af1i) + cos(2nf2i) + m,,i = 
1 ,2 , .  . . ,32, with Ji = .15, fi = .2,e = 11 and w. is a white Gaus- 
sian random sequence. 100 independent simulations are used for 
each SNR varying from 0 t o  40dB in an increment of 5 dB. The 
frequencies are determined by the phases of complex roots closest 
t o  the unit circle. For TQRR, we pre-permute the columns of the 
FBLP matrix in the order of: (1 11 6 3 9 4 8 2 5 7 lo} as speci- 
fied by [2]. Fig. (2) gives the average fractional truncated Frobe- 
nius norms in (16) versus SNR when we preserve only the four 
most significant ranks of the FBLP matrix for the four different 
methods. This confirms their relationship in (19) and also shows 
that truncated energy decreases monotonically as SNR increases. 
Fig.(3) and (4) show the averages of the frequency biases for the 
two harmonic frequencies. We define the average frequency bias 
as E ( f k )  - j k ,  k = 1,2, where E ( f k )  is the ensemble average 
of f k ,  which is an the estimated frequency f2r f k .  Fig. (5) and 
(6) show the standard deviations of f1 and j i .  We can see that 
TQRP competes quite well with TSVD, while TQRR performs 
slightly worse than TQRP but better than TQR without pivot- 
ing. 

6 CONCLUSIONS 

While a myriad of researches have been focused on SVD and 
eigen-decomposition analysis of narrowly spaced harmonic fre- 
quency estimations [ l ,  4, 51, very few have been directed towards 
the QRD approaches. Owning to  the iterative massive compu- 
tations and the difficulty encountered in updating the decompo- 
sitions [GI when new data are acquired under time-varying con- 
ditions, these SVD and eigen-based approaches are not suited 
for real time applications. It is well known [3] that QRD is nu- 
merically as stable as SVD, requires much less computational 
cost, easy to  update(and/or downdate), and amenable to  VLSI 
implementations. The slightly degraded performance for these 
truncated QR methods is greatly compensated for all the bene- 
fits mentioned above. 

Table 1 summarizes the comparisons among different trunca- 
tion methods. We conclude that TQR is the simplest and can be 
performed easily in a real time updating, but may suffer signifi- 
cant degradation. TQRP provides almost the same performance 
as SVD, but is not easy to  implement in real time processing 
in that the difficult column reshuffling is required whiling per- 
forming QRD with pivoting. TQRR provides a good comprise 
between these two and can also be implemented for systolic array 
processing. 

Freq. est. I Comput. cost I VLSI I updating 0 

fair 
easy 

Table 1: Table of comparisons 
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