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Abstract—State estimation in smart grid highly relies on the
availability of measurements. Due to the interconnected nature
of the power grid, the measurements at different substations
are not totally independent and thus contain some redundancy.
Among the various environments the power grid work in, there
are certain circumstances the system communication capability
is limited such that transmitting a lot of measurements within a
small time interval is expensive and sometimes even impossible,
and thus the measurements need to be compressed before
transmitted to remove the redundancy. While it is possible
to design lossless compression methods in some cases, in this
paper, we focus on the problem of lossy compression of the
measurements to adapt to more severe conditions. An algorithm
is proposed to jointly design the pre-processors that compressing
the measurements subject to the communication constraints
and the subsequent estimator that using only the compressed
measurements for state estimation. The effectiveness of the
proposed algorithm is illustrated by numerical results.

Index Terms—Distributed state estimation, LMMSE, fusion,
lossless compression, optimal lossy compression

I. INTRODUCTION

The power grid in the United States has evolved over the
past century from a series of small independent community-
based systems to a large-scale and complex system involving
many kinds of components. Such a system entails advanced
operating methods that are more sensitive, reliable and eco-
nomic than before. Efficient operation of the system requires
precise real-time estimation of the states [1].

Due to the fact that the substations usually spread distantly,
several studies have been conducted on the distributed state
estimation in power grid. One approach is to use the hierar-
chical method [2], [3] where the local measurements are first
processed by the local estimators and then transmitted to a
central coordinator for further estimation. Another approach is
fully distributed where the information is exchanged between
the substations without the central coordinator [4]–[6].

All the works above assume unlimited communication capa-
bility, i.e., the information can be transmitted to the destination
without any loss and/or delay. However, it is not always the
case in practice. If the communication capability of the system
is limited, it is impossible to transmit a lot of measurements
to the destination within a short time interval. The problem
of compressing the measurements to adjust to the system
communication capability was proposed in [7] and a lower
bound for the system communication capability was provided.
If the communication capability is above the bound, then it is

possible to conduct lossless compression on the measurements.
However, the algorithm proposed in [7] for designing lossy
pre-processors and estimator is not satisfactory in some cases
due to inaccurate approximations. Other than power grid,
the problem of compressing the measurements before state
estimation was also explored in image processing [8] and
target tracking [9].

In this paper, we aim to improve the design of the lossy
pre-processors and the estimator. We consider the hierarchical
state estimation problem in power grid. The substations are
partitioned into multiple groups, and the measurements are first
compressed within each single group by a local pre-processor,
which would transmit the compressed measurements to the
fusion center for the estimation. Focusing on the condition
when the lower bounds in [7] cannot be satisfied, we study the
problem of designing the pre-processors and the subsequent
estimator to achieve optimal lossy compressions and propose
an iterative projection-based algorithm to find the desired
solution. Finally, simulation results are shown to demonstrate
the effectiveness of the proposed algorithm.

The rest of this paper is organized as follows. The measure-
ment compression problem is formulated in section II and the
algorithm for designing lossy pre-processors and estimator is
provided in section III. Numerical results are shown in section
IV and section V concludes the paper.

II. PROBLEM FORMULATION

We consider a state estimation problem in the smart grid
with the linear measurements contaminated by noise as follows

z = Hx+ v, (1)

where x ∈ Rn is the vector composed of the n states of the
system, z ∈ Rm is the measurement vector, H is the m by
n measurement matrix with m ≥ n, and v ∈ Rm is the
vector composed of the m noise components independent of
x. Without loss of generality, it is assumed that all the state
and noise components are zero mean.

In this paper, we focus on the two-level distributed state
estimation problem in the power grid where the substations
are partitioned into multiple groups, due to which the corre-
sponding measurement vector z is partitioned into multiple
vectors zi’s, each one of which is defined as a block. The
measurements in one block are compressed to a shorter vector
before subsequent estimation. As shown in Fig. 1, each zi
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Fig. 1. The Two-level System Structure

is a block and yi is the corresponding shorter vector by
compression. Due to the limited communication capability,
it is assumed that the size of yi should not exceed ci. The
subsequent state estimation will be purely based on the yi’s.

Assume that there is no overlapping measurement, i.e., each
measurement is involved in only one block. Let zi denote the
i-th block, and we have z = [z1

T · · · zpT ]T , zi ∈ Rmi , where
mi is the number of measurements corresponding with the i-th
block and zT denotes the transpose of z. p is the total number
of blocks. Equation (1) could be re-written in the block-wise
form as follows z1

...
zp

 =

 H1

...
Hp

x+

 v1

...
vp

 , (2)

where Hi and vi are the measurement matrix and noise vector
associated with the block i, respectively.

We are interested in designing a distributed two-level
linear estimator K = [ K1 K2 · · · Kp ],L =
[ L1 L2 · · · Lp ], and Gi = LiKi, i = 1, 2, · · · , p,
where the local measurements related with block i are first
locally processed using Ki, and then further processed using
Li as follows

x̂ =

p∑
i=1

Liyi =

p∑
i=1

LiKizi =

p∑
i=1

Gizi. (3)

where yi = Kizi is the block zi pre-processed by Ki.
Our goal is to properly design K and L such that the

mean square error (MSE) is minimized. According to the
orthogonality principle, we can write the MSE as follows

E[(x̂− x)2] = E[(x̂LMMSE − x)2] + E[(x̂− x̂LMMSE)
2],
(4)

where x is the true state vector, x̂LMMSE is the output of
the linear minimum mean square error (LMMSE) estimator,
which is in the form of

x̂LMMSE =

p∑
i=1

Wizi (5)

where Wi , [Σx − ΣxH
TΣ−1

e H(Σ−1
x +

HTΣ−1
e H)−1]HT

i Σ
−1
ei , Σx and Σe denote the covariance

matrix of x and v, respectively. Hi is obtained by partitioning
the corresponding matrices into sub-matrices for each block,
where H = [H1

T · · ·Hp
T ]T , Hi ∈ Rmi×n, and Σe is

the block diagonal matrix composed of Σe1 , · · · ,Σep ,
Σei ∈ Rmi×mi .

In (4), E[(x̂LMMSE−x)2] is a constant independent of the
designed estimator. Thus, minimizing the MSE of the designed
estimator is equivalent to minimizing E[(x̂ − x̂LMMSE)

2],
which can be further expanded by substituting (3) and (5) as
follows

E[(x̂− x̂LMMSE)
2] = Tr((G−W)Σz(G−W)T ). (6)

Since yi = Kizi, the rows of Ki which are all zeros
correspond to the zeros in yi and could be directly truncated.
Therefore, the constraint on the size of yi is equivalent to
limiting the number of nonzero rows of Ki, which is further
equivalent to limiting rank(Gi) by Lemma 1 in [7]. The
problem of minimizing the MSE subject to the size of the
compressed measurements can be formulated as follows,

min
Gi

Tr((G−W)Σz(G−W)T )

s.t. rank(Gi) ≤ ci,∀i. (7)

By this formulation, the problem of jointly designing K and L
is transformed to finding an optimal G in the low-rank space
constrained by ci’s to minimize the MSE.

III. ESTIMATOR DESIGN FOR LOSSY COMPRESSION

Due to the interconnected nature of the power grid, the mea-
surements at different substations are not totally independent
and thus contains some redundancy. Therefore, we use the
pre-processors Ki’s that linearly combine the measurements
in each block to remove the redundancy. However, since
the redundancy is limited, there is a minimum size ri that
measurements in block i can be reduced to without losing
any information thus the LMMSE estimation can be achieved.
According to Theorem 1 in [7], ri = rank(Hi). If the
measurements in block i are compressed to size below ri,
then not only the redundancy but also some information
are removed, thus the subsequent estimation is subject to
performance loss compared with the LMMSE estimation.

While the design of lossless low-rank estimator was pro-
posed in [7], in some situations the required dimension ci
may be even below the lower bound ri and lossy compression
is needed. In such a case, the design of the estimators will be
constrained in the low-rank space, as in (7). Obviously, the
objective function Tr((G − W)Σz(G − W)T ) is quadratic
thus a convex function of G, but the set rank(Gi) ≤ ci is not
a convex set. In this section, we will propose an algorithm to
solve this non-convex optimization problem.

To make (7) more tractable, we first decompose the covari-
ance matrix as follows

Σz = QΛQT = Σz
1
2Σz

1
2
T

(8)
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where Σz
1
2 = QΛ

1
2 , A.

Now we can re-write (6) as follows

Tr
[
(G−W)Σz(G−W)T

]
= ∥Y −GA∥2F (9)

where Y = WΣz
1
2 . The problem in (7) can be re-written as

min
Gi

∥Y −GA∥2F

s.t. rank(Gi) ≤ ci, ∀i. (10)

In (10), we can see that the problem boils down to finding
estimator G in the low rank space to minimize the distance
between GA and a point Y, where A and Y are independent
of G. Using the similar idea in [10], we can first find a point
in the non-constrained linear space and then try to find a point
in the low-rank space closest to it. Formally, we construct the
following optimization problem

min
Di,Gi

∥Y −DA∥2F + γ(

p∑
i=1

∥Gi −Di∥2F )

s.t. rank(Gi) ≤ ci, ∀i. (11)

where Gi’s are the estimators in the low-rank constrained
space and Di’s are the estimators in the unconstrained space,
D = [D1, · · · ,Dp]. The first term in (11) is the distance be-
tween the optimal estimator in the non-constrained space and
the point that we aim to approximate in the non-constrained
space. The second term is the distance between the point
chosen in the non-constrained space and its projection in
the low rank space. From (11), we can see that the optimal
estimator is found by simultaneously minimizing two different
distances through a balance factor γ.

Since directly solving the optimization problem in (11) is
difficult, we will solve it iteratively with two steps in each
iteration: in the first step we fix Gi and optimize Di, and
then in the second step we optimize Gi by fixing Di. For the
first step, when Gi is fixed, since the feasible set for Di is
Rmi×n, the problem is a convex optimization problem, and
we can derive the solution using the first order condition as
follows

D = (AAT + γI)−1(YA+ γG). (12)

At the second step we fix D in (11) and optimize it with
respect to G, which is equivalent to optimizing ∥Gi −Di∥2F
since ∥Y −

∑p
i=1 DiAi∥2F is independent of G. By Eckart-

Young-Mirsky Theorem [11], the optimal Gi for the problem

min
Gi

∥G−D∥2F

s.t. rank(Gi) ≤ ci, ∀i (13)

is derived by applying low rank projection for each Di as
follows

Gi = UiΣiV
′
i (14)

where Di = UiΣiV
′
i is the singular value decomposition of

Di and Σi is the truncated singular value matrix where only

the most significant ci singular values are kept while all other
singular values are assigned 0.

Combining (12) and (14), the iterative steps for solving (11)
can be written as follows

D(k+1) = (AAT + γI)−1(YA+ γG(k))

G
(k+1)
i = U

(k+1)
i Σ

(k+1)
i V

(k+1)
i

′
, ∀i (15)

where G(k) = [G
(k)
1 ,G

(k)
2 , · · · ,G(k)

p ], D(k) =

[D
(k)
1 ,D

(k)
2 , · · · ,D(k)

p ].
Using the iterative steps in (15), one can design the ap-

propriate low-rank estimators for any ci’s. In practice, the
algorithm usually converges after hundreds of iterations. The
numerical results and the comparison with the method pro-
posed in [7] will be shown in next section.

IV. NUMERICAL RESULTS

In this section, we evaluate the proposed algorithm under the
IEEE 14 bus system using Matpower [12]. The 14 substations
are divided into 2 groups and the measurements inside each
group are compressed to be compatible with the ci’s. In this
example, we partition the substations indexed 1, 2, 3, 5, 7, 9, 10
as one group while the rest as the other group. We assume
the system is fully measured, i.e., all the power injection
and power flow measurements are obtained. The power in-
jection measurements are associated with the corresponding
substation and the power flow measurements are associated
with the originating substation. From Theorem 1 in [7],
the sufficient and necessary conditions to enable LMMSE
estimation is c1 ≥ rank(H1) = 11, c2 ≥ rank(H2) = 12.
If these conditions cannot be satisfied, the lossy estimators
are designed using the proposed algorithm. To evaluate the
performance of the designed estimator, we define

GAP = E[(x̂− x̂LMMSE)
2] (16)

where x̂ is obtained by the designed estimator. By (4), the
MSE of the designed estimator is GAP plus a constant that
independent of the estimator design. Table I shows the GAP
of the estimator designed by the method proposed in [7] and in
this paper in multiple cases, where the GAP of the estimators
designed by the algorithm proposed in this paper is much
lower than that in [7]. It illustrates that the performance of
the algorithm proposed in this paper is much improved.

TABLE I
THE GAP FOR THE CASES c1 ≤ rank(H1), c2 ≤ rank(H2)

c1 c2 GAP GAP in [7]
6 10 2.20× 10−2 5.57× 100

6 11 2.20× 10−2 5.39× 100

6 12 2.05× 10−2 5.35× 100

9 10 8.29× 10−5 1.23× 10−1

9 11 7.30× 10−5 1.02× 10−1

9 12 7.23× 10−5 9.80× 10−2

10 10 2.48× 10−5 2.22× 10−2

10 11 1.48× 10−5 2.61× 10−2

10 12 1.42× 10−5 3.92× 10−2
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Fig. 2. Performance of Estimators when Lower Bound Is Not Satisfied by
Viewing GAP

The GAP s using the designed estimators for all the cases
that c1 ≤ rank(H1) and c2 ≤ rank(H2) are shown in Fig.
2, where the GAP is still close to 0 if c1 and c2 are slightly
below the rank(H1) and rank(H2). It means in these cases,
the estimation obtained by the low-rank estimator is quite close
to the LMMSE estimation in the mean square sense.

An interesting observation found in Fig. 2 is that there exists
a sudden change of the GAP as c1 and c2 varies. It becomes
more clear if we inspect some examples in Fig. 3. If c1 = 5,
the sudden change is at c2 = 8; if c1 = 6, the sudden change
is at c2 = 7, and so on. The boarder line is c1 + c2 = 13.
The reason why it is 13 is that in this system, the number of
states is 13. In other words, the estimator is using the pre-
processed measurements with size c1 + c2 to estimate the 13
states of the system. If c1 + c2 < 13, according to (3), the
matrix L has more rows than columns, i.e., the size of data
is smaller than that of the states of the system, which is an
undetermined system. In this case, there is no way for the pre-
processed data to preserve enough information of the system
states. On the other hand, if c1+c2 ≥ 13, i.e., it is possible to
linearly combine the measurements to preserve information of
all the system states, the algorithm would always find the way
to do so by designing the appropriate low-rank estimator with
performance close to the LMMSE estimation. In other words,
the algorithm proposed in this paper has pushed the linear pre-
processing to its limit, which is to compress measurements to
totally as few values as the dimension of the system.

V. CONCLUSION

In this paper, we addressed the problem of compressing
the measurements to adapt to the communication capability
of the system. An algorithm designing the pre-processors and
the estimator that satisfying any communication constraints
and at the same time preserving as much information as
possible for the state estimation is proposed. Numerical results
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Fig. 3. Sudden Changes in Performance of Different c1, c2 Combinations

show that the designed pre-processors and estimator push the
compression to its limit.
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