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Abstract— Cognitive radio has been proposed as a novel ap-
proach for improving the utilization of the precious limited radio
resources by dynamically accessing the spectrum. One of the
major design challenges is to coordinate and cooperate in access-
ing the spectrum opportunistically among multiple distributive
users with only local information. In this paper, we propose
a game theoretical approach with a new solution concept, the
correlated equilibrium, which is better compared to the non-
cooperative Nash equilibrium in terms of spectrum utilization
efficiency and fairness among the distributive users. To achieve
this correlated equilibrium, we construct an adaptive algorithm
based on no-regret learning that guarantees convergence. From
the simulation results, the optimal correlated equilibria achieve
better fairness and 5%∼15% performance gain, compared to the
Nash equilibria.

I. INTRODUCTION

With advances of wireless technologies, more and more
bandwidths have been licensed for different wireless standards.
Due to the ever increasing demand in wireless applications, the
electromagnetic radio spectrum has become a very precious
natural resource. To overcome this problem, the Federal Com-
munications Commission (FCC) initiated a study of this issue
in November 2002. The study revealed that more than 70% of
the spectrum is unutilized in most area. This under-utilization
of electromagnetic spectrum leads to the term spectrum holes
[1], [2]. Formally, the spectrum hole is defined as a band of
frequencies assigned to a primary user, but, at a particular
time and specific geographic location, the band is not being
utilized by that user. The efficiency of spectrum utilization can
be improved significantly by having a secondary user to access
a spectrum hole which is unoccupied by the primary user at
the right place and at the right time. Cognitive radio, which
can sense the spectrum utilization of the primary user and
opportunistically access the spectral holes, has been proposed
to promote the efficient spectrum usage [1], [2]. Some major
problems in cognitive radio are the opportunistic spectrum
access, coordination among secondary users, and cognitive
MAC.

Recent literature targeting the above problems is as follows.
In [3], the authors study metrics to quantify the character-
istics of opportunistic spectrum access, namely equivalent
non-opportunistic bandwidth and space-bandwidth product.
Sensing-based opportunistic channel access is proposed in [4].
In this work, they address whether an accessible channel is a
good opportunity for a secondary user. Decentralized cognitive
medium access based on partial observable Markov decision
process (POMDP) is presented in [5]. Spectrum sharing with
distributed interference compensation by means of pricing is
presented in [6]. Finally, the rule-based device-centric spectrum
management scheme is proposed in [7].

Most of the existing works assume the available signal-
ing among cognitive users to coordinate the spectrum usage.
To achieve the distributed implementation, game theory is a
natural, flexible, and rich tool to study how the autonomous
nodes interact and cooperate with each other. There are many
applications of game theory in wireless networking, such as
noncooperative power control game [8], cooperative game for
OFDMA [9], self-learning repeated game in ad hoc networks
[10], and a general survey [11]. In cognitive radio literature,
spectrum sharing for unlicensed band using the one shot game
and repeated game is proposed in [12]. In [13], the resource
allocation for secondary users is formulated as potential game.
A survey is studied in [14].

In this paper, we study the behavior of individual distributed
secondary user to control its rate when the prime user is
absent. Each secondary user seeks to maximize its rates over
different channels. However, excessive transmissions can cause
the collisions with the other second users. The collisions
reduce not only the system throughput but also individual
performances. From the game theory perspective, we propose
a distributed protocol based on an adaptive learning algorithm
for multiple secondary users using only local information. We
study a new concept, correlated equilibrium, which is a better
solution compared to the non-cooperative Nash Equilibrium in
terms of spectrum utilization efficiency and fairness among the
users. Using the correlated equilibrium concept, the distributive
users adjust their transmission probabilities over the available
channels, so that the collisions are avoided and the users’
benefits are optimized. We exhibit the adaptive regret-matching
(no-regret) algorithm to learn the correlated equilibrium in a
distributed manner. We show that the proposed learning algo-
rithm converges to a set of correlated equilibria with probability
one. From the simulations, the optimal correlated equilibria
achieve better fairness and 5%∼15% better performances,
compared to the Nash equilibrium.

The rest of this paper is organized as follows: In Section II,
we present the system model and utility function. In Section
III, we study the correlated equilibrium. Then, we construct
an adaptive no-regret learning algorithm and show that the
algorithm converges to a set of correlated equilibria. Simulation
results are shown in Section IV and finally conclusions are
drawn in Section V.

II. SYSTEM MODEL

In this section, we consider the general models for dynamic
opportunistic spectrum access for cognitive radio, in which
there exist several primary users with a set of available channels
and a large number of secondary users. The primary users are
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the rightful owners and have strict priority on the spectrum
access. The secondary users are equipped with the spectrum-
agile devices, which are used by the secondary users to sense
the environment (spectrum usage of the primary users) and
adapt the suitable frequency, power, and transmission scheme.
The secondary users can opportunistically access the spectrum
while the primary users are idle. The primary users are the
legacy users that communicate in the traditional way and do
not retrofit the secondary users. Hence, the channel availability
of secondary users inherently depends on the activities of the
primary users. Moreover, the secondary users have to compete
for the idle channels among the interfering secondary users.
If collisions occur, there are some penalties in the forms of
packet loss and power waste. This is the major focus of this
paper.

A. Network Model

We consider there are N channels in the wireless networks.
Without loss of generality, each channel has a unit bandwidth.
These channels are shared among M primary users and K
secondary users seeking for channel access opportunistically.

For adjacent secondary users, they can interference with each
others. We use interference matrix L to depict the interference
graph. The interference matrix has the dimension of K by K,
and its elements are defined as

Lij =
{

1, if i and j interfere with each other,
0, otherwise.

(1)

The interference matrix depends on the relative location of the
secondary users.

Next, we define channel availability matrix as a K by N
matrix, A(t). Each user can transmit over a specific channel
with a set of different rates. The elements of the matrix is
defined as

Ain(t) =




1, if channel n is available for secondary
user i at time t,

0, otherwise.
(2)

We note that the channel availability matrix A(t) varies over
time. This matrix is the result of sensing task done by sec-
ondary users, and depends on the primary users’ traffic, relative
location between the secondary users and the primary users.
Notice that each individual user only knows its corresponding
row of matrix L and A(t).

We illustrate an instantaneous example of the channel avail-
ability to the secondary users using the footprint abstraction
[3] as the space occupancy of the primary users in Figure
1. There are 4 channels (namely channel A,B,C, and D),
3 sets of primary users, and 5 secondary users. The channel
availability of secondary users are also determined by its
location with respect to the primary users1. From this figure,
the primary user I, II, and III occupy channel A, B, and
(A,C), respectively, hence, the secondary users 1 to 5 can only
opportunistically access channel (B,C,D), (A,C,D), (D), (B,D),
and (B,D), respectively. Furthermore, two secondary users that
interfere with each other are connected with an edge. Hence,
they conflict with each other on using the same spectrum.

1In this example, the interference matrix is assumed symmetric
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Fig. 1: Illustration of channel availability for secondary users

B. Utility Function

Define the set of secondary user i as I which is the finite set
{1, 2, . . . ,K}. For each available channel, a secondary user can
select L + 1 discrete rates Υ = {0, υ1, . . . , υL}. The strategy
space Ωi for secondary user i is on the available channels and
can be denoted as

Ωi =
N∏

n=1

ΥAin . (3)

The action of user is rn
i = υl representing user i occupies

channel n by rate υl. We define the strategy profile rn =
(rn

1 , rn
2 , . . . , rn

K)′, and we define rn
−i as the strategies of user

i’s opponents (interference neighbors defined in L) for channel
n. We also define ri = (r1

i , . . . , rN
i )′ as the action of users over

all channels, and r−i as the user i’s opponents’ actions.
The utility function Ui measures the outcome of secondary

user i for each strategy profile r1, . . . , rN over different
channels. In this paper, we define the utility function as the
maximum achievable rate for the secondary users over all the
available channels as:

Ui =
N∑

n=1

AinRi(rn
i , rn

−i), (4)

where Ri(rn
i , rn

−i) is the outcome of resource competition for
user i and the other users. Notice that the utility function repre-
sents the maximum achievable rate. In practice, the secondary
users need not occupy all the available channels.

In this paper, we consider un-slotted 1-persistent CSMA as
the random multiple access protocols for the secondary users.
Since the channel can be occupied by the prime user again in
the near future, each secondary user transmits whenever the
channel is idle. From [15], we have

Ri(rn
i , rn

−i) =

{
rn

i Sn∑
i rn

i
, if G ≤ G0,

0, otherwise,
(5)

where

Sn =
Gn[1 + Gn + τGn(1 + Gn + τGn/2)]e−Gn(1+2τ)

Gn(1 + 2τ) − (1 − e−τGn) + (1 + τGn)e−Gn(1+τ)
,

(6)
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Gn =
∑

i rn
i , and τ is the propagation delay over packet

transmission time. When the network payload increases, more
collisions happen and consequently the average delay for each
packet increases. For some types of payloads like multimedia
services, the delayed packets can cause significant QoS loss.
In [16], it has been shown that the average delay can be
unbounded for a sufficiently large load. Moreover, for cognitive
radio, since the prime users can reoccupy the channel in the
near future, a certain delay can cause the second user to loss
the opportunity for transmission entirely. So we define G0 as
the maximum network payload. Any network payload larger
than G0 will cause an unacceptable average delay. As a result,
the utility function is zero.

III. CORRELATED EQUILIBRIUM AND LEARNING

In this section, we first propose a new solution concept,
correlated equilibrium. Then, we investigate a linear program-
ming method to calculate the optimal correlated equilibrium.
Finally, we utilize a no-regret algorithm to learn the correlated
equilibria in a distributed way.

A. Correlated Equilibrium

To analyze the outcome of the game, Nash Equilibrium is
a well-known concept, which states that in the equilibrium
every user will select a utility-maximizing strategy given the
strategies of every other user.

Definition 1: Nash Equilibrium r∗i is defined as:

Ui(r∗i , r−i) ≥ Ui(r′i, r−i), ∀i, ∀r′i ∈ Ωi, (7)

i.e., given the other users’ actions, no user can increase its
utility alone by changing its own action.

If a user will follow an action in every possible attainable
situation in a game, the action is called pure strategy, in which
the probability of using action νl, p(rn

i = νl), has only one
nonzero value 1 for all l. In the case of mixed strategies,
the user will follow a probability distribution over different
possible action, i.e. different rate l. In Table I, we illustrate
an example of two secondary users with different actions. In
Table I (a), we list the utility function for two users taking
action 0 and 1. We can see that when two users take action
of 0, they have the best overall benefit. We can see this action
as a cooperative action, or in our case the users transmit less
aggressively. But if any user plays more aggressively using
action 1 while the other still plays action 0, the aggressive
user has a better utility, but the other user has a lower utility
and the overall benefit is reduced. In our case, the aggressive
user can achieve a higher rate. However, if both users play
aggressively using action 1, both users obtain the very low
utilities. This situation represents the congested network with
low throughput of CSMA. In Table I (b), we show two Nash
equilibria, where one of the user dominates the other. The
dominating user has the utility of 6 and the dominated user has
the utility of 3, which is unfair. In Table I (c), we show the
mixed Nash equilibrium where two users have the probability
0.75 for action 0 and 0.25 for action 1, respectively. The utility
for each user is 4.5.

Next, we study a new concept of correlated equilibrium
which is more general than Nash equilibrium and was first

TABLE I: Two secondary users game (a) reward table (upper
left); (b) Nash Equilibrium (upper right); (c) Mixed Nash
Equilibrium (lower left); (d) Correlated Equilibrium (lower
left).

0 1
0 (5,5) (6,3)
1 (3,6) (0,0)

0 1
0 0 (0 or 1)
1 (1 or 0) 0

0 1
0 9/16 3/16
1 3/16 1/16

0 1
0 0.6 0.2
1 0.2 0

proposed by Nobel Prize winner, Robert J. Aumann [18], in
1974. The idea is that a strategy profile is chosen randomly
according to a certain distribution. Given the recommended
strategy, it is to the players’ best interests to conform with this
strategy. The distribution is called the correlated equilibrium.

In the rest of this subsection, we assume N = 1 and we omit
the notation n. Let G = {K, (Ωi)i∈K , (Ui)i∈K} be a finite K-
user game in strategic form, where Ωi is the strategy space for
user i, and Ui is the utility function for user i. Define Ω−i as
the strategy space for user i’s opponents. Let denote the action
for user i and its opponents as ri and r−i, respectively. Then,
the correlated equilibrium is defined as:

Definition 2: A probability distribution p is a correlated
strategy of game G, if and only if, for all i ∈ K, ri ∈ Ωi,
and r−i ∈ Ω−i,∑

r−i∈Ω−i

p(ri, r−i)[Ui(r′i, r−i) − Ui(ri, r−i)] ≤ 0,∀r′i ∈ Ωi.

(8)
By dividing inequality in (8) with p(ri) =∑

r−i∈Ω−i
p(ri, r−i), we have

∑
r−i∈Ω−i

p(r−i|ri)[Ui(r′i, r−i) − Ui(ri, r−i)] ≤ 0,∀r′i ∈ Ωi.

(9)
The inequality (9) means that when the recommendation to
user i is to choose action ri, then choosing action r′i instead
of ri cannot obtain a higher expected payoff to i.

We note that the set of correlated equilibria is nonempty,
closed and convex in every finite game. Moreover, it may
include the distribution that is not in the convex hull of the
Nash equilibrium distributions. In fact, every Nash equilibrium
is a correlated equilibrium and Nash equilibria correspond to
the special case where p(ri, r−i) is a product of each individual
user’s probability for different actions, i.e., the play of the
different players is independent [18]–[20]. In Table I (b) and
(c), the Nash equilibria and mixed Nash equilibria are all within
the set of correlated equilibria. In Table I (d), we show an
example where the correlated equilibrium is outside the convex
hull of the Nash equilibrium. Notice that the joint distribution
is not the product of two users’ probability distributions, i.e.,
two users’ actions are not independent. Moreover, the utility
for each user is 4.8 which is higher than that of the mixed
strategy.
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TABLE II: The regret-matching learning algorithm
Initialize arbitrarily probability for taking action of user i,
p1

i (ri), ∀i ∈ K
for t=1,2,3,...

1. Find Dt
i(ri, r′i) as in (12)

2. Find average regret R
t
i(ri, r′i) as in (11)

3. Let ri ∈ Ωi be the strategy last chosen by user i,
i.e. rt

i = ri. Then probability distribution action for
next period, pt+1

i is defined as
pt+1

i (r′i) = 1
µR

t
i(ri, r′i) ∀r′i �= ri

pt+1
i (ri) = 1 − ∑

r′i �=ri
pt+1

i (r′i),
where µ is a certain constant that is sufficiently large.

B. Linear Programming Solution

The characterization of the correlated equilibria set illus-
trates that there are solutions of correlated equilibria that
achieve strictly better performance compared to the Nash
equilibria in terms of the spectrum utilization efficiency and
fairness. However, the correlated equilibrium defines a set of
solutions which is better than Nash equilibrium, but it does not
tell any more information regarding which correlated equilib-
rium is most suitable in practice. We propose two refinements.
The first one is the maximum sum correlated equilibrium that
maximize the sum of utilities of the secondary users. The
second one is the maximin fair correlated equilibrium that
seeks to improve the worst case situation. The problem can
be formulated as a linear programming problem as:

max
p

∑
i∈K

Ep(Ui) or max
p

min
i

Ep(Ui) (10)

s.t.

{
p(ri, r−i)[Ui(r′i, r−i) − Ui(ri, r−i)] ≤ 0,
∀ri, r′i ∈ Ωi,∀i ∈ K.

where Ep(·) is the expectation over p. The constraints guaran-
tee the solution is within the correlated equilibrium set.

Notice that the solution in (10) requires all information to
be available for optimization. The requirement is not possible
for distributed cognitive users. So the solution can be only
served as a performance upper bound. In the next subsection,
we propose a learning algorithm for the individual secondary
user using only local information.

C. No-Regret Learning Algorithm

In this subsection, we will exhibit a class of algorithm called
regret-matching algorithm [20]. The algorithm was named
regret-matching (no-regret) algorithm, because the stationary
solution of the learning algorithm exhibits no regret and the
play probabilities are proportional to the “regrets” for not
having played other actions. In particular, for any two distinct
actions ri �= r′i in Ωi and at every time T , the regret of user i
at time T for not playing r′i is

R
T
i (ri, r′i) := max{DT

i (ri, r′i), 0}, (11)

where

DT
i (ri, r′i) =

1
T

∑
t≤T

(U t
i (r

′
i, r−i) − U t

i (ri, r−i)). (12)
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Fig. 2: Learning Curves for No-regret Algorithm

DT
i (ri, r′i) has the interpretation of average payoff that user i

would have obtained, if it had played action r′i every time in
the past instead of choosing ri. The expression R

T
i (ri, r′i) can

be viewed as a measure of the average regret. The probability
pi(ri) for user i to take action ri is a linear function of the
regret. The detail regret-matching algorithm is shown in Table
II. The complexity of the algorithm is O(L).

For every period T , let us define the relative frequency of
users’ action r played till T periods of time as follow

zT (r) =
1
T

#{t ≤ T : rt = r}, (13)

where #(·) denotes the number of times the event inside the
bracket happens and rt is all users’ action at time t. The
following theorem guarantees the adaptive learning algorithm
shown in Table II has the property that zT converges almost
sure to a set of the correlated equilibria.

Theorem 1: [20] If every player plays according to adaptive
learning algorithm in Table II, then the empirical distributions
of play zT converge almost surely to the set of correlated
equilibrium distributions of the game G, as T → ∞.

IV. SIMULATION RESULTS

In the simulations, we employ the maximal sum utility
function as the objective. In the first simulation, we study the
convergence of the no-regret algorithm. In Figure 2, we show
a two-user case with actions of [0.5, 1]. Here p is the joint
probability of user’ taking action of 1 and 2. We can see that
the learning algorithm converge to the set of the correlated
equilibria with about 100 iterations. The fast convergence of
the learning algorithm can ensure the second users to obtain the
performance gain before the prime users retake the channels.

In Figure 3, we show the different equilibria as a function
of G0 for three-user game. We show the results of the gain
obtained by the greedy user in the Nash equilibrium point
(NEP), the gain obtained by the victim of the greedy user in
NEP, the learning result, and the optimal correlated equilibrium
calculated by linear programming. Here the action space is
[0.1, 0.2, . . . , 1.5]. When G0 is large, there is less penalty for
greedy behaviors. So all users tend to transmit as aggressively
as possible. This results in the Prison Dilemma [21], where
all users suffer. When G0 is less than 2.8, the greedy user can
have a better performance (NEP best) than that (NEP worst) of
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Fig. 3: Utility Function v.s. G0, Three Users

the cooperative user. Due to the significant penalty if all users
transmit aggressively, the game will not degrade to the Prison
Dilemma. However the performances are quite unfair for the
greedy users and the cooperative users. All users have the same
utility in the correlated equilibrium and learning result. So the
fairness is better than the NEP. When G0 is from 2.2 to 2.8, the
correlated equilibrium has a better performance even than that
of the greedy user (NEP best). When G0 is from 1.4 to 2.8,
the optimal correlated equilibrium has a better performance
than that of the learning result. When G0 is sufficiently
small, most of the uncooperative strategies are eliminated by
significant penalty. Consequently, the learning result has the
same performance as that of the optimal correlated equilibrium.

In Figure 4, we show the network performance of the pro-
posed algorithm. For simplicity, we assume the hidden terminal
problem [15] has been solved. We show the average user utility
per channel as a function of the network density. When the
network density is small, the average utility is increasing since
there is an increasing number of users to occupy the channel.
When the user density is sufficiently large, the utility begins to
decrease due to the collisions. The best NEP and worst NEP are
different while the correlated equilibrium and learning result
achieve almost the same performance as the best NEP and 5%
to 15% better than the worst NEP.

V. CONCLUSIONS

In this paper, we propose the correlated equilibrium concept
for cognitive users to have distributive opportunistic spectrum
access. Then, we construct a no-regret learning algorithm to
learn the correlated equilibrium. Simulation results show that
the correlated equilibrium has a 5% to 15% better performance
and is more fair, comparable to the NEP.
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