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Abstract—Interests inmonitoring and recognizing gait have surged significantly over the past decades. Traditional approaches rely on

camera array, floor sensors (e.g., pressuremats), or wearables (e.g., accelerometers), none of which are suitable for continuous and

ubiquitous everyday use. In this article, we present GAITWAY, the first system thatmonitors and recognizes an individual’s gait through the

walls via wireless radios. GAITWAY passively and unobtrusively monitors an individual’s gait speed by a single pair of commodityWiFi

transceivers, without requiring the user to wear any device or walk on a restricted walkway. On this basis, GAITWAY automatically identifies

stable walking periods, extracts physically plausible and environmentally irrelevant speed features, and accordingly recognizes a subject’s

gait. Built upon a distinct rich-scatteringmultipathmodel, GAITWAY can capture one’s gait speed when one is > 10meters away behind the

walls. We conduct experiments in a typical indoor space and perform eight sessions of data collection with 11 subjects across six months,

resulting in > 5,000 gait instances. The results show that GAITWAY achieves amedian 0.12m/s and 90%tile 0.35m/s error in speed

estimation, with amean error of 3.36 cm in stride lengths. Further, it achieves a verification rate of 90.4%and a recognition rate of 81.2% for

five users and 69.8% for 11 users, confirming its comfort and accuracy for continuous and ubiquitous use.

Index Terms—Gait recognition, WiFi sensing, speed estimation, human identification

Ç

1 INTRODUCTION

GAIT, an individual’s way of walking, is increasingly per-
ceived as not only an essential vital sign [14], [30] but also

an effective biometric marker [8]. On the one hand, gait, in
particular, the walking speed, is considered as a valid and
sensitive measure appropriate for monitoring and assessing
functional decline and general health [14], [30], leading to its
designation as the sixth vital sign. Gait reflects both functional
and physiological changes, and is indicative and predictive of
many health statuses, including mobility disability, response
to rehabilitation, falls, and cognitive decline, etc [30]. Progres-
sion of gait is related to clinically meaningful changes in life
quality and health conditions. Therefore, continuousmonitor-
ing of gait at home, rather than occasionally in-hospital clini-
cal testing, is of great interest to an individual’s healthcare.

On the other hand, gait provides distinctive biometric fea-
tures of an individual, underlying a promising way of human
identification. As a complex functional activity, many factors
influence one’s gait, rendering it as a unique behavioral trait.
Research has shown that gait recognition could be even more
reliable than face recognition [41], because there are tens
of identifying characteristics entangled in gait, making it
extremely difficult, if possible, to impersonate someone else’s
walking patterns. Compared with other human recognition
systems, gait recognition is particularly attractive since it can

operate remotely, passively, and non-intrusively, without any
active cooperation of individuals.

Existing gait measurement and recognition systems usu-
ally rely on cameras [18], floor sensors [41], and/or wearables
[8] to capture gait information. The target subjects have to
either walk within restricted areas (typically only an instru-
mentedwalkway) orwear body sensors (e.g., accelerometers).
Therefore, they are mainly limited to research and clinical
usage and are not convenient and comfortable enough for
ubiquitous applications in smart homes and smart buildings.

In contrast to the above systems, we attempt to sense gait
using ambient radio signals. Recently, a new type of gait rec-
ognition using wireless signals (e.g., WiFi) is on the horizon
[49], [63], [67]. Existing approaches, however, either use spe-
cialized devices [20] or require subjects to walk on a prede-
fined path in a predefined direction [49], [58], [62]. Hence
they are only suitable for confined areas (e.g., a 5 m corridor-
like narrow path [49]) with a strong Line-Of-Sight (LOS)
condition. Moreover, most of the existing works do not
measure physiological gait [27], [29], [58], [62], [63], [67].
They merely extract RF-based features that are related to
walking motions, making them location- and environment-
dependent since the RF features are entangled with the sur-
rounding environments. And most importantly, none of
these WiFi-based systems can work for Non-LOS (NLOS)
scenarios.

In this paper, we present GAITWAY, the first system that can
monitor and recognize an individual’s gait through the walls.
Leveraging the pervasive WiFi signals, GAITWAY works in a
non-intrusive and contactless manner. There is no need to
instrument the user’s body or physical environments. The
user is neither required to keepwalking on a designated path.
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In contrast, one can freelywalk, turn, sit, or stand in the space.
GAITWAYwill automatically estimatewalking speeds, identify
effective walking periods, and then extract gait characteristics
for recognition, evenwhen the user is as far as 10meters away
from the link or behind the walls. To achieve this, we over-
come two critical challenges: through-the-wall speed estimation
and physical plausible gait feature extraction.

First, it is extremely challenging to estimate real-time
walking speed from radio signals. Previous approaches
resort to specialized hardware with large bandwidths and
many phased antennas [20]. Other approaches using com-
modityWiFi typically attempt to extract speed fromDoppler
effects [25], [40], [49]. The problems with Doppler effects,
however, are two-fold: (1) It only reflects partial speed pro-
jected on a specific direction rather than the entire speed [39];
and (2) It is suitable only for narrow LOS area (typically
within 4 to 5 m) [39], [49]. More generally speaking, we real-
ize that the fundamental limitation of past works lies in the
assumption of only a single dominate reflection path from
the human body (known as the two-ray reflection model [47]
as shown in Fig. 1a), which is unrealistic in rich-scattering
indoor environments.

In contrast, we propose a scattering model (Fig. 1b),
which treats environmental objects as multiple scatters. We
mathematically reveal that, by the physics of electromag-
netic field [19], the Channel State Information (CSI) statisti-
cally embodies the target’s moving speed when accounting
for a number of scattering multipaths. Built upon [60], we
develop a statistical approach to derive speed from the
autocorrelation function (ACF) of CSI, which leverages the
statistical property of all multipaths everywhere, rather than a
dominant one, and thus is independent of locations, head-
ing directions, and the environments. Different from [60],
we largely boost the sensing performance and coverage by
optimally combining subcarriers using Maximal Ratio Com-
bining (MRC) [43], thus allowing speed monitoring at a dis-
tance of up to 10 meters through the walls, which was only
achieved by specialized devices previously. Furthermore,
our model exploits extra phase information of CSI and is
directly derived based on complex CSI.

Second, it is non-trivial to build an accurate and robust gait
recognition system based on walking speed only. Conven-
tional gait recognition systems usually extract salient charac-
teristics dictated by body shape (e.g, silhouette bymulti-view
gait images) [18], [23], foot shape (e.g., underfoot pressure

image by pressure mats) [7], [41], or multi-dimensional accel-
erationsmeasured at diverse body locations [64], [66], all pro-
viding much richer information beyond walking speed. In
GAITWAY, however, only the walking speed is available, and
the speed is captured without exerting any constraints to the
subject’s behaviors,making the recognition even challenging.
We address this challenge by extracting various physically
plausible and environmentally irrelevant features that char-
acterize different perspectives of gait speed patterns, includ-
ing gait symmetry, smoothness, variability, periodicity, etc.,
from thewalking speed.

Putting it all together, we implement GAITWAY on com-
modity off-the-shelf (COTS) WiFi devices and conduct
experiments in a typical office space covering 5,000 ft2. We
collect eight sessions of data from 11 subjects on different
days across six months. Most of the data are collected under
NLOS conditions. GAITWAY achieves a median 0.12 m/s
and 90%tile 0.35 m/s error in gait speed monitoring, with a
mean error of 3.36 cm for stride lengths, significantly out-
performing previous WiFi-based approaches. GAITWAY

achieves a single user verification accuracy of 90.4% and a
recognition rate of 93.7% for two users, which becomes
81.2% for five users and 69.8% for 11 users. The inspiring
coverage and accuracy envision GAITWAY as a new way for
convenient gait monitoring and recognition in ubiquitous
contexts.

In summary, we make the following contributions.

� We derive a statistical approach on top of a scatter-
ing multipath model for passive speed estimation,
which can capture accurate speed when a target is
over 10 meters away, or behind the walls.

� We build a gait speed monitoring and recognition
system. By extracting a range of plausible physical
features, GAITWAY can recognize a subject indepen-
dently from location, orientation, environments, and
the user’s apparel.

� We implement a prototype of GAITWAY on COTS
WiFi devices and conduct experiments in typical
indoor spaces. The results confirm its accuracy and
comfort for continuous and ubiquitous use.

The rest of the paper is organized as follows. We present
the preliminaries on gait in Section 2. Speed estimation is
introduced in Section 3, followed by gait extraction and rec-
ognition in Section 4. We present evaluation in Section 5,
review the literature in Section 6 and conclude in Section 7.

2 PRELIMINARIES ON GAIT SPEED

Gait refers to the way of walking. Walking is a simple yet
finely choreographed function, harmonizing many muscles
over a complex bone and joint structure to deliver bio-
mechanical locomotion. A gait cycle consists of two phases:
the stance and swing phases, and further seven stages [23].
Gait, especially gait speed, can serve as a vital sign as well as
a biometric cue.

Monitoring Gait as a Vital Sign. Gait has been shown to
reflect health and functional status [14], [30]. Gait speed, also
often termed walking speed, is the most important informa-
tion being measured and concerned for healthcare. It has
been recommended as a pragmatic and essential clinical

Fig. 1. Multipath models for rich-scattering indoor environments. (a)
Objects (e.g., a human body) are simplified as a single reflector produc-
ing only one major reflection path. (b) Objects scatter the signal and pro-
duce many paths.
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indicator of well-being [14]. Research findings have con-
firmed that gait speed is indicative and predictive of a range
of outcomes, such as frailty [4], mobility disability [5], cogni-
tive decline [1], falls [31], hospitalization [5], [31], as well as
all-cause mortality [45]. Degradation in gait speed correlates
with lower quality of life, increased risk in falls, and presence
of depressive symptoms, etc. Due to its extensive predictive
capabilities, gait speed was termed the sixth vital sign in
2009 [14], and after that, clinical and research practice contin-
ues to support this designation [30].

Gait monitoring is particularly crucial for eldercare since
an increasing population of seniors is living alone (13 million
in the US [35] and 6 million in Japan [36]) in today’s aging
society. For them, gait speed offers a passively measurable
metric that is clinically interpretable for an assessment of fall
risk, functional status, and ability to live independently, etc.
A continuous and comfortable system for ubiquitous gait
speedmeasurement, however, lacks.

Recognizing Gait as a Biometric Cue. Gait recognition has
been studied since the late 1960s [9], [33]. Since then, a num-
ber of studies have objectively affirmed that gait is suffi-
ciently consistent for a healthy individual and distinctive
between individuals [8]. Gait recognition is particularly
appealing for a range of ubiquitous applications that need
human identification since it can be achieved at a distance
without any active user cooperation. For example, a smart
home would personalize the temperature and ambient light
for a recognized user. A smart TV therein would react with
her favorite programs. Smart home devices like Google
Home and Amazon Alexa could directly interact with her
in a more friendly way. For all of these to function, the user
needs to do nothing but walk habitually inside the space.
An easy-to-deploy and convenient system, however, is
demanded for continuous and passive gait recognition.

Most existing gait recognition systems use extensive gait
information, especially biomechanical features pertaining to
the body’s physical dimensions, shapes, andmuscle contrac-
tion forces. For example, silhouettes from a video sequence
[12], [17] and underfoot pressure images [14], [41] have been
widely used. These systems are reliable, however, not eco-
nomic and user-friendly.

In this work, we aim to build a system that continuously
monitors and recognizes an individual’s gait, without the
need of exerting any constraints on the user, requiring any
active cooperation from her, or instrumenting the walkway.
The primary design goal of GAITWAY is to provide everyday
monitoring of gait speed as health data and enable recogni-
tion with gait speed alone for non-critical applications by
reusing existing WiFi infrastructure. As a contactless and
sensorless system, it would be attractive to various applica-
tions such as monitoring walking speed progression of eld-
ers living alone, recognition of family members in a house
(e.g., for identifying a child from adults for TV content filter-
ing), and automating personalized adjustment of environ-
ment conditions for an identified user, etc.

3 SPEED ESTIMATION THROUGH THE WALLS

3.1 Rich Scattering Multipath Model

Limitation of Existing Models. Existing works on WiFi-based
speed estimation rely on precise channel parameters, in

particular, the Doppler Frequency Shift (DFS) [25], [40],
[49], [50]. The limitations are two-fold.

First, as dictated by [39], DFS induced by human motion
is not only related to the motion speed but also depends on
the relative location and direction with respect to the link.
Specifically, DFS only embodies the radial speed component
projected on the normal direction of the ellipse with the Tx
and Rx as foci. In an extreme case, if a user is walking on an
ellipse with two foci at the locations of the Tx and Rx, no
DFS will be observed, regardless of the walking speed.

Second, since DFS is a channel parameter of the reflection
path, which is usually of magnitude weaker than a LOS
path, it can be easily buried in channel noises and thus not
perceivable, especially when numerous multipaths present.
Because of this, all existing works are limited to only narrow
areas in which both the Tx and Rx can see the moving target
[25], [39], [40], [50].

More fundamentally speaking, existing approaches are
based on a reflection model, as shown in Fig. 1a. The human
body is simplified as a single reflector, producing only one
dominant reflection path. DFS caused by human move-
ments is then equivalently derived as the change rates of
this particular reflection path [39], [50]. Such a two-ray
reflection model, however, was developed for outdoor
propagation and is unrealistic for rich multipath indoor
environments [47]. Typically there are multiple reflection
paths off a human body, which are, however, ignored. And
the more multipaths there are, the worse such reflection
models can work.

Proposed Rich Scattering Model. In contrast to past works,
we investigate a distinct rich scattering model. As shown in
Fig. 1b, the human body is seen as multiple scatterers, which
reflect signals in diverse directions and superimpose at the
Tx together with signals scattered by other objects via many
paths. Given numerous multipaths, we do not geometrically
analyze a specific reflection path nor assume a dominant
one and ignore others. Instead, we statistically investigate
the channel properties by accounting for all multipaths
together. Our key finding is that, by the physics of EM
fields, the target’s moving speed can be calculated from the
ACF of CSI. Built upon the statistical property of numerous
multipaths, our method is independent of the environ-
ments, locations, and user orientations. In contrast to the
previous reflection model that fails in rich multipath envi-
ronments, the proposed model works even better with more
multipaths and supports through-the-wall sensing.

3.2 Passive Speed Tracking

CSI Primer. Consider a wireless transmission pair, each
equipped with omni-directional antennas. The channel
frequency response (CFR), also called the channel state
information, for the multipath channel at time t is generally
modeled as

Hðt; fÞ ¼
XL
l¼1

alðtÞexpð�j2pftlðtÞÞ; (1)

where alðtÞ and tlðtÞ denote the complex amplitude and
propagation delay of the lth multipath component (MPC),
respectively, and L stands for the number of MPCs.
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Due to the timing and frequency synchronization offsets
and additive thermal noise, the real measurement of CFR
~Hðt; fÞ is expressed as

~Hðt; fÞ ¼ expð�jðaðtÞ þ bðtÞfÞÞHðt; fÞ þ nðt; fÞ; (2)

where aðtÞ and bðtÞ are the random initial and linear phase
distortions at time t, respectively.

Modeling Dynamic Scattering. In the following, we build a
statistical model inspired by the physical properties of EM
fields [19] and a previous work [60], which eventually allows
us to derive speed from CSI. We present the core techniques
but omit the detailed derivations due to space limitations.

The radio signals are scattered by numerous scatterers,
such as walls, ceilings, floors, furniture, human bodies, etc.
Due to the superposition principle of EM waves, the CSI
Hðt; fÞ can be decomposed as

Hðt; fÞ ¼
X

i2VsðtÞ
Hiðt; fÞ þ

X
j2VdðtÞ

Hjðt; fÞ þ "ðt; fÞ; (3)

whereVsðtÞ denotes the set of static scatterers,VdðtÞ denotes
the set of dynamic scatterers, andHiðt; fÞ stands for the part
contributed by the ith scatterer. "ðt; fÞ is the noise term,
which can be approximated as additive white Gaussian
noise (AWGN) with variance s2ðfÞ and is statistically inde-
pendent of Hiðt; fÞ [60]. The intuition behind the decompo-
sition is that each scatterer can be treated as a “virtual Tx”
diffusing the received EM waves in all directions, and then
these EMwaves add up together at the receive antenna after
bouncing off the interior objects indoors. As a result, Hðt; fÞ
actually measures the sum of the electric fields of all the
incoming EM waves. In practice, within a sufficiently short
period, it is reasonable to assume that both the sets VsðtÞ and
VdðtÞ change slowly in time, and they can be approximated as
time-invariant sets. Although past works based on the reflec-
tion model also divide multipaths into static and dynamic
paths (rather than scatter sets) [39], [50], they assume only one
dominate dynamic path, and the above statistical properties
do not hold.

We consider a 2-D scattering model, where all the scatter-
ers are within the same horizontal plane. Due to the channel
reciprocity, EM waves traveling in both directions undergo
the same physical perturbations (i.e., reflection, refraction,
diffraction, etc.). Therefore, if the receiver were transmitting
EMwaves, the CSI “measured” at the ith scatterer or “virtual
Tx” would be identical toHiðt; fÞ. If the speed of the ith scat-
terer is vi, then a continuous limit representation of Hiðt; fÞ
can be expressed as [19]

Hiðt; fÞ ¼
Z 2p

0

Fiðu; fÞexp �jkvi cos ðuÞtð Þdu; (4)

where Fiðu; fÞ denotes the complex channel gain of the MPC
from direction u for the ith scatterer, and k ¼ 2p

� is the wave
number where � is the wavelength.

Statistical Derivation of Speed. Based on the well-established
statistical theory of EMfields developed for reverberation cav-
ities, which approximates indoor environments well, Fiðu; fÞ,
for 8i, can be represented as a random variable with the
following properties [19]:

1) For 8u, Fiðu; fÞ is a circularly-symmetric Gaussian
random variable with the same variance s2

F ðfÞ;
2) For 8u1 6¼ u2, Fiðu1; fÞ and Fiðu2; fÞ are statistically

independent;
3) For 8i 6¼ j 2 Vd, Fiðu1; fÞ and Fjðu2; fÞ are statistically

independent for 8u1 and 8u2.
With the above properties, now we investigate how the

ACF of CSI relates to the speed vi. The mean of Hiðt; fÞ
equals to zero, i.e., E½Hiðt; fÞ� ¼ 0, where E½�� denotes the
expectation operator. Then, the covariance of two CSIs with
time lag t can be written as [60]

Cov Hiðt; fÞ; Hiðtþ t; fÞ½ � ¼ E Hiðt; fÞH�
i ðtþ t; fÞ� �

¼ 2ps2
Fi
ðfÞJ0ðkvitÞ;

(5)

where J0ð�Þ is the 0th-order Bessel function of the first kind:
J0ðxÞ ¼ 1

2p

R 2p
0 expð�jx cos ðuÞÞdu. The ACF of Hiðt; fÞ with

time lag t, denoted as rHi
ðt; fÞ, is derived as

rHi
ðt; fÞ ¼ Cov Hiðt; fÞ; Hiðtþ t; fÞ½ �

Cov Hiðt; fÞ; Hiðt; fÞ½ �
¼ J0ðkvitÞ:

(6)

Similarly, the ACF of the CSIHðt; fÞwith time lag t, denoted
as rHðt; fÞ, can be obtained as

rHðt; fÞ ¼
Cov Hðt; fÞ; Hðtþ t; fÞ½ �
Cov Hðt; fÞ; Hðt; fÞ½ �

¼
P

i2Vd
s2
Fi
ðfÞJ0ðkvitÞ þ s2ðfÞdðtÞP

i2Vd
s2
Fi
ðfÞ þ s2ðfÞ ;

(7)

where dð�Þ is the Dirac’s delta function, which equals zero
everywhere except for zero. As seen, rHðt; fÞ is a linear com-
bination of the ACF of Hiðt; fÞ, and the weight of each term
equals the energy scattered by that corresponding scatterer.

Consider that only one person is moving in the monitored
area. The speeds of all the scatterers caused by the person are
approximated to be the same, i.e., vi ¼ v, for 8i 2 Vd. The
rationale behind the approximation lies that the torso con-
tributes most of the strong scatterers, which have similar
speeds and dominate those from limbs with more different
speeds. Thus by this assumption, the estimated speed is
mainly the speed of the main body. Then, rHðt; fÞ can be
simplified as

rHðt; fÞ ¼
P

i2Vd
s2
Fi
ðfÞ þ s2ðfÞdðtÞP

i2Vd
s2
Fi
ðfÞ þ s2ðfÞ J0ðkvtÞ

, aðfÞJ0ðkvtÞ;
(8)

where aðfÞ is defined as the gain of each subcarrier f .
Equation (8) bridges the moving speed of the human body
and the second-order statistics, i.e., ACF, of CSI.

In practice, the sample ACF is used instead, which is an
estimate of the ACF, and we use nðt; fÞ to stand for the esti-
mation noise of the ACF, i.e.,

r̂Hðt; fÞ ¼ aðfÞJ0ðkvtÞ þ nðt; fÞ: (9)

Since the term J0ðkvtÞ in (9) is a function of moving speed v,
it’s termed the speed signal in the following.
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Maximizing Speed Signal. From (9), one can derive the
moving speed v from the ACF measurement r̂Hðt; fÞ. In
practice, however, the signal-to-noise ratio (SNR) of the
speed signal on each subcarrier modulated by human
movement can be pretty low, especially when the person
being monitored is far away from the link or behind walls.
As a second-order statistic, ACF circumvents the phase
issue and is synchronized over all subcarriers, allowing
direct combination of ACF measured on different subcar-
riers. In the following, we propose a novel scheme based on
Maximal Ratio Combining [43] that combines the speed sig-
nals measured on multiple subcarriers in an optimal way
such that the SNR of the speed signal is maximized. MRC is
a classical diversity combining method in telecommunica-
tions that optimizes SNR by combining signals received on
multiple antennas [43]. MRC is applicable here by treating
subcarriers as the receiving diversity, which has been uti-
lized to facilitate breathing estimation fromWiFi [61].

When aðfÞ is small, i.e.,Hðt; fÞ is dominated by the white
noise, each tap of the ACF follows a zero-mean normal dis-
tribution with equal variance 1=N [42], i.e., nðt; fÞ � N ð0;
1=NÞ, where N is the number of samples used in the ACF
estimation. Therefore, the variance of nðt; fÞ in (9) is the
same for different subcarriers. Because the noise terms of
different subcarriers are statistically independent, it can be
shown that the MRC scheme achieves the maximum of the
SNR of the speed signal J0ðkvtÞ [43], i.e.,

SðtÞ ¼
X
f2F

w
? ðfÞr̂Hðt; fÞ

¼
X
f2F

w
? ðfÞaðfÞ

 !
J0ðkvtÞ þ

X
f2F

w
? ðfÞnðt; fÞ;

(10)

where SðtÞ is called the combined speed signal, w
? ðfÞ

denotes the optimal combining weight for subcarrier f , and
w

? ðfÞ is linearly proportional to the gain aðfÞ.
The gain aðfÞ on each subcarrier, however, is not directly

available from CSI. Fortunately, since J0ðkvtÞ is continu-
ous at time lag 0, i.e., limt!0 J0ðkvtÞ ¼ 1, we have aðfÞ ¼
limt!0 rHðt; fÞ according to (8). Therefore, when the channel

sampling rate Fs is sufficiently high, aðfÞ can be estimated as
the quantity r̂Hðt ¼ 1=Fs; fÞ, the first tap of the ACF, and
w

? ðfÞ is taken as

ŵ
? ðfÞ ¼ r̂Hðt ¼ 1=Fs; fÞ; (11)

where the sample ACF r̂Hðt; fÞ is directly calculated from
the CSI measurements.

The intuition that MRC maximizes the SNR is that, when
combining all subcarriers appropriately, the “good” subcar-
riers will boost the signal while the “bad” subcarriers will
help attenuate the noise since their noise terms are indepen-
dent. The MRC is a key improvement over our previous
work [60] and largely boosts the sensing coverage.

Calculating Speed. Fig. 2a shows an example of the com-
bined speed signal, and Fig. 2c shows the matrix of the
combined speed signal, where each column of thematrix cor-
responds to a combined speed signal. As we can see from the
Fig. 2a, the shape of the combined speed signal resembles
the Bessel function J0ðxÞ with x ¼ kvt, and the speed v can
be thus extracted by matching their key characteristics, e.g.,
the locations of the first peak or valley. We use the first peak
in GAITWAY, i.e., the speed is calculated as

v̂ ¼ x0

kt̂
¼ x0�

2pt̂
; (12)

where x0 is a constant value corresponding to the first peak
of Bessel function J0ðxÞ, and t̂ is the time lag corresponding
to the first peak in the combined speed signal, as marked by
the blue dots in Fig. 2c.

In practice, two steps are further taken to enhance speed
estimation. First, to facilitate peak finding, the difference of
the combined speed signal is used, as shown in Fig. 2b,
which is more evident than Fig. 2d. In this case, x0 becomes
the location corresponding to the first peak of the derivative
of J0ðxÞ. Second, we use the phase difference between two
receive antennas to eliminate errors in the raw phase [40].
Note that, thanks to ACF, our approach is insensitive to the
initial phase offsets [53]. Fig. 3 shows the speed estimates of
a 10s period during a user’s continuous walking. Fig. 3 also
shows that MRC largely enhances the speed estimation.

Comparing With DFS. We implement the DFS-based
method [39], [49] and compare it with the proposed approach
by real measurements. To compare in both LOS and NLOS
cases, we set up two links with one Tx and two Rx in a line,
one with LOS condition (10 m away) and the other behind a

Fig. 2. Example of the combined speed signal. (a) Combined speed
signal and (b) its difference; (c) Matrix of combined speed signals and
(d) matrix of their differences.

Fig. 3. Speed estimation with MRC.
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wall (12 m away), as shown in Fig. 4a. A user is asked to walk
around, and the two receivers measure the CSI simulta-
neously. Fig. 4b depicts the speed estimated by GAITWAY and
DFS-based method, with the estimates by a camera as a com-
parison. As seen, GAITWAY accurately captures the speed
using either the LOS or NLOS link, preserving not only the
average speed but also the precise in-step speed changes. The
speed estimates on both links are highly consistent with each
other. The DFS-based method, however, fails to capture the
actual speeds in both LOS andNLOS scenarios.

Aswell-recognized in the literature, DFS-based approaches
only estimate partial speed components along a particular
direction towards the link and can do so only under good
LOS conditions [39], [49]. Its performance degrades signifi-
cantly under many realistic settings when the Tx and Rx are
distant away, like in Fig. 4a. This also explains why the per-
formance of the DFS-based method in our comparison is far
from satisfactory and much worse than those reported in
previous works [39], [49], which are obtained only under
highly restricted scenarios.

4 GAIT EXTRACTION AND RECOGNITION

In this section, we present how to monitor and recognize
gait from the estimated walking speeds. We first identify a
segment of stable walking and extract distinct features from
there for monitoring and recognition.

4.1 Identifying Stable Walking

Previous works usually only allow a user to walk at an
approximately constant speed and assume all data are col-
lected during stable walking [49], [58], [67]. Differently,
GAITWAY aims at acquiring gait information for free natural
walking. A user, however, may perform various activities,
including walking, sitting, standing, and typing, etc. A user
will walk at different speeds, especially when one is starting
to walk from standing still, making a turn, or about to stop,
etc. During these periods, the walking speed does not neces-
sarily reflect the most distinctive and stable gait characteris-
tics. Hence, the first step for gait analysis and recognition is
to identify a period of stable walking, during which a sub-
ject walks normally with a habitual pace.

We devise an algorithm that automatically detects a sta-
ble period during a user’s normal activities. Our critical
insight is that, when a user is walking smoothly, the
observed speed will reach a certain range with repetitive
patterns due to the periodic step rhythms.

We use the ACF of the speed to measure such walking
periodicity. As shown in Fig. 5, when a user is walking sta-
bly, evident peaks will be observed from the ACF of the
speed. In contrast, the ACF will be more flatted out for vary-
ing walking. We apply a sliding window (3 seconds) to the
speed estimates and calculate the ACF for each window.
We then employ peak detection on the ACF of the speed
and examine the first peak. A period will be considered as
stable walking only if a continuous series of reliable peaks
are observed.

To be more robust, we further check the averaged cen-
ter trend of the walking speed, which is obtained by smooth-
ing the speed estimates with a relatively large window of
2 seconds. A walking period will be used for gait analysis
only when the average speed is larger than a certain value
(e.g., 0.7 m/s, which is smaller than normal human walking
speed ranging from 1.0 m/s to 2.0 m/s). Fig. 7 illustrates an
example of the identified stable walking periods. Each stable
period then becomes a gait instance with a speed series
V ¼ ½vðtiÞ; i ¼ 1; 2; . . . ;M�.

4.2 Estimating Gait Cycles

A gait cycle is defined as the duration between two consecu-
tive events that the same heel hits the ground during walk-
ing. In GAITWAY, we estimate not only the gait cycle time
but also segment the speed series for every individual step.

During normal human walking, a subject’s speed will
experience an increase followed by a decrease, resulting in a
speed peak for each step. Therefore, we perform a simple
peak detection on the speed series to identify steps, as shown
in Fig. 6. To combat noises and outliers, we have applied cer-
tain constraints (including peak prominence and height) for
peak detection. When all steps are identified, we trim the
walking period by removing the duration before the first
peak and after the last peak. The remained trace becomes a
valid gait instance for further analysis in GAITWAY.

Fig. 4. Comparison with DFS.

Fig. 5. ACF of walking speed.

Fig. 6. Gait cycle estimation.

Fig. 7. Extracting stable walking period. The speed is measured when a
user is walking along a 10-meter corridor for 3 times.
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4.3 Extracting Gait Features

Most of the previous works extract data-driven features
directly from CSI measurements, which are implausible
and contain environment-dependent features. As a conse-
quence, all previous WiFi-based methods only work in
restricted settings [27], [29], [49], [58], [63], [67]. Differently,
GAITWAY performs human identification by extracting true
gait features, which are physically plausible and environmen-
tally irrelevant, from the speed estimates. Following this
notion, we devise a number of interpretable features to com-
prehensively characterize one’s gait pattern from various
aspects such as symmetry, smoothness, variability, and sta-
bility, etc., in addition to the straightforward physiological
properties like speed, stride length, and gait cycle time.

Speed Deviation. The average walking speed is first taken
as the mean value of instantaneous estimates of a user’s
walking speed. As shown in Fig. 9, our measurements dem-
onstrate that not only do different users have different habit-
ual speeds but also a user’s walking speed varies over time.
As a result, we only employ the average walking speed as a
metric for gait speed assessment for a specific individual but
do not use it as a classification feature. Instead, we exploit
features that are more independent from the mean walking
speed for recognition. As shown in Fig. 8a, we first detrend
the absolute speed by subtracting the average center speed.
Then we calculate the different percentile values (we take
95%tile, 75%tile, and 50%tile in GAITWAY) of the speed devia-
tions. Specifically, we take these percentile values of the posi-
tive deviations, negative deviations, and the absolutes of all
deviations, respectively.

Gait Cycle Time. The gait cycle time is computed as the
mean duration of every two consecutive steps. The middle
row of Fig. 9 shows the average cycle time of two users’
walking instances measured at different locations and time.
Over 20 traces, variances of 0.7 ms and 0.6 ms are observed
for the two users, respectively.

Stride Length. Stride estimation has been a long-standing
challenging problem [57]. Thanks to the accurate speed esti-
mation, we can intuitively derive the stride length by inte-
grating the speed estimates over the time duration of each

step. The bottom row of Fig. 9 depicts the estimated stride
lengths for two users.

Acceleration. Acceleration is computed as the derivatives
of speed. We take the maximum, minimum, and variance of
the acceleration. Since the walking acceleration also exhibits
sinusoid-like patterns, we also identify the peaks and valleys
of the acceleration sequence and compute the respective
variances.

Smoothness. The harmonic ratio (HR) has been widely
adopted as a quantitative measure of walking smoothness
[2], [3]. HR examines the step-to-step symmetry within a
stride by quantifying the harmonic composition of the accel-
erations for a given stride. It first conducts Discrete Fourier
Transform (DFT) on the acceleration within each stride. The
HR is then defined as the ratio of the sum of the amplitudes
of the even harmonics to that of the odd harmonics. We use
the first twenty harmonics to calculate the HRs, as justified
for normal cadences for which the majority of the power
occurs below 10 Hz [22]. Fig. 10 illustrates the HRs of a
walking trace of 7 cycles (14 steps), demonstrating the pro-
gression of step-to-step symmetry during the walk. For
every gait cycle during walking, we have one HR value. To
obtain a single value feature for a walking trace, we take the
median and variance of the HR values.

Rhythmicity. Recall Fig. 5, we calculate the ACF of the
walking speed V . If a user walks in a regularly rhythmic
manner, the speed ACF will exhibit multiple prominent
peaks and will decay slowly. Hence the ACF embodies
the walking rhythmicity or dynamic stability. We thus
develop several features based on the ACF of the speed. In
GAITWAY, we apply a sliding window to calculate a series
of ACF for each walking instance, resulting in a speed
ACF matrix. From there, we perform peak detection on
each column to find the prominent peak and the corre-
sponding delay. We then extract the following single-val-
ued features: The mean and variance of the heights of the
first peaks and the number of identified prominent peaks;
the variance of differences of peak locations for each col-
umn; and the ratio of columns in the matrix that does not
have a prominent peak.

Symmetry. We calculate the step time and stride lengths
of left and right foot1 respectively, and take their means and
standard deviations as features. The difference of each fea-
ture between two feet is derived as a measure of gait sym-
metry, which will not be affected whether odd steps are
treated as the left foot or right foot.

Fig. 8. Features of speed deviation.

Fig. 9. Continuous monitoring of walking parameters over time.

Fig. 10. Progression of harmonic ratios of a short walking trace.

1. Odd and oven steps are used here because of the lack of knowledge
on the left and right foot. Although it might be easy to mistake the left
foot with the right foot, the exchange of left/right stride lengths does not
affect toomuch sincemost peoplewalk relatively symmetrically.
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RQA. To quantify the gait variability, we adopt Recur-
rence Quantification Analysis (RQA) [24], a method of non-
linear data analysis that quantifies the number and duration
of recurrences of a dynamical system presented by its phase
space trajectory using recurrent plot (RP). An RP is mathe-
matically expressed as an N*N matrix R

Rij ¼ Qð�� jj~xi �~xjjjÞ;~xi 2 Rm; i; j ¼ 1; 2; . . . ; N;

where N is the number of states, � is a predefined cutoff dis-
tance, jj � jj is a norm andQð�Þ theHeaviside function. In GAIT-

WAY, the state space trajectory X is constructed from the
speed series fvi; i ¼ 1; 2; . . . ; Lg with an embedding dimen-
sion of 5 and a delay of 10 samples. Fig. 11 depicts two illus-
trative RPs for two different users, where the upper RP
presents more diagonal lines, indicating a more stable and
periodic gait.

A number ofmeasures can be derived by RQA.We exploit
the below four of them: (1) Recurrence rate: The percentage
of recurrence points in an RP; (2) Determinism: The percent-
age of recurrence points that form diagonal lines; (3) The
Shannon entropy of the probability distribution of the diago-
nal line lengths; and (4) The average diagonal line length.

Our measurements show that RQA reaches a stable value
when calculated over 4 gait cycles, suggesting the shortest
length for stable walking period detection. In practice, we
relax the minimum to 3 cycles (i.e., 6 steps). Walking peri-
ods with less than 3 cycles are not considered for gait recog-
nition but only for monitoring.

ACF Features. Finally, we also investigate the ACF of CSI
(Fig. 2) for feature extraction. Since the ACF is entwined with
walking speed yet is independent of location and environ-
ment, it can serve as a signature for gait classification. Specifi-
cally, rather than using all ACFs within a walking period, we
consider the ACF corresponding to the speed peaks, as identi-
fied in Fig. 6. Note that the peak speeds could be different
within a walking trace, i.e., the locations of the first peak of
the ACF vary over time. Hence we aligned all the ACFs to a
scale corresponding to the mean peak speed. Tomake it more
apparent, we take the difference between each ACF and then
average the aligned ACF differences. Fig. 12 illustrates an
example of the scaled ACF differences. We use the first 50
taps as a feature vector in our system.

InGAITWAY, we focus on two subgoals: gait speedmonitor-
ing and recognition. To monitor and assess an individual’s
gait, we investigate three straight-forward and commonly
used properties, i.e., average walking speed, gait cycle time,
and stride length. We also use the harmonic ratio [2], a well-
recognized measure for stability and symmetry, to evaluate
gait progression.

To recognize a user, we fuse all the above features, result-
ing in a 90-dimensional feature vector for each gait instance.

We conduct the following two steps for potential dimension
deduction. First, we investigate whether these features are
correlated with each other or not. We calculate the pair-wise
correlations of all the features (except for the 50-dimensional
ACF features that are taken as a whole). Then we eliminate
one of each pair of highly correlated features for classification.
Second, we employ an outcome-based approach for feature
selection. Specifically, we perform 10-fold cross-validation
with andwithout a specific feature and keep that feature only
if it improves the output classification rate.

4.4 Recognizing Gait

Given the features that we have extracted, we now present
how to identify a user (from others) by the gait patterns. Fol-
lowing the literature on gait recognition [8], we consider two
identification scenarios: single-user verification that validates
whether a user is the target subject or an unknown stranger,
and multiple user recognition that identifies which target sub-
ject the user is among a set of candidates. We leverage Sup-
port Vector Machine (SVM), a widely-used classification
technique, for this purpose. In GAITWAY, we use SVM instead
of the popular deep learning techniques mainly because our
primary goal is to demonstrate the effectiveness of the speed
estimates and the plausible physical features for gait recogni-
tion.We keep applying deep learning to future work.

Single User Verification. For single-user verification, we
train a gait model for the subject by building a binary classi-
fier, which sees the subject’s gait instances as a positive class
and several benchmark users’ as a negative class. The bench-
mark data could be obtained from available standard public
database. In GAITWAY, they are randomly selected from our
experiment participants. To authenticate the target person,
we calculate the probability that an instance fits the target
class. A testing gait instance is considered belonging to the
target subject when the probability is higher than a threshold
and is otherwise rejected. In practice, the threshold can be
defined as different sensitive level by the users to adapt to
different authentication applications.

Multiple User Recognition. To recognize multiple users, we
train a one-vs-all binary classifier for each user, with the gait
instances from this user as the positive class and the instances
from all other candidates as the negative class. Then given a
gait instance for testing, we feed it into every classifier and
obtain the fitness probability that the instance belongs to each
class. The gait instance is assigned to the user from whose
classifier the highest fitness probability is observed.

We use LibSVM tool [6] with the Radial Basis Function
(RBF) kernel. The optimal values for parameters g and c are
selected by grid search with 10-fold cross-validation. Fea-
tures are scaled to [0,1] for classification.

We note that in this section and throughout the paper, the
data are automatically collected and extracted when the

Fig. 11. Examples of RPs. Fig. 12. Scaled ACF features.
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subject is walking around freely and naturally,2 without
being asked to walk along a predefined path or a predefined
direction, nor to walk with deliberate speed. The Tx and Rx
could be placed at arbitrary locations as long as they provide
excellent coverage. More importantly, there is no need to re-
train the system even if the positions of Tx and/or Rx change
since the speed estimation is location independent, and all
the features are extracted from the speed estimates. These
are critical properties that underpin a ubiquitous gait moni-
toring and recognition system. It significantly differs from
previousworks that exertmany of these constraints to testers
in order to obtain environmentally repeatable features for
human recognition [58], [62], [63] or to derive DFS [49].

5 EVALUATION

5.1 Methodology

Experimental Settings.We implement GAITWAY on commodity
WiFi devices and conduct experiments in a typical building
with an area of about 5, 000 ft2. The floorplan of the experi-
mental area is shown in Fig. 13.We consider different settings
by placing the WiFi Tx and Rx at different locations (as
roughly marked in Fig. 13) during multiple sessions of data
collection. For each data session, there is only one single pair
of Tx and Rx. Specifically, we have 6 different settings, where
the Tx and Rx are put on a stand with a height of about 1 m.
The Tx and Rx are separated by 8 to 11 meters for all settings,
blocked by one ormultiplewalls. The Tx andRx are both com-
mercial laptops equipped with off-the-shelf WiFi network
interface card (Intel 5300) and unmodified omni-directional
chip antennas. We use the Linux 802.11n CSI Tool [16] to col-
lect CSI measurements. We use 5.8 GHz channels (by default
channel 161) with a bandwidth of 40 MHz. There are a num-
ber ofWiFi devices co-existing on the same channel.

Data Collection.We collected gait instances from 11 human
subjects, of which 5 are female, and 6 are male. During data
collection, the users were walking around continuously and
freely in their natural way. The userwas free towalk through

any area. Some of them read news, play mobile games, or
talk on the phone while walking. During data collection,
other people are working around but not walking. The
experiments were conducted on 4 different days across six
months. For each day, we collected data for two sessions at
different times. We obtained 8 sessions of data in total, each
under a different setting, as in Fig. 13. Users wore different
clothes (from summer to autumn) during different sessions
of data collection. For each session, we measured for about
10�20 minutes of walking for each subject. The data were
anonymized for privacy concerns.

In total, we collect about 1,030 minutes of walking data
from the 11 participants, from which we extract around 970
minutes of walking (i.e., there are about 60 minutes during
which a subject is out of effective coverage of the link, and
the speed is not captured). From these data, we extract 5,283
gait instances of effective, stable walking, which occupies
about 680 minutes, approximately 67% of the total walking
duration. The effective percentage is limited in our data col-
lection because users are walking freely as will with fre-
quently stop-and-go and turning behaviors that could not
serve as reliable gait measurements. In practice, the training
data collection would be more efficient if the users are coop-
erative in gait measurements. Compare with many previous
works that require the users to walk on a fixed pathway
repeatedly, GAITWAY greatly eases the task and boosts gait
collection to a large scale.

Metrics. We separately study the performance of three
cases: single-user verification, dual user distinction, a special
case of multiple user recognition, and general multiple user
recognition. Following the literature of gait recognition [8],
we use the Receiver’s Operating Curve (ROC) for the False
Acceptance Rate (FAR) and False Rejection Rate (FRR), and
the Equal Error Rate (EER), the point on the ROC where the
FAR equals the FRR, to evaluate verification, and Recogni-
tion Rate (RR) for recognition evaluation. All the results
below are obtained on a 10-fold validation basis.

5.2 Speed Estimation Performance

We first evaluate the performance of GAITWAY in monitoring
gait speed, for which the accuracy of speed estimation is the
key. Considering both LOS and NLOS conditions, we set up
two links, one Tx with two Rx. One Rx is 10 m away from
the Tx, while the other is 12 m away behind a wall. Speed is
estimated by each link individually. The user walks around
naturally in the field of view of the camera. We evaluate
with two users (one male and one female) for these experi-
ments. We set up a camera to estimate the true speeds. We
also implement the DFS-based speed estimation in [49].

As shown in Fig. 14a, GAITWAY achieves remarkable accu-
racy, with a median error of 0.12 m/s and a 90%tile error of
0.35m/s. The accuracy is ensured in both LOS andNLOS sce-
narios,with amarginal difference of 0.04m/s inmedian error.
The better performance in NLOS scenarios is attributed to the
proposed statistical model, which holds better under NLOS
with more uniformly distributed multipaths than LOS. We
believe such accuracy provides clinically meaningful gait
speed that was previously difficult to measure. As a compari-
son, the DFS-based approach fails to capture speeds due to
limitations discussed in Section 3.1. As seen in Fig. 14a, DFS-
based method produces a 0.9 m/s median and 1.24 m/s

Fig. 13. Experimental areas and settings. Six settings of different Tx/Rx
positions are tested. Under each setting, there is only one pair of Tx andRx.

2. We assume a user is walking naturally for recognition, which is a
general assumption for gait recognition systems based on walking
speed. If a user is walking strangely on purpose, carrying a heavy box,
or moving a cart, GAITWAY can still estimate the walking speeds, but it
does not make sense to perform recognition upon the distorted speeds.
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90%tile error, about 64 and 89% in relative errors considering
the true average speed is about 1.4m/s.

We also study the coverage that GAITWAY can reliably
track a user’s moving speed. To do so, we first analyze the
speed estimation accuracy with respect to the distance trav-
eled using the above data. As illustrated in Fig. 14b, the
median errors are consistently below 0.2m/s for all ranges
except for the beginning period. Large errors during the first
meter arise from the unstable walking behavior that causes
distortions in camera-based speed tracking. We perform fur-
ther experiments to study the coverage that GAITWAY can
detect the speed. Rather than asking a user to walk freely, we
now let the user walk along two specific paths (P1 and P2),
both about 12 m long, and collect data under Setting #2, as
shown in Fig. 13. We test with multiple users, each repeating
for 10 times, and the results show a consistent coverage. We
illustrate two examples and plot the speed estimates with
respect to the distance a user has traveled from the starting
location in Fig. 14b. As seen, GAITWAY estimates the walking
speed very well throughout the entire path of P1, which is
under good coverage of the link in Setting #2. As a compari-
son, GAITWAY tracks the speed until the point the user has
walked for about 8.5 m (as marked by the red cross in
Fig. 13), where the user is already about 9 m from the Rx and
11m from the Tx, respectively. For further locations, the scat-
tering signals through multiple walls are too weak for GAIT-

WAY to perform reliable estimation. The coverage is as
expected accordingly to the theoretical coverage shape of the
Cassini ovals for passive human sensing [38]. Yet as long as
GAITWAY can detect the walking, it outputs accurate speed
estimates and thereby underpins recognition.

Based on the delightful instantaneous speeds, GAITWAY

canmonitor various parameters like steps and stride lengths.
In particular, over 10 segments of walking, GAITWAY cor-
rectly counts the steps with less than 1 step errors for 9 of
them and a 2-step error for the other one. Most of the errors
occur at the beginning or end of a walk. For the identified
steps, GAITWAY estimates stride lengths accuracy (thanks to
the accurate speed estimates), with a respective 2.36 cm and
4.03 cm mean errors for the female and male user compared
to camera-based results. We cannot obtain steps and strides

from the DFS-based method due to the low-quality speed
estimates. For the same reason, we do not further compare
with it for gait recognition [49].

5.3 Recognition Performance

Single User Verification. To evaluate the performance of GAIT-

WAY for verification, we test each subject in our dataset by
using the gait instances of all other users as a negative class.
We shuffle the training and testing data for 10 folds and
depict the integrated results. As shown in Fig. 15, GAITWAY

achieves an EER of 12.58% when using 70% of gait instances
for training. The EER will increase by about 1 and 3% when
shrinking the training size to 50 and 30%, respectively. We
study the performance with respect to temporal changes in
Fig. 16. As seen, the performance slightly degrades when
more sessions over time are involved. The best EER of 9.57%
is achieved when using the first 4 sessions. The performance
using 2 sessions is worse than using more sessions because
there is not sufficient data for training when using the first 2
sessions. Fig. 17 shows the FAR and FRR for each user with
all sessions of data.

Two User Distinction. Before evaluating multiple user rec-
ognition, it is interesting to study a special scenario of two
users since it is common in practice that two persons share
an office room or two residents live in one apartment. It
would be particularly useful if we can distinguish one from
another. Thus we conduct binary classification for every pair
of subjects in our dataset. To better understand the results,
we consider precision and recall by treating one user as the
positive class and the other as the negative class for each
group. As shown in Fig. 18, GAITWAY yields remarkable per-
formance, with an average precision and recall of 94.84 and
95.21% respectively for 55 pairs of users when using 70% of
data for training. And the accuracy of > 90% can be achieved
with only 20% of data for training. With our automatic data
collection and gait extraction, such an amount of data can be
easily gathered by a walk of about 20 minutes, making GAIT-

WAY friendly for user enrollment.
Multiple User Recognition. The recognition for multiple

users is muchmore complicated than verification or pair dis-
tinction. As shown in Fig. 19, the RR, when using 70% of data
over all sessions for training and the others for testing, is

Fig. 14. Performance of speed estimation.

Fig. 15. ROC with % of training samples.

Fig. 16. ROC with data sessions.

Fig. 17. Verification for different users.
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69.84% for 11 users, which decreases to 66.63% with half of
the data for training. The performance is comparable to the
start-of-the-art works based on wearable sensors [64], [66],
which report a respective RR of 66.3 and 73.4% on two ses-
sions of data with accelerometers.

Gait Variations. Fig. 20 illustrates how the RR changes with
gait variations when involving different sessions. As seen, the
performance degrades from 81.59% when using the 3 sessions
from the first two days to 69.84% when using all 8 sessions of
data. This is because a user’s gait speed may vary considerably
over time. For example, one user in our experiments had awalk-
ing speed of about 0.8m/s in one sessionwhile about 1.4m/s in
another session. Although GAITWAY circumvents the use of
absolute speed, the performance may still be influenced by dra-
matic changes in walking speed since our system is built upon
walking speed alone. Unless otherwise specified, we use all 8
sessions of data in the following evaluation.

Gait Instance Length. As our data are collected and
extracted automatically, the duration and step amounts of
each gait instance would be different. We thus analyze
whether the lengths of walking samples will affect recogni-
tion accuracy.We analyze the length distribution of all testing
gait instances, as shown in the right part of Fig. 21, and depict
the corresponding RRs in the left part. As seen, we are able to
identify a user who just walks six steps. The RR tops the best
of 70.52% for gait instances of 12 steps and decreases for
either longer or shorter instances. A subject’s gait may vary
for a long walking, which should thus be partitioned into
appropriate instances. For example, the trace can be automat-
ically segmented into instances of around 12 steps, which
will produce better accuracy. Thus GAITWAY will do the
instance segmentation automatically, and there is no need for
a user to pay attention to the trace length.

Data Sessions. We study the impact of different sessions/
settings in Fig. 22. While most of the data sessions produce
similar performance, session #3 sees the worst performance
of only 42.19%. This is because the Rx is too close to a rein-
forced concrete pillar of about 1 m � 1 m, and thus the weak
scattering signals from the human body can hardly be
received. Under such conditions, even with MRC, it cannot
recover the speed signals well. However, WiFi devices are
usually placed to achieve good coverage, and such a rigorous
situation would be avoided. GAITWAY only needs one single
pair of WiFi radios. In practice, however, if multiple pairs are
used tomonitor a large area, it is suggested todeploy relatively
densely and then, for locations covered by multiple pairs, the
information could be aggregated to improve accuracy.

Number of Subjects. To study the impacts of subject num-
ber registered in the database, we traverse all 2,036 possible
groupings of the 11 subjects, with group sizes increasing
from 2 to 11, and integrate the results in Fig. 23. In general,
the RR gradually decreases with more users being involved.
However, we note that GAITWAY retains a remarkable RR of
over 80% when there are 5 subjects, demonstrating the
promising potential for the smart home where there are
usually a few residents in a house.

Subject Diversity. Fig. 24 shows the confusion matrix of 11
subjects with data sessions across four days. Most of the
subjects experience RRs higher than 65%, except for subject
E and subject I, who are very similar to each other. Compar-
ing Figs. 24 and 17, subjects with lower RRs also suffer from
relatively larger FAR and FRR among others, indicating
that their gait patterns are less distinctive.

Comparative Study.Our performance is similar to previous
works based on wearable sensors [8], [64], [66], which report

Fig. 18. Two user distinction.

Fig. 19. RR versus size of training samples.

Fig. 20. RR versus # of data sessions.

Fig. 21. RR versus length of gait instances.

Fig. 22. RR versus data session.

Fig. 23. RR versus number of users.
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EERs from 5 to 20%, mostly based on only one or two ses-
sions of data. GAITWAY outperforms or is comparable to the
state-of-the-art CSI-based methods, including WiWho [58]
that reports 92 to 80% RR for 2 to 6 users respectively and
WifiU [49] that achieves an EER of 8.6%. Applying sophisti-
cated machine learning techniques, CrossSense [62] consid-
ers three sites and reports an accuracy of over 80%, while
reports < 20% for WiWho and WifiU. The data, however, is
collected in a single session on each site. Again, all of them
are confined to a fixed straight path in a predefined direction
within a narrow LOS area. In contrast, GAITWAY is evaluated
in through-the-wall scenes with distant Tx and Rx in which
none of these systems canwork.

Although GAITWAY tops the performance regarding accu-
racy and practicability among WiFi-based approaches, the
recognition accuracy is not super high. An important reason
is that GAITWAY uses gait speed alone, which is less distinct
and reliable than many other biometric traits such as body
shape and foot size and shape, etc. Thus we mainly envision
GAITWAY as a ubiquitous solution for daily applications but
not for critical human identification.

5.4 Latency

We evaluate theMatlab code of GAITWAY on a laptop equipped
with an Intel Core i7. GAITWAY can run in realtime on personal
computers. For 1 minute of data, it takes about 27 seconds (20s
for speed estimation, 6s for stable period identification, and
< 1s for feature extraction) to process. SVM takes 164s and 2s
for training and testing with 1,000 instances, respectively. As
training can be done offline, this cost is negligible. In addition,
note that there is also data collection latency from the entire sys-
tem perspective since a user needs to keep walking for a mini-
mumof 6 steps (recall Fig. 21) for recognition.

5.5 Limitations and Future Work

While GAITWAY significantly advances the state-of-the-art in
WiFi-based gait recognition, it has several limitations. First,
GAITWAY can only estimate the speed of a single walking user
with or without other users around but not walking). In the
case ofmultiple peoplewalking, it will produce a synthesized
speed but cannot separate themdue to the fundamental limits
of antenna number and frequency bandwidth on 2.4 GHz/
5 GHz WiFi. Thus the present solution is not suitable for rec-
ognizing multiple concurrent walking users. Second, the cur-
rent implementation uses a high sampling rate of 1500 Hz.
Third, while we have demonstrated the remarkable perfor-
mance of GAITWAY, our recognition experiments are currently
limited to 11 users due to budget constraints. Our future
work extends to a larger group of users and explores lower
sampling rates as well as multi-person scenarios. Future
work also includes building neural network models for gait
recognition by using the distinct speed estimates.

6 RELATED WORKS

To monitor gait as a vital indicator, clinicians mainly mea-
sure gait speed. Yet gait recognition would demand more
extensive information related to an individual’s walking
style and her biometric traits (e.g., body mass and shape,
foot size and shape, etc.). Traditionally, gait speed is mea-
sured manually by a physician by asking the subject to walk
for a certain distance and measuring the corresponding
walking time. Commercial systems like VICON (based on a
set of infrared cameras) or GAITRite (based on pressure
mats) are nowadays used in some medical settings. The lit-
erature on automating the acquisition of gait information
more inexpensively has dramatically grown recently.

Vision.Vision-based approaches rely onmulti-view images
of gait captured by an array of cameras to produce high recog-
nition rates [65]. A standard and effective method of repre-
senting vision-based gait is the average silhouettes formed by
a sequence of images [17]. Depth cameras such as Kinect has
also been explored for in-home gait monitoring recently [44].
In addition to the complex and cumbersome infrastructure,
vision-based approaches are vulnerable to various factors,
including viewing angles, surrounding conditions, and the
subject’s apparel and accessories. They are also undesirable
for in-home use due to privacy concerns.

Pressure. Underfoot pressure is also widely investigated,
which is measured by floor sensors such as a force plate [32]
or a pressure mat [7], [34]. Pressure mats capture spatial and
temporal gait features dictated by foot size and geometric
shape, orientation, and inter-footstep properties (e.g., toe-out
angle), etc. Pressure sensors, however, require direct contact
with foot and may degrade for shod walking since various
footwear would redistribute the force of the foot differently.
Acoustic sensors [15] and vibration sensors [37] are also used
to capture footstep-induced sound andfloor vibration for rec-
ognition, respectively. Similar to underfoot pressure, they are
also susceptible to footwear, walking speed, and ambient
noises. Moreover, all of the above systems, using cameras or
floor sensors, require complicated installation of dedicated
devices, limiting their use in restricted areas. Yet in spite of
this, these works have objectively affirmed the feasibility of
gait recognition even for a large set of subjects.

Acceleration. To achieve continuous gait monitoring and rec-
ognition, inertial sensors, especially those built in smartphones
andwearables, are explored to record accelerations during gait
[64], [66]. Reasonable recognition rates could be achieved
when placingmultiple sensors on different body locations [64].
Inertial sensing, however, is well-know to be noisy and vul-
nerable and is incapable of measuring walking speed. Wear-
able sensors are also unfavorable, especially to elderly people.

Radio.Different from the above works, GAITWAY monitors
a subject’s gait speed and further recognizes her from the
ambient radio signals reflected off her body, passively and
unobtrusively. Existing works measure walking speed either
by using specialized low-power radar signals [20], [46], or by
extracting Doppler frequency shifts from WiFi signals [25],
[39], [40], [49]. These works, however, require the user to
walk on a predefined path in a predefined direction, with
WiFi transceivers placed at fixed locations, and only work in
restricted scenarios with clear LOS conditions. Moreover, as
Doppler shifts only relate to partial speed component

Fig. 24. Recognition confusion matrix.
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projected in a specific direction, the measured speed may be
incorrect if the user deviates from the designated path. Other
works directly extract certain signal features and match
against prior trained database to classify human [26], [27],
[29], [55], [56], [58], [62], [63], [67] or activities [10], [11], [13],
[21], [28], [48], [51], [52], [54], [59]. Neither can they measure
gait speed, nor do they sense physically interpretable charac-
teristics related to gait. In addition, none of these systems
work through thewalls as GAITWAY does.

7 CONCLUSION

GAITWAY is the first system that can monitor and recognize
gait through the walls using commodity WiFi signals. It con-
tinuously measures speed passively and unobtrusively and
extracts physically plausible features of the speed for gait rec-
ognition. We validate the real-world performance and dem-
onstrate that it operates well when a user is 10 m away from
the link behind the walls. The proposed scattering model
underpinning such through-the-wall capability offers new
exciting directions and opportunities for wireless sensing.
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