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Abstract—Monitoring and identifying gait has recently
emerged as a promising solution candidate for unobtrusive
human recognition. In order to enable ubiquitous and reliable
application, a gait recognition system must be robust to environ-
ment changes and easy to use without requiring too much user
cooperation and recalibration, while maintaining high accuracy,
which is often not satisfied in conventional approaches. In this
paper, we present GaitCube, a high-accuracy gait recognition
system with minimal training requirement using a single com-
modity millimeter wave (mmWave) radio. To reduce the training
overhead, we propose gait data cube, a novel 3D joint-feature
representation of micro-Doppler and micro-Range signatures
over time that can comprehensively embody the physical relevant
features of one’s gait. With a pipeline of signal processing,
GaitCube can automatically detect and segment human walking
and effectively extract the gait data cubes. We implement and
evaluate GaitCube through experiments conducted at 6 different
locations in a typical indoor space with 10 subjects over a
month, resulting in >50,000 gait instances. The results show that
GaitCube achieves an accuracy of 96.1% with a single gait cycle
using one receive antenna, and the accuracy increases to 98.3%
when combining all the receive antennas. Further, it achieves an
average recognition accuracy of 79.1% for testing over different
times and unseen locations by using only 2 minutes of training
data collected in a single location, enabling a practical and
ubiquitous gait-based identification.

Index Terms—Sensor signal processing, gait recognition,
mmWave sensing, deep learning.

I. INTRODUCTION

Ubiquitous human recognition acts as an essential element
for a variety of applications in smart spaces, such as personal-
ized environmental control, security management, or access
control for automatic doors and IoT devices. Mainstream
approaches rely on fingerprint identification, face recognition,
voice authentication, etc., which usually require the active
cooperation of the user within a certain proximity. Radio
biometric based on the unique way that a human body alters
the multipath radio channel has been proposed [1]–[3], which
is, however, very sensitive to environmental changes and thus
requires a lot of training/calibration.

Recently, human gait has been proposed as an effective bio-
metric that is useful for more passive person identification, i.e.,
identification (at a distance) during normal walking without
additional cooperation of the user. Ideally, a gait recognition
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system should satisfy the following conditions in order to
enable practical applications:

• Accurate: The system should be able to recognize users
accurately.

• Fast registration and response: The system should
require minimal training effort to register a new user, and
recognition should be accomplished with short delays.
Particularly, a few steps (short period) of walking should
be sufficient to achieve accurate and reliable recognition.

• Environment-independent: The system should be able
to operate at different times and locations without requir-
ing tailored (re)calibration, and should not be affected by
changes in lighting, furnishing, and other environmental
factors.

• Contactless: The system should operate in a contactless
manner, without asking the user to carry any device or
using any user cooperation.

• Privacy-preserving: Even though the system can identify
users, it should not reveal sensitive information about the
person and surroundings.

In order to realize a gait recognition system with these
properties, various modalities have been considered in the
literature, such as vision [4], WiFi [5], [6], acoustic sensing
[7], wearable sensors [8], and pressure pads [9]. Each of these
methods has advantages and drawbacks with respect to the
criteria above. For instance, the vision-based systems [4] suffer
from environmental changes and impose privacy concerns.
Methods using inertial sensors require user cooperation and
thus are not so practical. WiFi-based systems provide an
attractive solution by exploiting ambient WiFi signals for
contactless recognition, but they usually require calibration for
each location due to changes in the multipath profile. More
importantly, many of the existing systems train and test on
the data collected at the same time and/or locations, imposing
a high risk of performance loss when generalizing to different
locations and times in practical deployments [5], [6], [10].

With the recent proliferation of miniaturized mmWave radar
devices, there have been increasing interests in indoor radar
sensing applications [11]–[16]. Using an mmWave radar for
sensing brings multifold advantages thanks to its shorter
wavelength, larger bandwidth, and phased array processing,
while still sharing the favorable characteristics of WiFi-based
systems (e.g., contactless, privacy-preserving), promising an
ideal solution for feasible and practical gait recognition with
minimal infrastructure support (e.g., a single mmWave radio).
Such an opportunity motivates us to ask the research question
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in this work: Can we build a gait recognition system that can
register a user with minimal training effort (e.g., less than one
minute) and recognize a person within a single gait cycle (i.e.,
two steps)?

We approach this goal through a practical design, GaitCube,
which uses a single mmWave radar and combines the power
of signal processing and deep learning. GaitCube introduces
a three-dimensional joint-variable representation of micro-
Doppler (µD) and micro-range (µR) signatures over time
(T ), termed as gait data cube, to comprehensively embody
physical relevant features of one’s gait, which is then fed into a
neural network for effective learning. With that, GaitCube can
register a user with minimal walking data and can recognize
a user with high accuracy from only a couple of steps.
Combining the proposed gait data cube with neural networks
also allows GaitCube, trained once, to generalize to different
locations and time with little performance loss. To deliver a
practical system, GaitCube further incorporates modules to
detect and track human walking automatically and segment
gait cycles effectively.

GaitCube addresses multiple challenges to achieve all these
properties in one system. First, even with an mmWave radar,
it is non-trivial to extract fine-grained µR and µD signatures
efficiently and effectively, accounting for the inadequate range
resolution, specular reflection, multipath effects, and computa-
tional burden. Second, it is usually difficult to build a learning-
based gait recognition system that can operate over different
locations at different times, as neural networks can easily
overfit or learn features related to the environment (but not
human gait), especially when the training dataset is limited.

To combat these challenges, GaitCube detects and tracks
human motion with a simple yet effective algorithm, triggers
µD-µR spectrogram estimation only at interested distances
and times, and extracts gait information from human walking
automatically. To assemble the gait data cubes that maximize
gait information, we reshape µD signatures at all the distances
the human body spans, which are then aligned in range
domain with respect to the human torso, segmented in the
time domain with respect to walking cycles, and cropped in
the frequency domain. GaitCube then identifies environment-
independent and physically relevant features from the gait data
cubes in tandem with a convolutional neural network (CNN).
To boost training and generalize the trained networks, we ex-
ploit spatial diversity attributed to multiple receiving antennas,
which not only increases the training dataset considerably but
also mitigates the specular reflection issue by capturing more
spatially independent snapshots of human walk.

We implement GaitCube using a commercial mmWave
radar and conduct experiments in office space over different
locations and times used for training and testing. We recruit
10 volunteers and collect 11 sessions of data, performed at
six different locations over a month. During each session,
we ask the users to walk for two minutes in each location
and collect a total of two hours of walking data, which
results in more than 50000 steps. The results demonstrate
that GaitCube achieves an accuracy of 96.1% using a single
gait cycle (two steps) with one receiving antenna, and this
accuracy further improves to 98% by aggregating all the
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Fig. 1: Overview of GaitCube

antennas or combining multiple walking steps. In the extreme
case of using a single session (only two minutes of data)
for training and different locations and sessions for testing,
GaitCube achieves an average accuracy of 79.1%, promising a
practical application of gait recognition with minimal training
requirement.

Our core contributions are the following:
• We present GaitCube, a human recognition system that

learns from gait data cubes, a 3D joint-feature represen-
tation of micro-Doppler, micro-range, and time for radar
signals, allowing it to achieve remarkable accuracy with a
single gait cycle while needing minimal data for training.

• We propose a signal processing pipeline to form the
gait cubes that can detect and segment human walking
automatically, and extract the µR-µD-T gait cubes ef-
fectively, and a deep learning model for classification.

• We implement and experiment GaitCube on a commercial
mmWave radar and validate its performance with 10
people over different environments/locations and time.

The remainder of the paper is as follows. Section II gives an
overview of the system. Section III explains the details related
to radar-cube processing module, and Section IV elaborates on
the learning based classification module. Section VII discusses
related works and Section VIII concludes the paper.

II. SYSTEM OVERVIEW

GaitCube inputs raw radar data and outputs identification
results at time instances that correspond to gait cycles. To
register a user, the system needs to collect a minimal amount
of walking data (e.g., two minutes) from the user. Then one
can be recognized by GaitCube when she/he walks normally
in front of the radar.

As shown in Fig. 1, GaitCube consists of two main mod-
ules, gait cube extraction and classification. The gait cube
extraction module inputs raw radar data and extracts the gait
data cubes. It first tracks a person’s walking trace by three
submodules of presence detection, peak tracking, and walking
detection. Then it extracts the spectrogram around the person
and therefore constructs the Doppler (or speed) dimension
of the gait cubes. Further, it segments the data in the time
domain, with respect to the extracted gait cycles each with
a single step, and removes unstable walking data by gait
cycle validation. Consecutive valid steps are aligned together
to construct the µR-µD-T gait cubes. The resulted gait cube
represents the reshaped µD and µR signatures at different
distances from the transmitter, which are aligned in range
domain with respect to the human torso, segmented in the time
domain with respect to walking cycles (steps), and cropped in
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the frequency domain to include maximum gait content, while
minimizing dimensionality.

The output gait cubes are fed into the classification module
that outputs the user identity. The classification module in-
cludes a CNN to extract useful features from gait cubes, and a
fully connected layer that allows us to concatenate some other
hand-crafted features to augment the output representation.

III. GAIT CUBE PROCESSING

In this section, we first review the basics of the radar we use
in this work, and then present the pipeline of signal processing
to form the gait cubes.

A. FMCW Radar Basics and Preprocessing

Our system relies on a frequency-modulated continuous-
wave (FMCW) radar, which transmits a signal with linearly
increasing frequency, and the distance from an object is
measured by calculating the frequency shift between the
transmitted and the received signal. This single transmission
is called a chirp, and the range resolution is determined by
the bandwidth. When there is no multipath and a single rigid
object is placed at a distance R, the received signal y(t)is
given as [17]:

y(t) = Arx exp
(
j
(

2π
(
f0(t− τ) + β

2 (t− τ)2
)

+ θrx

))
,

(1)
for t ∈ [0, T ), where τ represents the time duration of an
electromagnetic wave from object to radar, β is the frequency
slope of the linear chirp, θrx is the phase offset at the receiver,
and Arx is the amplitude of the returned signal. A single chirp
is sent and received repeatedly, and we denote the received
signal for chirp k as yk(t) , y(t−kT ), for k = bt/T c where
T is the chirp duration. For simplicity, we assume t to be
discrete as the reported signal is sampled and digitized, and
drop the subscript k. Arx is given as [18]:

Arx =
Gantλ

√
Pσ

4π1.5R2
√
L
, (2)

where Gant represents antenna gain, λ is the wavelength,
σ is the target cross-radar section, and L represents other
losses. This equation is given for rigid objects, under no
multipath assumption, and does not necessarily apply to indoor
environments. When there is multipath, (1) is modified as:

y(t)=
N∑
k=1

hkArxexp
(
j
(
2π(f0(t− τk)+ β

2 (t− τk)2)+θrx

))
,

(3)
where hk denotes the scaling of the returned signal for time
instance τk, arising from multipath. We first note that, due
to directionality and reflection characteristics of mmWave
signals, the channel response usually have a strong dominant
part, stemming from line-of-sight (LOS) propagation, along
with additional paths having lesser energy. This information
is used to reject the multipath effect to some extent, and will be
utilized in Section III-B for tracking. As the frequency shift is
equivalent to time difference, this information can be converted

to range information by Fourier transform of y(t), a.k.a Range-
FFT. Time-range signal, a.k.a Channel Impulse Response
(CIR), is sampled at certain time indices, and denoted as:

Y (r, k) =
N−1∑
n=0

yk(n) exp
(
−j 2πrnN

)
, (4)

where N is the number of FFT points. Range-Doppler spec-
trogram is calculated by applying FFT on the time domain
signal for a frame over long time. We define Nf as the
number of samples per frame, Nov as the amount of overlap
between frames, and nk(i) as the long time indices for frame
k where nk(i) , (k−1)(Nf−Nov)+i for i ∈ {1, ..., Nf−1}.
Consequently, range-Doppler spectrogram is defined as

G(f, r, k) =

∣∣∣∣∣∣
Nf−1∑
i=0

W (i)Y (r, nk(i)) exp
(
j 2πiTfNf

)∣∣∣∣∣∣
2

, (5)

where W (i) represents a finite length windowing function
used to fine tune the resolution between time and frequency
domains. In GaitCube, instead of calculating the spectrogram
for all range bins (r), we first locate the human body, and
only calculate the spectrogram of nearby distances that contain
body motions to reduce computational complexity.This nearby
range-Doppler spectrograms will be used to construct gait data
cubes, an integral part of the GaitCube.

B. Human Body Tracking

We first present how to track the users, whose locations will
be used to construct the range dimension of gait cubes.

The received time-range signal (CIR) in (4) can be decom-
posed as:

Y (r, n) = Yb(r, n) + Yd(r, n) + ε(r, n), (6)

where Yb represents the background reflection from surround-
ing objects, Yd stands for the reflection from a moving subject,
and ε denotes the additive noise. To track a moving body, we
extract the variance for each range bin as:

ZY (r, k) =
1

Nf

Nf∑
i=1

(Y (r, nk(i))− Ȳ (r, nk))2, (7)

where ZY(r, k) denotes the variance of Y at range r and
time-frame k, and Ȳ (r, k) , 1

Nf

∑
i Y (r, nk(i)), denotes the

average value of the CIR for frame k. Assuming the noise to be
uncorrelated with motion, and assuming the motion and noise
to be zero mean, the following relation can be established:

ZY (r, k) ≈ 1

Nf

Nf∑
i=1

|(Yd(r, nk(i)))|2 + σ2
ε , (8)

which suggests that, dominant motion could be detected by
maximizing ZY (r, k) over range dimension.

An exemplary raw data frame can be seen in Fig. 2a,
whereas the corresponding variance-time plot can be seen in
Fig. 2b. As can be seen, the background effects are reduced
significantly in the time-variance plot. Fig. 2c further illus-
trates the maximum-variance trace, which demonstrates that
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Fig. 2: Person Tracking

the variances at range bins with the presence of a person are
several orders of magnitude higher than background variance.

Extracting this maximum-variance trace, however, does not
allow one to immediately detect and track motion, as there
are impulse noises, discontinuities, and multipath effects in
the environment. Thus we apply several additional steps to
the person tracking submodule to detect human presence and
motion and extract the walking trace.
Presence Detection: GaitCube detects the presence of a sub-
ject by thresholding the amplitude of a smoothed maximum-
variance trace. GaitCube smooths maximum-variance trace
with a median filter before thresholding. In addition, short
presence intervals are filtered by combining with longer in-
tervals to reduce false alarms. Even with a stationary person
or motion perpendicular to the radar axis, presence detection
robustly detects a person due to minute body motions caused
by breathing and heart pulses.
Peak Tracking: For time instances with presence, GaitCube
extracts the subject trace in range-time domain. An arbitrary
trace on ZY (r, k) is defined as:

p = {(p(i), i)}Li=1, (9)

where p(i) denotes the distance (range bin) of the person from
the radar at timestep i, and L is the total length of the trace.
Note that p(i) only includes the range information, and the
system cannot determine exact location of the person. Our
person trace requirement has two objectives, extracting high
variance bins (dominant motion), while preserving a smooth
trace. First, we define E(p) ,

∑L
i=1 ZY (p(i), i) as the total

energy of the trace, and C(p) ,
∑L−1
i=1 P (p(i + 1), p(i)) as

the cost function for overall smoothness of the trace, where the
cost function P controls the change between two consecutive
indices of the trace. For our application, we define P as:

P (m,n) =

{
ε(|m− n|) |m− n| < Tth

∞ otherwise
, (10)

where we limit the displacement between consecutive frames
by forcing |p(i + 1) − p(i)| < Tth. Maximum deviation
threshold Tth could be selected based on maximum speed of
an object, and ε controls the cost for deviation from a direct
path. Based on these cost functions, we define the person trace
as:

p∗ = arg max
p

E(p) + C(p), (11)

which is solved by dynamic programming in GaitCube. p∗ is
the output of the peak tracking module, and used by walking
detection to segment the data with respect to walking time
instances. Recall in Fig. 2b, some of the distant paths are
affected by the nearby human body, because of the blockage
and multipath, yet these are easily avoided by our peak track-
ing algorithm, as it limits maximum deviation, and calculates
the location of a user for a longer duration, instead of an
independent location estimation for each radar sample.
Walking Detection: Lastly, GaitCube utilizes a basic walking
detection module to extract time indices with inbound or
outbound walking with respect to the radar in order to reduce
signal processing overhead. The walking detection algorithm
is applied to the speed estimates to extract stationary and non-
stationary periods.

We estimate the approximate body speed as:

v(i) =

{
1
D (p∗(i)− p∗(i−D)) i > D

0 otherwise
, (12)

where D is simply the time offset for calculating the speed of
body. Choosing D greater than 1 helps to reduce variance of
the speed estimation, stemming from limited range resolution.
Using the speed estimate, GaitCube extracts the walking
segments with the following decision rule:

m(t) =


1, |v(t)| > vwalk

0, |v(t)| < vstat or t = 0

m(t− 1) otherwise
, (13)

where vwalk is the speed threshold for detecting walking, and
vstat is the stationary threshold for the magnitude of speed.
Note v(t) could be positive or negative since walking inbound
and outbound introduces positive and negative Doppler shifts,
respectively. This detector allows the amplitude of the input
signal to swing between (vstat, vwalk) without changing previ-
ous decisions. As the speed v(i) is defined with respect to the
change of distance between the radar and the device, GaitCube
can remove most of the walking that does not traverse multiple
range bins by selecting a high amplitude for vwalk.

C. Spectrogram Extraction

We extract the spectrograms at and around the person trace
by using short-time Fourier transform (STFT), as given in (5).
Since only the range values nearby the human torso are of
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Fig. 3: Cycle extraction from (a) energy of the log-spectrum,
and (b) 2D spectrogram with corresponding cycles

interest for calculation, we denote this aligned spectrogram
cube as Galign and is given by:

Galign(f, r, n) =
{
G(f, p(n)−Nbody + r, n)

}
, (14)

1 ≤ r ≤ 2Nbody + 1,

where Nbody denotes the number of leading and trailing range
bins, centered at the range of human torso. Consequently,
Galign ∈ RNframe × R2Nbody+1 × RNtime . Spectrogram-
range cube reveals Doppler frequency shifts caused by motion
of multiple limbs, referred as µ-Doppler phenomenon [19].
Different limbs, such as arms, legs and feet move at different
speeds during walk, and the received spectrograms are super-
position of all these effects, which are expected to reserve
more information than a single snapshot at the human torso.

The relationship between frequency shift and speed is given
as:

∆f =
2v

λ
, (15)

where v, ∆f and λ denotes speed of the object, frequency
shift, and wavelength, respectively. As noted by earlier re-
search, human motion induces both µD and µR signatures
[20], which could be captured by a high-bandwidth (fine-
range-resolution) radar and µD signatures only cannot capture
the rich spatial information.

Fig. 3(b) depicts a single slices of Galign(f, r, k) at r = 9,
where Nbody = 8, k ∈ {0, ..., 1567} (corresponds to [0, 6.4]s),
and f ∈ [−385, 2493]Hz.

D. Gait Cycle Estimation

Next, Galign is fed to the gait cycle estimation submodule,
in order to segment with respect to the walking cycles.
Cycle Extraction: In this subsection, we discuss how to
extract gait cycles from the estimated gait cubes. As observed
in [20], the energy of spectrogram images (in our case, Galign)
corresponding to the human torso could be used for extracting
walking cycles. At the same time, as given in (2), the energy
of the reflected signal also depends on the range and multipath
profile, and we cannot use it directly to estimate gait cycles.
In addition, FFT-based or autocorrelation-based methods are
not preferable, as they only provide average period of a walk.

By using the detrended log-energy of the spectrum,
GaitCube can successfully extract individual steps and gait
cycles. In order to remove erroneous peaks, a criterion based
on minimum distance between peaks is used, and GaitCube
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Fig. 4: Comparison of output SNR with different downsam-
pling methods, along with the original signal

retrieves the peaks with higher amplitudes. A comparison of
the raw energy and the detrended log-energy with a smoothing
filter applied can be found in Fig. 3.
Cycle Verification: In order to use these gait cubes as rep-
resentative samples of human gait, GaitCube extracts valid
walking steps and gait cycles (i.e., cycles with full walking
speed) out of all periods. Unstable walking periods, e.g., initial
and final steps of a walking segment, need to be removed. To
do so, GaitCube utilizes two criteria:

• Walking distance and duration extracted from the
variance-range plot: We observe that acceleration and
deceleration steps traverse shorter distances, and can be
distinguished by thresholding on distance and duration.

• Variations in the torso speed: After thresholding,
GaitCube extracts the median speed of each step and gait
cycle, and removes those cycles with a speed variation
exceeding 25% of median speed.

The first criterion validates a full gait cycle, and the second one
removes acceleration and deceleration cycles, while leaving
room for speed differences between left and right steps.
These procedures ensure extraction of physically relevant and
useful features, which will be used by the classifier algorithm.
In contrast to the purely deep learning based approaches,
GaitCube reduces computational complexity, and requires a
very short window (e.g. 0.5 s) to capture useful gait infor-
mation. Consequently, GaitCube enables rapid detection and
classification.
Dimensionality Reduction Lastly, we reduce the dimensions
of the gait cube before feeding it into the CNN. For the range
domain, we investigate downsampling Galign. To achieve op-
timal combination, we investigate various combining methods
such as maximum, mean, and median, as the signal is corre-
lated between consecutive range bins. The same experiment is
repeated 24 times, and the output SNRs are provided in Fig.
4. As seen, extracting maximum effectively smooths person
trace and results in higher SNRs in our setting, and is used in
GaitCube.

For frequency domain, GaitCube removes frequency bands
with very little speed information. Walking inbound and
outbound introduces positive and negative Doppler shifts,
respectively, and the other half spectrum (frequency bins)
does not have any useful signal content. GaitCube extracts
frequencies that correspond to walking speeds of [vmin, vmax].

Lastly, GaitCube reduces dimensionality in the time domain
by resizing the data cube to a fixed size. As each cube has
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Fig. 5: A Gait Cube shown at various range bins separately
TABLE I: Neural Network Layers

Layer Name Filter (Kernel) Output Size
Conv. Layer 1 (5, 5), stride:(2, 2) (12, 112, 48)
Pooling Layer 1 (2, 2), stride:(2, 2) (12, 56, 24)
Conv. Layer 2 (5, 3), stride:(3, 1) (24, 18, 22)
Batch Norm.
Pooling Layer 2 (2, 2), stride:(2, 2) (48, 9, 11)
Conv. Layer 3 (3, 3), stride:(2, 2) (48, 4, 5)
Batch Norm. + Flatten (1, 960)
Fully Conn. (FC) (1, 120)
FC with additional features (1, 126) (1, 60)
Softmax (1, 10)

time-series information that relates to the same stages of a
gait cycle, resizing preserves the signature. After all these
methods, an example gait cube can be seen in Fig. 5, where
we have provided various range bins of gait cube prior to
downsampling.

Within the current pipeline, we note that two procedures
may cause loss of useful information related to human gait.
Extracting aligned gait cubes removes range information,
whereas resizing in the time domain throws away valuable
speed information. To alleviate the effects of these, GaitCube
extracts several additional features from the gait cubes. Specif-
ically, GaitCube extracts trace length (i.e. stride length) and
cycle duration, which are readily available, as well as the mean
and the variance of the speed, which can be calculated easily.
These features provide additional information to the classifier,
as they relate to the mechanics of the human gait.

IV. DEEP LEARNING MODEL FOR CLASSIFICATION

In this section, we provide the design of the learning
network. In specific, GaitCube uses a basic CNN coupled with
several convolutional layers, followed by batch normalization
and pooling layers with ReLU nonlinearity. In order to mitigate
the quadratic power decay on the amplitude of the returned
signal, as given by (2), we scale gait cubes by extracting log-
magnitudes, and further apply normalization. CNN is used for
feature extraction from gait cubes, and its output is combined
with the aforementioned additional features by concatenation
and fed through a few fully connected layers, followed by
a softmax layer to extract output probabilities of each class,
whose details can be seen in Table I. We further apply dropout
to the outputs of the fully connected layers with probability
p = 0.5, as this is shown to reduce overfitting [21].

In order to use the CNN model with the outputs of the
previous module, we resize gait cubes in the time domain to
have a fixed size. The typical human walking speed is around
1 m/s (3.6 km/h), with two steps per second. Therefore, the
input size to the CNN is set to be (5, 227, 99), with dimensions

TABLE II: mmWave Radar Parameters

Parameter Value
Carrier Frequency (fc) 77 GHz
Effective Bandwidth 3.52 GHz
Chirp Duration 19.1 µs
Chirp Frequency per Tx Antenna 6250 Hz
Chirp Slope 209 MHz/µs
ADC Sampling Frequency 15 Msps
Range Resolution 4.19 cm
Maximum Range 10.91 m

(range× frequency× time), where n = 99 corresponds to 506
ms chosen with respect to the empirical walking speed.

The imbalance between the right and left steps can also
provide useful information for identifying people [22]. To
exploit this phenomenon, we merge two consecutive gait cubes
prior to feeding into the CNN. As merging two cubes with
respect to the time dimension increases the size of gait cubes,
we resize these merged gait cubes to the CNN input size. As
GaitCube cannot distinguish the left and the right foot, the
classifier is trained with both sequences, using overlapping
full gait cycles, whereas further evaluation on using a single
step is also done.

We use cross entropy-loss, combined with L2 regularization
on the weights to train our classification module. The cost
function is given as:

L = − 1

N

N∑
n=1

Nc∑
c=1

zn,c log ẑn,c + α‖w‖2, (16)

where Nc is number of identities (i.e. classes), N is the total
number of samples, zn,c is the one-hot encoding for sample n,
ẑn,c are the outputs of the network at softmax layer, α is the
regularization parameter, and w are weights of the network.
We train our network with stochastic gradient descent, with a
batch size of 80, and a learning rate of 10−2 and reduce the
learning rate gradually. The maximum number of epochs is
set to 50. We implement deep learning module of GaitCube
in PyTorch, with NVIDIA CUDA toolkit. Using NVIDIA
RTX 2080S GPU with Intel Core i7-9700 CPU, the training
procedure takes less than 15 minutes, whereas testing a single
sample takes 0.1 ms on average.

V. IMPLEMENTATION AND EVALUATION

A. Implementation

We implement GaitCube using a commodity off-the-shelf
(COTS) mmWave radar, IWR1443BOOST. The radar operates
at 77GHz and has 3 transmitter and 4 receiver antennas. We
configure the device to use two transmitter antennas in time-
domain multiplexing mode due to the hardware limitations
on the sampling rate and capture the received signal on all
antennas simultaneously. Placement of the transmitter anten-
nas enables us to exploit virtual antenna array concept by
creating 8 virtual receiver antennas, and therefore obtain less-
dependent measurements of the physical environment, and
capture specular reflection from different limbs. We provide
the radar parameters in Table II.

GaitCube uses the parameters given in Table III for gait-
cube extraction. In our experiments, the observed maximum
speed on gait-cubes is around 4 m/s, corresponding to the
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TABLE III: Preprocessing Parameters

Parameter Notation Value
Window length Nf 512 (≈ 81 ms)
Window type Hamming
Overlap amount Nov 480 (≈ 77ms)
Speed resolution 2.38 cm/s
Time step for speed calculation D 256 ms
Walking detection thresholds (vwalk, vstat) (0.7, 0.3) m/s
Maximum trace deviation Tth 1 sample (10 m/s)
Range for gait cubes ±Nbody ±33.52 cm
Speed range (walking inbound) [vmin, vmax] [−0.75, 4.75] m/s
Speed range (walking outbound) [vmin, vmax] [−4.75, 0.75] m/s

Setup 1

Setup 2 Setup 5

Setup 4

Setup 6

Setup 3

Radar

Walking 
Path

Walking 
Path

Walking 
Path

Radar
Radar

Setup 2 Setup 5 Setup 6

Radar

Rx Tx

Fig. 6: Experimental area and data collection setups

foot motion. On the other hand, some volunteers swing their
arms significantly in the opposite direction while walking,
which requires the inclusion of negative speeds for walking
inbound (and vice versa for outbound). Hence, we select our
speed range as [−0.75, 4.75]m/s for inbound walking, and
[−4.75, 0.75] for outbound walking.

To select proper range values for GaitCube, we examine the
SNR of the received signals at different ranges and show the
results in Fig. 4. As seen, the very first range bins have very
little signal content, while the trailing (behind the torso) range
bins still have significant signal content, which stems from
the multipath effect. Hence, by experimentation and visual
inspection of gait cubes, we limit the range dimension of gait
cubes into (−33.52,+33.52) cm, which corresponds to ±8
range bins. After extraction of the gait cubes with ±8 ranges,
GaitCube downsamples in the range domain with a factor of
three by extracting maximum, as discussed in Section III.

The current implementation exploits receiver diversity by
treating each antenna as spatially independent in order to boost
dataset size for training and thus reduce data collection effort
for each user. In our experiments, we also evaluate GaitCube
by combining the receiver predictions together via majority
voting, as will be discussed in Section V-C.

B. Data Collection

For experimentation, we recruited 10 users (4 female, 6
male), where each user walks in six different setups at two
to four days, with at least a week in between consecutive
data collection. The overall data collection takes more than
1 month, with a total of 11 sessions, as some users were

TABLE IV: Experimental Setting

Environment Description (width x distance)
Setup 1 1.3× 5 m corridor, 4.8× 6m open space
Setup 2 6× 15 m open space, with two columns
Setup 3 5× 3 m open space, 2× 8m corridor
Setup 4 2.3× 7 m wide corridor, 8× 5m open space
Setup 5 6.5× 2.8 m open space, 1.5× 10m corridor
Setup 6 1.5× 12 m corridor
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Fig. 7: Confusion matrix for person identification.

available on different days. Ages of the users vary from
23 to 59, with weights varying from 50kg to 77kg and
heights varying from 160cm to 174cm. During data collection
sessions, users wear arbitrary clothes and accessories, and we
do not ask for any specific requirement.

The experimental setup for data collection is given in Fig.
6. In each setup, we place the radar on a cart, with an
approximate height of 1m. We ask users to walk 5 times in
each way in all setups, where the path length is approximately
10-12 meters. Our algorithm segments walking instances and
directions automatically, and the total duration of the walk
per user per setup is around 2 minutes, depending on walking
speed and distance. In order to test the generalization of
our method to multiple environments with different multipath
signatures, we select different sections of a large office (>1000
m2). We provide detailed descriptions of the setups in Table
IV. As shown, these setups have open spaces, corridors with
varying widths and lengths, and different combinations of both
environments. This enables a more thorough analysis of the
system.

The data collection procedure results in a total of about
52000 non-overlapping gait cubes from 10 people, at six
setups. The number of samples in each setup varies less than
±3%. The data distribution between walking inbound and
outbound are quite uniform, at 51.1% and 48.9%, respectively.
In order to illustrate the challenges with this time and location
varying data collection procedure, we provide a violin plot
showing the distribution of walking speeds and step durations
of different users in Fig. 8a. As shown, our users have diverse
walking speeds and gait cycle durations, even the speeds
of the same user vary over time. Although this information
is not sufficient for accurate classification, it improves the
performance of GaitCube slightly, as will be explained in the
next section.
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Fig. 8: Distribution of walking data, where horizontal lines
represent 25, 50 and 75th percentile, respectively

C. Performance

In this section, we evaluate the performance of GaitCube
under different setups. Unless stated otherwise, we imple-
ment 6-fold cross-validation on our dataset, with separation
based on data collection setup to ensure independence among
realizations, and show its performance over different times
and locations. In addition, we report the testing accuracies
with interpreting each receiver’s decision independently, unless
stated otherwise.
Overall performance: To evaluate the overall accuracy, we
use a full gait cycle for training and testing and illustrate the
confusion matrix in Fig. 7. As seen, GaitCube achieves a mean
accuracy of 96.1%, with recall and precision rates higher than
92.6% and 92.4% respectively for all users.
Impact of the distance from radar: We investigate the effect
of the distance from the radar by extracting accuracy for
different range values, and observe a lower accuracy at short
and long distances as shown in Fig. 9. As the distance from the
radar increases, the received signal has a lower SNR, which
reduces the performance. On the other hand, when the object is
very close to the radar, the gait cube gets distorted because of
the radiation pattern from a point source, and the performance
of the system decreases slightly. As stated before, we treat the
receiving antennas independently, and even with an equal gain
combining scheme with 8 antennas, we should obtain an SNR
improvement of 9dB. This scheme can possibly improve the
identification accuracy at longer distances significantly.
Impact of gait cycle duration: As GaitCube resizes gait
cubes during preprocessing, we also evaluate the performance
based on the duration of the gait cycle. As can be seen from
Fig. 10, most of the gait cycles have a duration in between
(0.4, 0.6)s and the performance in these regions is the highest.
Our gait-cube extraction sometimes falsely outputs long half
gait cycles (up to 1.1s), which is tolerated by the classification
module to some extent. Longer gait cubes decrease the overall
performance of GaitCube, yet the number of those samples is
at least an order of magnitude lower, and does not contribute
to the overall error significantly.
Impact of walking direction: We train our algorithm in both
walking directions, as mentioned before. As shown in Fig.
11, our system does not favor one particular direction, and
inbound and outbound accuracies are within 1% difference.
We also try training in one direction and testing in another,
but do not obtain meaningful results, even with reflecting gait
cubes with respect to frequency and range. This is because

changing walking direction affects the reflection surface, and
the range-Doppler signature is distorted significantly. Thus, in
practice, in order to recognize a user regardless one is coming
or leaving, we need to train in both directions.
Impact of the number of steps: We also evaluate the
performance with a varying number of steps involved in one
sample. To that end, we train the system with half-cycles
(single step) and combine the scores of consecutive samples
to construct a decision rule. We average softmax scores
(i.e. probabilities) over several steps and extract the decision
based on the combined score. Performance improvements
with respect to the number of steps can be seen in Fig. 12.
GaitCube achieves an accuracy of 98.3% with three steps,
which slightly decreases to 97.3% using a single cycle of two
steps, and maintains 94.5% accuracy even using a single step.
The remarkable performance allows GaitCube to recognize a
user with minimal delay, e.g., one single step.
Impact of the training data size: To further investigate low
training data requirement, we vary the number of instances per
setup from 1 to 5 for training and show the accuracy in the
testing setup. As seen from Fig. 13, even with using only one
single round-trip walk at each environment for training (≈20s),
GaitCube achieves a minimum accuracy of 84.8% and a mean
accuracy of 89.6%. In this evaluation, we do not test the model
against the remaining data in the setup trained, as this would
artificially improve the accuracy.
Impacts of gait cubes: To better understand the performance
gains from different components, we also conduct a basic
ablation study. We investigate the improvement stemming
from additional features and/or 3D data cubes. Our results
are presented in Fig. 14, where we investigate using the
proposed gait cube (FBS), using front or behind slices only
(FS and BS), or having a single center slice (SS) of the
cube. We also compare the performance with and without
the additional hand-crafted features (‘+’ in the method name
denotes using those features). As seen, using full gait cubes
plus additional features (FBS+) provides better performance
than the other methods, where BS+ and SS+ perform the
worst. This is caused by the multipath effect, as the trailing
range bins are affected more than leading range bins (Fig.
4), whereas capturing all of the information seems more
useful. Nevertheless, we note that even using a single slice,
an accuracy of over 90% can be achieved thanks to the many
building blocks of GaitCube. On the other hand, although
the hand-crafted features provide an accuracy gain of 0.6%,
GaitCube learns the gait signatures well, as the performance
gain is marginal, and high accuracy is preserved even with
long duration cycles, as discussed before.
Combining receivers for testing: In practice, the system only
needs to make a single decision at a time, allowing to fuse
all the receiving antennas for better performance. Here we
experiment, using a single step, with a simple majority voting
scheme, and combine softmax scores of each receiving antenna
for overall output. As shown in Fig. 15, the performance
increases by 1.3% on average and by 3.1% in Setup 1. We
plan to explore different combining schemes in the future.
Rapid training and generalization: We further investigate
the question: Can we train GaitCube with just two minutes
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of walking data at one location and generalize it over time
and locations? This use case is particularly challenging, as it
neither allows the use of multiple locations nor different time
instances for training data. We study this problem with a more
practical setting and implement receiving antenna combining.
To that end, we investigate the performance with respect to
the number of setups used for training, as in Fig. 16. We
provide the mean accuracy obtained by training at varying
numbers of locations, as well as the error bars representing the
deviation from the mean value for different testing setups. Our
system achieves 79.1% mean accuracy with one-shot learning,
and using two setups further boosts the accuracy to 87.2%. In
these two cases, the minimum accuracy is 72.5% and 82.7%,
which could be acceptable for a practical application. By these
results, we conclude that GaitCube can learn generalized gait
signatures by less than 2 minutes of data at one location.
Unknown Person Rejection: In a different scenario, we
change our focus from identification and investigate the ver-
ification problem. We randomly select 5 users and train a
classifier based on these users only. We test the detection
module with the complete dataset, which includes 5 additional
people, who have not been trained for the system. We apply a
decision threshold on the probability scores to label samples as
the known or unknown class. We find the optimal threshold
by minimizing the error on ROC. The results indicate that,
without any prior training, GaitCube can reject an unregistered
user with 86.2% precision and 83.2% recall rates. A more
robust method would include training with many different
users that include an unknown class, which is adopted by
some wireless sensing work, as in [5]. As main use-case of
GaitCube is identification, we leave further investigation of
the verification problem to a future work.

VI. DISCUSSIONS

Multi-Person Support: Our current implementation only sup-
ports a single person tracking and identification at a time. This
would be already useful for many applications that usually

authorize a single person at a time, e.g., an entrance system
or an IoT customization scheme. If multiple users are present
at different distances from the radar, a simple extension of
looking at different ranges separately would enable multi-user
support for GaitCube. For more complicated scenarios, we
plan to investigate the radar device’s potential for multi-target
detection [23], [24].
Walking Direction: Our system requires a user to walk
towards or away from the device to ensure the successful
construction of gait cubes. Although this somewhat imposes
some limitations, GaitCube can recognize a user with good
accuracy even with only one step. Therefore, we believe
GaitCube is a practical system even with this limitation. Some
other works [24], [25] relax the constraints by relying on point
clouds and collecting data with different walking directions or
with multiple devices. These approaches, however, have much
more complicated and extensive training procedures, and may
not be environment independent.
Larger Dataset: Many works in the literature build a dataset
of a dozen of users [23], [25]–[27], while some of them may
have more users (yet usually with one single location at a
single time for both training and testing) [5], [10], [24], [28].
Due to the budget constraints and the COVID-19 pandemic,
we limit our dataset to 10 users as well. But encouraged by
the remarkable performance, we plan to validate GaitCube on
a larger dataset later.

VII. RELATED WORK

Wireless sensing has been an emerging field [31]–[35]
in recent years, with applications to vital signs monitoring
(e.g. breathing, heart-rate) [11], [12], indoor localization [36],
[37], gesture recognition [38], as well as gait recognition.
Among different wireless sensing paradigms, WiFi and radar-
based systems are of interest for our gait identification system
design.

WiFi-based: WiFi based solutions usually extract features
from Channel State Information (CSI) [5], [6], [10], [22], [39]–
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TABLE V: Comparison of GaitCube with the state-of-the-art-methods

Method Input Tracking Accuracy
(People)

Location Resp.
Time

Acc. in
Diff. Env

Training
Data

Range Area Num.
Parameters

Vandersmissen
et al. [29]

Spectrum
(2D)

None 84.9%
(5)

Indoor,
same loc.

3s 78.6%(5) 20 mins 9.5m Open spaces 32k+

Radar-ID [27] Spectrum
(2D)

None 85.6%
(10)

Outdoor,
same loc.

2s N/A 7 mins 10m Outdoor 61M+

mID [25] Point Clouds Kalman
Filter

89.0%
(12)

Indoor,
same loc.

2s N/A 9 mins 5m Open space 8.5M+

mmGaitNet
[24]1

Point Clouds Clustering-
based

90.0%
(10)

Indoor,
same loc.

3s 86.0%
(10)

16 mins 8m Open space N/A

Pegoraro et
al. [30]

Spectrum
(2D)

Kalman
Filter

98.27%
(4)

Indoor,
same loc.

2s N/A 20 mins 10m Open space 75k+

MU-ID [23] Range-Time-
Velocity

Clustering-
based

97.7%
(10)

Indoor,
same loc

1 step
∼ 0.5s

78.0%
(5)

1 min2 8m Open space,
corridor

4M+

GaitCube Range-
Spectrum(3D)

Peak
Tracking

96.1%
(10)

Indoor,
new loc.

1 step
∼ 0.5s

79.1%
(10)

2 mins 11m Open spaces,
corridors

140k

1 Uses multiple radar devices for recognition, and can separate multiple users.
2 Operates on single direction data (i.e. walking towards the device)

[42]. Either hand crafted features from the WiFi CSI [5], [10],
[39], [40] are extracted, or automatic, learning based systems
[41]–[43] have been proposed. One major disadvantage is the
fact that WiFi-based systems are difficult to generalize well to
new locations due to the poor resolution of multipath indoors.
Most of the early works use a single location at a single time
and shuffles training/testing data randomly, rendering uncer-
tain performance at another location/time [5], [6]. As validated
by [43], the performance of several classical works using
WiFi, such as [5], [6] for identification, decreases significantly
when tested at a new location. Another method is extracting
physical features from WiFi CSI, such as speed information
and building a classifier using related features, as done in
[22]. Although this approach is shown to be less environment-
dependent, it cannot capture speeds of different limbs and the
authors report an accuracy of 70% for 10 users. In addition,
recent works [43]–[45] resort to deep learning to enable cross-
domain recognition, but may still require (unlabeled) data
collection from a new environment to enable operation at a
different location.

Radar-based: Compared to the WiFi devices, radars offer
much higher resolution and thus enable extraction of the
fine-grained motion signatures for classification. Early works
employ customized radars for characterizing human gait [46],
activity recognition [47], extracting motion of different limbs
based on their range-Doppler signatures [20], and recon-
structing human posture [48]. Recently, compact radars have
become commercially available. By using Doppler signatures
reported by COTS devices, different methods have been pro-
posed for gait-based identification, as in [26], [27], [29], [30].
In addition, point cloud based methods are also proposed [24],
[25], which extract the point cloud data directly from the
radar device and apply deep learning methods to process and
identify human gait. Using point clouds are prone to errors
reported by the radar device during the point cloud generation
especially for rich multipath environments, as noted in [25],
limited by range (e.g. [25] operates at 5 meters), used in
open spaces only, as in [24], [25] and require computationally
intensive methods to process the point cloud data. Similar
to WiFi-based works, many of the existing works use data
collection done at once and do not verify their performance
in more practical settings [25], [27], [30]. The latest work

[23] uses a 2D range-time-(max-velocity) plot and focuses on
human foot for identification, which potentially misses rich
information of human gait. Although the authors report an
accuracy of 97% for 10 people tested at the same location as
training, their performance decreases to 78% for a dataset of 5
people when tested at a different location. The authors in [28]
study the problem of (re)identification over a long period of
time and different locations, but they use a custom-built radar
with favorable settings. We summarize some of the related
work in Table V, and note that the existing methods require
much longer response times, due to using point clouds, or
fixed window spectrograms, are not tested in new locations
and/or affected by location changes severely, require much
longer data collection sessions, and have more limited ranges.
Different from the previous works, GaitCube shows its high
performance generalized to different locations and time, and
more importantly, can register and recognize a user rapidly
with minimal data required, rendering it a more practical gait
recognition system.

VIII. CONCLUSION

In this paper, we propose GaitCube, a practical gait recog-
nition system that requires minimal data for training (e.g.,
less than two minutes of data) and testing (e.g., a single
gait cycle) while maintaining high performance over different
locations and times. GaitCube learns from a distinct gait cube
processing with a neural network. Experiments with 10 users
at different locations and times show that GaitCube achieves
an accuracy of 96.1% with a single walking cycle which
further improves to 98.8% with two cycles, and the accuracy
maintains 79.1% even with only two minutes of training data
at a single location, promising it a practical solution for real
applications.
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