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Abstract 

The time-recursive computation has been proved as a partic- 
ularly useful tool in real-time data compression and in trans- 
form domain adaptive filtering, with applications in the ar- 
eas of audio, radar, sonar and video. Unlike the FFT based 
ones, the time-recursive architectures require only local com- 
munication. Also, they are modular and regular, thus they 
are very appropriate for VLSI implementation and they al- 
low high degree of parallelism. In t.his paper, we propose an 
architectural framework for parallel time-recursive computa- 
tion. We consider a class of linear operators that consists of 
the discrete time, time invariant, compactly supported, but 
otherwise arbitrary kernel functions. We define a shift p rop  
erty of the linear operators and reveal its relation with the 
time-recursive implementation. We demonstrate the poten- 
tial of the proposed framework by designing a time-recursive 
architecture for the Discrete Wavelet Transform. 

1 I N T R O D U C T I O N  

In many signal processing applications the key compu- 
tation consists of a mapping operator [ho h1 ... hnr-11 : 
z(.) -+ X ( - ) ,  which operates on the semi-infinite sequence 
of scalar data z(.) and produces the sequence X ( . )  as fol- 
lows: 

N-I 

X ( t )  = h,z(t + n - N + I) ,  t = 0 , 1 , .  . . . (1) 
n=O 

A time-recursive implementation of a mapping opera- 
tor [hn hl . . . hN-11 is the one that. is based on an update 
computation of the type 

X ( t  + 1)  = U ( X ( t ) , z ( f  + 1) ) .  

For example, if we have [h, = 1, n = 0 , 1 , .  . . , N - 11, then 
X ( t )  will be the sum of the last N values in the input stream. 
The recursive algorithmic implementation of this operator 
will be simply the computation 

X ( t  + 1)  = X ( t )  + ~ ( t  + 1 )  - ~ ( t  - N + 1).  

The time-recursive computation has been proved as a 
particularly useful tool in real-time data compression [l, 2,3] 
and in transform domain adaptive filtering [4, 5 ,  61, with 

applications in the areas of audio, radar, sonar and video. 
There is a common infrastructure among t,he mapping o p  
erators that are involved in these diverse applications. The 
unifying feature is a shift property we discuss in the follow- 
ing Section. We also show how this pr0pert.y dictates t,he 
time-recursive architectural design. In Sect,ion 3, we de- 
sign a time-recursive archit.ecture for the Discret.e Wa.velet. 
Transform (DWT). We conclude wit,h Sect,ion 4. 

2 A R C H I T E C T U R A L  FR.AMEWORK 

We can specify a mapping opemtor [ / i o  h l  . . . I t x - i ]  

with a function f(.), for which t.he values at. t.he poiiit,s 
0, I , . . . ,  N - 1 are the prescribed coefficient,s: h,, = 
f (n ) ,  n = 0, 1 , .  . . , N - 1 .  In t,lie sequel. we will use the 
term kernel function or simply kernel for t.his funct.ioii f (  .). 
Furthermore, we will call kerncl CJYOU~J a vect,or of kernel 
functions 

f(.) = [fo(.) f l ( . )  . . '  f . z r - l ( . ) l r .  

Shift Property: A kernel grotrp f (  .)  sati.$fies the .diift 
property (SP), i j  it satisfie.5 the  (ninti.i.i.) difierence eqiicitioii 

f(n - 1) = Rf ( , I . ) ,  ) i  = I .  2 .  . . . . N ,  ( 2 )  

with specified final condition f(LV), iohcrr-c. R i.5 a conafont 
matrix of site M x A l .  
Lemma 1 A recursive implementation of (I, kernel grotip 
f(.) is feusible zj th is  kernel grotcp satisfie-s the  shift I J ~ O ~ -  

erty. 

Proof: (2)  gives: 

AI-I 

f p ( ' i I ,  - 1)  = c r , , s , c I t ) .  

y=o 

for n = 1 , 2 ,  . . . , .Ar, p = CJ. 1 .  . . . . d l  - 1. where vpq ,  11. q = 
0, 1,. . . , M - 1 are t,he e1ement.s of the ina.trix R. Let. 

N-1 

~ , ( t )  = f p ( t i . ) : r ( t  + it - :Y + 11, ( 3 )  
,3=0 

for p = 0,1, . . . , A l  - 1. Suppose this is availahle at. t.lie t,iiiir 
instant t+1.  For the quant,it,ies -Yp7(t+1). 1' = 0 . 1 . .  . . . M - 1  
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we have: 

and therefore we obtain: 

p = 0 , l  , . . . , M - 1. If we assume knowledge of the boundary 
values { f q ( 0 ) , f q ( N ) ,  q = O , l , . . . , M - l } ,  (4) specifies the 
algorithm that performs the update computation we were 
after. Furthermore, note that if R is nonsingular, knowledge 
of f ( 0 )  yields f ( N ) .  0 

Corollary 1 A kernel group f(.) that satisfies the shift 
property can be implemented recursively as follows: 

1. Compute the matrix R by evaluatingf(n - 1) and us- 
ing (2). 

2. Evaluate f(n) at the points n = 0 und n = N .  

3. At each time instant 2 evaluate ( 4 ) .  

Note that the first two steps of the above procedure belong 
in the initialization phase (off-line computation). 

The issue of specifying a family of kernel groups that 
satisfy the shift property is addressed by lemma 2: 

Lemma 2 The shift property (SP) is satisfied by: 

1.  

2. 

3. 

4 .  

5. 

The singleton kernel group [cb"], where b and c are 
non-zero free parameters. 

The kernel group [coob" + colb-n,clobn + c l ~ b - " ] ~ ,  
where b is a non-zero parameter and the coeficients 
are free parameters, such that coocl1 - COICIO # 0. 

The kernelgroup [co,cl a , . . . , c ~ n ~ ] ~ ,  whereQ is an 
arbitrary positive integer and the coefficients are non- 
zero parameters. 

The union of two kernel groups that satisfy SP. 

The Cartesian product of two kernel groups that satisfy 
SP. 

The proof of this lemma can be found in [7]. The kernel 
functions of the Short Term Fourier Transform, the Discrete 
Cosine Transform and the Modulated Lapped Transform [8] 
belong in the class of kernels specified by lemma 2. Efficient 
time-recursive architectures for these transforms have been 
designed in [9], in a systematic way. On table 1,  we provide 
the relevant cost metrics. In the following Section, we ad- 
dress the problem o€ the time-recursive architecture design 
for the Discrete Wavelet Transform (DWT). 

3 T I M E - R E C U R S I V E  A R C H I T E C T U R E  FOR 
THE DWT 

We consider the implemeiit,at,ion of a. pair of finit,e im- 
pulse response filters (FIR), 

H = [ h . ~ - l  h ~ - 2  . . .  It03 

and 
G = [gN-i 8N-z t . .  .go], 

that are used in the implementation of the DWT, in a time- 
recursive way. Implement,iiig the filt,ers H and G is equiva- 
lent to implementing the pair of ma.pping operat.ors 

In order to proceed wit,h the architecture design we need to 
determine the kernel group associated t,o t,he pair of mapping 
operators (5). 
Lemma 3 The size of the smcrllest kernel group that cctn 
be used to implement the pair of mcrppany operators ( 5 )  in 
a time-recursive may is eqtral to the inin.imal order oj  the 
partial realization of the 1-input 2-ozrtptit LTZ system with 
the N first Markov paroineters 6eiriy eptral t o  the coe f i c imts  
of the specified operator I .  

Proof: Given the pair of mapping operat,ors ( 5 )  we can have 
the following coefficient. expansion: 

[It,, grZlT = cA"b. 1 1  = 0. I .  " .  . - 1 ,  ( 6 )  

where the sizes of A ,  b and c are Ad x .If, 211 x 1 and 2 x i\/ 
respectively [ lo ,  111. Let. 

f (n)  = A"b ( 7 )  

be a kernel group of size ill. Since f ( n  - 1 )  = A"-'b = 
A-'f(n), this kernel group sa.t,isfies t,lw shift, property with 

R = A-' a.nd f( 0 )  = h. ( 8 )  

From (G)  and (7) we get a l inear decompositionof t,he map- 
ping operator coefficient,s [h , ,  g,,IT = cf(,u). Therefore, t,he 
time recursive implement,ation of t,he mapping operat,or can 
be based on the t,he kernel group f (  .). In our const,ruct.ion. 
the size of the kernel group 114 is equal to t,he order of t,he 
realization {A, b, c}. Thus. minimizing the number of t.he 
decomposition kernels is eqnivalent t.o minimizing t.he order 
of the the partial realization of t.he LTI syst,eni, for which 
the first N Markov pa.ra.met.ers a.re equal t,o {.lie coefficirtit,s 
of our operator. 0 

We can proceed now with t,he a.rcliit,ect,nre design as fol- 
lows. We specify the partial realiza.t,ion {A. b. c} of minimal 
order M for the linear syst,em, so t,ha.t, 

[It., ,  ynIT = cA"b. 11 = 0, 1 .  . . . . ;V - 1 ( 9 )  

'For a tutorial text on t.he linear time iiivariant ( L T I )  syst.ems. t.he 
partial order realizat.ion and the Markov parameters of an LTI system 
one may refer to [lo]. 



[IO, 111. We bring the triplet {A, b,c} in the modal canon- 
ical form [lo]. Since H and G specify a lossless system the 
magnitude of all the eigenvalues of the system matrix A is 
equal to 1 [12]. For the sake of concreteness, suppose that 
the order of the system is M = 3. The format of the matrix 
A will be as follows: 

A =  [ - s ina  cosa o , 

where Q takes values in the interval [ 0 , 2 ~ )  and /3 equals 
either 1 or -1. The M x 1 vector b and the 2 x M matrix 
c do not have any particular structure. 

By substituting the above expression of A in (9) and 
expanding the matrix notation we obtain 

1 COSQ s in0  0 

0 O P  

1 [ c o y n  s inan 0 

0 P" 
- s inan  cosan 0 ] [ ii ] coo CO1 CO2 [ c10 c11 c12 

and consequently 

coobo + C O l b l  cos an+ 1 (10) [ :$: ] P". 

" I = [  c1obo + C l l b l  

-c01bo + coob1 sin an + 1 gn C l l b O  + C l O b l  ] 
The kernel groups we need to implement are 

and 
f1(n) = f1o(n) = P72.  

For the kernel group fo(.) we have fO(n - 1) = Rfo(n) with 

cosa s ina  
- s ina  cosa R =  [ 

We also have 

The resulted architecture implies module MO in figure 1. 
On the other hand, for the singleton kernel group fl(.) we 
have fi(n. - 1) = Rfl(n)  with R = and also flo(0) = 
1,  flo(N) = PN. The associated architecture is demon- 
strated by module MI in figure 1. No multipliers are needed 
for the implementation of f1(.), since all the parameters in- 
volved have unit magnitude. The architectural implemen- 
tation of the given pair of mapping operators for the case 
where M = 3 is shown in figure 1. 

For the general case of a system of an arbitrary order 
M we need to implement M kernel functions. Among these 
functions no more than two are of the form of f1(.) seen 
above (since only two distinct such functions exist with 
/3 = 1 and P = -1) and they are implemented by mod- 
ule MI. The rest of the kernel functions will group into 

pairs of cosine-sine functions specified by the paramet,er a, 
as dictated by fo(.) in the above exainple. a.ncl t,hey can be 
implemented by module MO. 

The implementation of module MO in figure 1 requires 1 
multipliers, 3 adders and one CORDIC processor that will 
evaluate the rotation involved. For t,he implemeiit,at,ion of 
module MI we need 2 adders. We implement the desired 
pair of mapping operators as two weighted sums of the out- 
puts of the above described parts. If t,he size of the associ- 
ated kernel group is M the cost of this int~erconiiectioii is 2 M  
multipliers and 2(A4 - 1) adders. The overall cost. of the de- 
sign is not higher from 364 mult,ipliers. [7Af /2J  adders aiicl 
M / 2  CORDIC processors. 

Let us consider now the implement,at,ion of t,he pair of 
wavelet filters H and G, whose coefficients are given on t,a- 
ble 2 [13]. The lengths of the filters H and G are 9 and T 
respectively. The size of the kernel group we have t,o imple- 
ment (that. is the order of t,he associabed linear syst.em) is 
M = 6 .  The architecture involves 2 copies of module MO 
and 2 copies of module A I ] .  The values of t.lie para.met,ers 
a and P ,  as well as t,he out,put weight,s are given on table 2 .  
The resulted architecture is ShOWll on figure 1. 

For the inverse Discret,e Wavelet. Transform (IDWT) we 
have to implement the mirror filt,ers H and of G a.nd 
H respectively [13]. The archit,ect.ural implement,a.t.ioii is 
obtained if we simply replace t,lie pa.ra.met,er a wit.11 7r - (I 

in the MO modules and t,he para.rnet.er .? wit,li - d  i n  t.he A11 
modules in figure 2 .  The size of t.he kernel group is .If = 6 
and the implement,ation coat, is 15 mult,ipliers, '51) a.clders a.nd 
2 CORDIC processors. 

4 CONCLUSION 

The shift property dictates t,he common infrastruct.ure 
of the time-recursive comput,at,ion i n  a variet,y of applica- 
tions. The time-recursive approach yields a.rchit.ectnra1 im- 
plementations that are modu1a.r. regular and require local 
communication, thus t.hev a.re very appr0priat.e for VLSI 
implementation. The time-reculsive inipleinent,at,ion of t,he 
DWT is discussed in det.a.il. The saine design procedure 
can be applied for iinplement,iiig a.n arbit,ra.ry lossless sys- 
tem [12], thus it establishes the generic nature of the time- 
recursive architectural framework. The implement,at,ion cost. 
depends on the eigenvalue decomposit,ion of t,his syst,ein ['J]. 
In terms of cost efficiency, represent,at,ive examples among 
the time-recursive architec.ctures a.re t.he STFT. the DCT a.nd 
the MLT [9]. 
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1 multiplications addit.ions CORDICs 
DCT I 2iV - I 3 s  + 2 

Table 1: Operator counts for t,inie-recursive architect.ures of 
some N-point block transforms. 

Figure 1: The archit.ecrural modules usecl for DWT 

Xdt) 

Figure 2:  Time-recursive architecture for the DWT filters 
specified in t.able 1. 
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