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ABSTRACT

Accurate monitoring of human vital signs (e.g. breathing and

heart rates) is crucial in detecting medical problems. In this

paper, we propose ViMo, a calibration-free remote Vital sign

Monitoring system that can simultaneously monitor multiple

users by leveraging the channel impulse response (CIR) of

60GHz WiFi. By exploiting the periodicity introduced by res-

piration, we first propose a human detection algorithm which

does not require any prior calibration. Then, we apply the

auto-correlation function (ACF) of the CIR phase to estimate

the breathing rate. Lastly, to mitigate the impact of the breath-

ing signal on the weak heartbeat signal, the cubic spline inter-

polation is used to eliminate the breathing signal before the

estimation of the heart rate. Extensive experiments show that

ViMo can achieve a median accuracy of 0.19 BPM for breath-

ing rate estimation and 1 BPM for heart rate estimation, out-

performing the existing non-contact solutions that are purely

based on frequency analysis.
Index Terms— Vital signs monitoring, 60GHz WiFi,

channel impulse response (CIR), cubic spline interpolation.

1. INTRODUCTION

Vital signs such as breathing and heartbeat play a crucial role

to evaluate an individual’s health status. Most conventional

vital sign monitoring methods require physical contact, which

is not convenient for daily use.

With the ubiquitous deployment of WiFi devices, recent

research has considered to use WiFi signals for vital sign es-

timation [1,2]. However, the capability of the 2.4/5GHz WiFi

system is fundamentally limited by the narrow bandwidth,

small antenna number, and large wavelength. Specifically,

due to the small number of antennas, the spatial resolution of

these systems is too low to distinguish the RF signals reflected

by multiple users [3–7]. Furthermore, the large wavelength

and multiple reflections from indoor objects make it difficult

to observe the subtle change caused by heartbeat.

The emerging of 60GHz WiFi (e.g., 802.11ad [8]) brings

new opportunities to the RF-based vital sign monitoring.

mmVital proposed in [9] shows the possibility of utilizing

the received signal strength (RSS) of 60GHz millimeter-wave

to do vital sign monitoring. However, the system needs to

be calibrated first to eliminate the influence introduced by
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Fig. 1: Coordinate system and typical signal

the environment. Furthermore, the extra mechanical cost is

introduced to change the antenna direction of horn antennas.

In this work, we develop ViMo, a Vital sign Monitoring

system using commercial 60GHz WiFi. We utilize the fine-

grained channel impulse response (CIR) to detect vital signs.

The key contributions of the paper are summarized as below.

• We build a theoretical model of the CIR with the exis-

tence of multiple vital signs.

• A calibration-free human detection approach is pro-

posed by leveraging large reflection strength of human

subjects as well as periodicity introduced by vital signs.

• A novel method based on cubic spline interpolation is

introduced to remove respiration signals for heart rate

estimation.

The rest of the paper is organized as follows. Section 2

presents the theoretical model of CIR with the influence of

vital signs. The details of the design are introduced in Section

3 and the experimental evaluation is discussed in Section 4.

Section 5 concludes the paper.

2. THEORETICAL MODELING OF CIR
MEASUREMENTS

As shown in Fig. 1 (a), we use commodity Qualcomm 60GHz

chipsets, where the device operates in radar mode when mon-

itoring vital signs. The device has 32 elements assembled in a

6×6 layout for both the transmitter (Tx) and the receiver (Rx)

and operates at 60GHz center frequency with 3.52GHz band-

width. The Tx transmits a known pulse sequence for channel

impulse response (CIR) estimation.

Assume the traveled distance of the electromagnetic (EM)

wave reflected by human chest is d(t), then the CIR between

Tx antenna m and Rx antenna n can be expressed as
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Fig. 2: Processing flow of ViMo

hm,n(t) = am,n(t) exp(−j2π
dm,n(t)

λc
), (1)

where am,n(t) is the complex channel gain, λc denotes the

wavelength of the carrier. Due to the modulation of the vital

signs, i.e., respiration and heartbeat, dm,n(t) appears to be

a combination of two periodic signals, which can be further

expressed as

dm,n(t) = d0(m,n) + sr(t) + sh(t), (2)

where sr(t) and sh(t) denotes the distance change due to

respiration and heartbeat. Besides, d0(m,n) = lTsc +
Δd(m,n), where Ts = 1/B denotes the fast time resolution

and B stands for the system bandwidth. Here we assume

the reflected signal falls into the l-th tap of the measured

CIR with residual Δd(m,n), then the l-th tap of the CIR,

hl(t) = [h1,1(t), h1,2(t), . . . , hM,N (t)]T can be expressed as

hl(t) = a(t)� exp(−j2π
d0 + sr(t) + sh(t)

λc
)

= ã exp(−j2π
sr(t) + sh(t)

λc
),

(3)

where d0 = [d0(1, 1), d0(1, 2), . . . , d0(M,N)]T , a(t) =
[a1,1(t), a1,2(t), . . . , aM,N (t)]T , and � denotes elementwise

product. We assume a(t) is time-invariant due to the tiny

movement of the subject, and the common phase shift is ab-

sorbed in the term ã. The CIR after performing beamforming

can be expressed as

hθ,φ(t) = sH(θ, φ)hl(t) + ε(t), (4)

where s(θ, φ) is the steering vector pointing to the direction

(θ, φ) and ε(t) stands for additive white Gaussian noise which

are independent and identically distributed (I.I.D) for differ-

ent links. It is apparent that the phase of the CIR measurement

changes periodically in slow time due to the periodic motions

of respiration and heartbeat, as shown in (3). Fig. 1 (b) shows

a typical phase signal containing vital signs collected by our

system.

3. DESIGN OF VIMO

The workflow of ViMo consists of two main steps, i.e., hu-
man finding and vital sign monitoring, as shown in Fig.2.

The details will be discussed in the following subsections.

3.1. Object detection
Since various indoor objects (e.g., wall, desk, etc.) reflect the

EM wave, before starting monitoring vital signs, we first need

to detect human subjects in the vicinity of the Tx and the Rx.

The CIR measurement for the case when there is no reflecting

object and the case when there is a static reflecting object on

a certain tap can be expressed as,

hempty
θ,φ (t) = ε(t), (5)

and

hstatic
θ,φ (t) = sH(θ, φ)[a� exp(−j2π

d0

λc
)] + ε(t), (6)

respectively. It is obvious that the power response when there

is a reflecting object is much larger than the empty tap. Be-

sides, for the same reflecting object, a shorter distance corre-

sponds to a larger power gain. Therefore, we can use thresh-

olding on the power response to determine if a reflecting ob-

ject exists and the threshold for the power response should be

adaptive to the distance between the device and the subject.

In our system, a cell-averaging constant false alarm rate

(CA-CFAR) [10] algorithm is adopted to detect human pres-

ence. Specifically, the threshold level is calculated by esti-

mating the level of the noise floor around the cell under test

(CUT). Furthermore, the guard cell is used to avoid corrupt-

ing estimates with power from the CUT itself. By applying

CA-CFAR, we can find the candidate taps which are affected

by reflecting objects. Observe that the tap affected by chest

movement will exhibit a periodic phase according to (3) while

the tap affected by the static reflector does not, we will deter-

mine the final estimate of human location by considering the

periodicity property, which will be discussed in Section 3.2.

3.2. Breathing rate estimation

Observing that the breathing signal is periodic, spectrum anal-

ysis can be used to estimate the respiration rate [11]. How-

ever, the frequency resolution is Δf = 1
W breath per minute

(BPM), where W is the window length in seconds. Therefore,

to get an acceptable estimation accuracy, the window length

should be long enough, which will cause a large delay. In

our system, we adopt a statistical approach by examining the

auto-correlation function (ACF) of the candidate CIR phase.

Here we denote the time-variant part of CIR phase measure-

ment as

x(t) = sr(t) + sh(t) + n(t), (7)

where n(t) is the random phase offset introduced by noise,

and is also a random variable independent in time instances.

Thus the ACF of x(t) can be calculated as

ρ(τ) =
cov[x(t), x(t+ τ)]

cov[x(t), x(t)]
, (8)

where τ denotes the time lag, and cov[·] denotes the con-

variance operator. Assume that the distance change caused
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Fig. 3: Example of vital sign monitoring. The subject has a breathing rate of 16 BPM and a heart rate of 80 BPM.

by heartbeat sh(t) is uncorrelated with the distance change

caused by respiration sr(t), then ρ(τ) can be expressed as

ρ(τ) =
var[sr(t)]

var[x(t)]
ρr(τ)+

var[sh(t)]

var[x(t)]
ρh(τ)+

var[n(t)]

var[x(t)]
ρn(τ),

(9)

where var[x(t)] = var[sr(t)] + var[sh(t)] + var[n(t)],
and var[·] denotes the variance operator. ρr(τ), ρh(τ) and

ρn(τ) denote the ACF of respiration, heartbeat and noise

respectively. Since we have var[sr(t)] � var[sh(t)] and

var[sr(t)] � var[n(t)], then we have the approximation that

ρ(τ) ≈ ρr(τ). The ACF will have a definite peak at a certain

delay which corresponds to the breathing cycle as shown in

Fig. 3 (a). ACF analysis will be adopted to the candidate cells

in CA-CFAR to eliminate the static objects, and thus we can

locate human subjects.

3.3. Heart rate estimation

Heartbeat can introduce minute movements of the chest,

which can be detected as small peaks in the unwrapped phase

as shown in Fig. 1 (b). Past works [9,12,13] try to directly uti-

lize frequency analysis and bandpass filter (BPF) to estimate

the heart rate. However, due to the harmonics introduced by

respiration, it is easy to pick up the wrong peak for estimation

as shown in Fig. 3 (c). To eliminate the impact caused by

respiration, the polynomial fitting has been used [14, 15] to

remove respiration motion. However, one of the main draw-

backs of the polynomial fitting is the order selection. In the

previous work, the order is just selected by empirical expe-

rience, which can easily cause under-fitting or over-fitting

when the experimental setting is changed.

In this work, we utilize cubic spline interpolation [16],

which can effectively remove the respiration while keeping

the heartbeat motion as shown in Fig. 3 (b), and then the

heart rate can be easily estimated by performing a fast Fourier
transform (FFT). The spectrum of the residue after the elim-

ination of the breathing signal is shown in Fig. 3 (c), and it

can be easily seen that the harmonics of breathing has been

effectively suppressed.

4. EXPERIMENT EVALUATION

In this section, we evaluate ViMo in practical settings using a

commodity 802.11ad chipset in a typical office of size 3.5m×
3.2 m. We enroll 8 participants (4 male and 4 female) aging

from 22 to 35 for testing. The ground truth is provided by a

commercial sensor with a chest strap [17].

4.1. Impact of distance

In this section, we investigate the effect of the distance be-

tween the device and human subject on the estimation accu-

racy. Experiment participants sit at different places facing the

device. Fig. 4 (a) and Fig. 5 (a) illustrate the empirical cumu-

lative distribution function (CDF) of the absolute breathing

and heart rate error. To account for the miss-detection, we set

the estimation to be 0 BPM when the target is missed. Be-

sides, since the resolution of our estimation for breathing is

0.05 BPM, and the ground truth and estimation for heart rate

are both 1 beat/minute (BPM), the CDFs appear to be step-

wise.

As expected, the performance degrades with distance due

to the signal to noise ratio (SNR) degradation. Furthermore,

we can see that the degradation of breathing rate estimation

is less than the heart rate estimation. This is because the

breathing signal is much stronger than the heartbeat signal,

which corresponds to higher SNR. The median estimation er-

ror for respiration rate and heart rate are within 0.19 BPM and

1 BPM respectively when the distance is within 1.5 m. They

raise to 0.22 BPM and 2 BPM when the distance increases to

2 m.

4.2. Impact of orientation

In this study, the orientation corresponds to the closest part of

the user w.r.t the device. The distance from the user to device

is set to be 1 m. Fig. 4 (b) and Fig. 5 (b) show the effect of user

orientation. We can see that the equivalent performance of

heart rate estimation can be achieved with ”front” and ”left”

settings, outperforming than the ”right” and ”back” settings.

This is due to the physiological structure of human beings,

where the vibration caused by the heartbeat is larger on the

left side of the chest. However, the inhale and exhale will
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Fig. 4: Performance of respiration rate estimation. ViMo estimates w.r.t. (a) the distance (b) the orientation (c) different users

0 2 4 6 8 10
Absolute Error (BPM)

0

0.2

0.4

0.6

0.8

1

E
m

pi
ric

al
 C

D
F

50
100
150
200

(a) The impact of distance

0 2 4 6 8 10
Absolute error (BPM)

0

0.2

0.4

0.6

0.8

1

E
m

pi
ric

al
 C

D
F

Front
Left
Right
Back

(b) The impact of orientation

#1 #2 #3 #4 #5 #6 #7 #8
Subject

0

5

10

15

A
bs

ol
ut

e 
E

rr
or

 (
B

P
M

)

(c) The impact of user heterogeneity

Fig. 5: Performance of heart rate estimation. ViMo estimates w.r.t. (a) the distance (b) the orientation (c) different users

cause the whole chest move up and down, so for the respira-

tion rate, execpt for the ”back” case, all the other orientations

have similar performance.

4.3. Impact of user heterogeneity

In this part, we investigate the impact of the user heterogene-

ity on the performance. The difference in error distribution

can be caused by various factors, such as reflection loss and

heartbeat strength, etc. Fig. 4 (c) gives the respiration rate

estimation performance, with the maximum median error

within 0.2 BPM for all volunteers. Fig. 5 (c) shows the er-

ror distribution of absolute heart rate error of all 8 subjects,

where all of them have a median error within 2 BPM.

4.4. Multi-user case

In this part, we study the impact of angle separation between

multiple users, where two users sit at a distance of 1 m away

from the device with different separation angles. We define

the detection index (DI) of a separation angle as the ratio be-

tween the number of samples when the number of detected

targets matches the ground truth and the total number of sam-

ples. We also define the false-alarm index (FI) of a separation

angle as the ratio between the number of samples when the

number of detected targets is larger than the ground truth and

the total number of samples. We also give the median error

of breathing rate and heart rate estimation for both users. The

results are summarized in Tab. 1.

Compared to the single-user scenario, the performance

degrades at small separation angles, but the performance is

Separation

angle
DI FI

Med. error

of breathing

Med. error

of heart rate

30◦ 0.87 0 (0.21;0.97) (1;1)

45◦ 0.96 0 (0.63;0.21) (3;1)

60◦ 1 0 (0.22;0.21) (1;1)

75◦ 1 0 (0.22;0.28) (1;1)

Table 1: Performance for different separation angles

similar for different separation angles if the angels are large

enough. This is because that when the distance of two tar-

gets is small enough, the distance of the candidate cells in

CA-CFAR associated with each user can be smaller than the

predefined threshold. Thus, there will be only one represen-

tative cell left, resulting in a miss detection. Also, the high

SNR cells of one user can be merged with the other user’s,

therefore, the SNR of the representative cell for vital signs

estimation can drop, resulting in degradation of the perfor-

mance.

5. CONCLUSION

In this paper, we develop ViMo to track human vital signs us-

ing CIR measured by 60GHz commercial WiFi chips. We

design a human detection algorithm without calibration by

leveraging periodicity introduced by respiration. Cubic spline

interpolation is further introduced to eliminate the interfer-

ence of breathing signals on heart rate estimation. Experi-

ment results show the potential of the proposed system for

contactless human vital sign monitoring with high accuracy.
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