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Abstract—Human-computer interaction is a vital component in
today’s world and there is a constant quest for automated and
user-friendly techniques for interaction. Handwriting is one of the
most general and natural ways of interaction for humans. While
handwriting recognition is a well-studied problem, its counterpart
handwriting tracking is still being investigated. Most of the
existing handwriting tracking systems either require sensors
attached to the hand or involve specially designed hardware.
In this work, we propose a handwriting tracking system that
reuses a commodity 60GHz Wi-Fi radio as a radar. The moving
target is localized at each time instance and a trajectory is
constructed by connecting those location estimates. While the
digital beamforming technique and the pulsed radar are used
to recover the spatial and range information, Doppler velocity is
used to isolate the moving target from the static objects. Further,
subsample peak interpolation and smoothing techniques enhance
the overall performance of the proposed system. Extensive
experiments demonstrate an average tracking error of 2.5% of
the distance from the device and validate the robustness of the
system to different environments and experimental conditions.

I. INTRODUCTION

A rapid increase in automation fueled the quest for more ef-
ficient and user-friendly approaches that aid Human-Computer
Interaction (HCI). Smart surfaces and touch screens have
emerged as a more user-friendly alternative to the traditional
input devices such as the keyboard and the computer mouse.
But in an era where we are surrounded by numerous smart
connected devices, usually in small form factors, the space for
human-computer interaction cannot be limited by dedicated
hardware such as the touch screens. Instead, we are seeing
an increasing trend of ubiquitous interactions with machines
via in-the-air gestures, handwriting and voice-controllable
systems, which is also evidenced by recent industrial efforts
including Microsoft Kinect [1], Google Soli [2], Apple UWB
radar, Apple Siri, Amazon Alexa, Google Home, etc. Hand-
writing is a generalized form of a gesture and a natural way of
interaction for the humans and serves as an attractive approach
for HCI. Provided the mature handwriting recognition [3],
enabling pervasive and accurate tracking of handwriting in
the air or on the board will realize innumerable applications
in the field of HCI.

Handwriting tracking refers to recovering the trajectory
traced by a target of interest and can be done either actively
or passively. In active tracking systems, a sensor is mounted
on the moving target and the trajectory is recovered from

the sensor information. For instance, accelerometers in mobile
phones have been used to recover trajectories drawn in the air
[4]. RF-IDRAW uses RFID tags fixed on the user’s hand to
achieve multi-resolution positioning [5]. On the other hand,
in passive tracking, the user is not required to wear or carry
any electronic device. The sensor, be it a camera or a Wi-
Fi radio, is fixed on a static reference and the trajectory
traced by the moving target is recovered from the recorded
sensor information. Due to user convenience, passive tracking
systems are preferred over the active tracking systems. Most
of the passive tracking systems are camera-based and usually
aim to track a pen or finger-tip to determine the writing
trajectory [6]. However, all the camera-based approaches lead
to potential privacy concerns and may not work in low ambient
light.

Radio waves cover a significant portion of the electro-
magnetic (EM) spectrum ranging from 30 Hz to 300 GHz
and enable a wide range of applications. The one most
relevant to this work is the Wi-Fi communication. The 802.11
standard provides different frequency bands at 2.4 GHz and 5
GHz for Wi-Fi, which were exploited in the past to achieve
wireless sensing applications such as motion detection, vital
sign monitoring, human identification, indoor localization, etc.
[7], [8]. The performance, however, is fundamentally limited
by the bandwidths, antenna number, and carrier frequencies.
With the advent of the 5G technology and the accessibility
to the mmWave band (30 GHz-300 GHz), achieving higher
resolutions became possible. Since EM waves can easily
surpass objects smaller than their wavelength, mmWaves offer
this unique advantage of being able to reflect signals off a
pen or a finger thereby tracking changes at the millimeter
scale. Another advantage offered by the mmWaves is the
fewer number of multipath due to their heavy attenuation
and easy absorption by different surfaces. Also, such a high
bandwidth (few GHz) allows high resolution in the temporal
domain, which can distinguish between the arrival times of
different multipath. Owing to the aforementioned advantages,
we propose a handwriting tracking system using a commercial
60 GHz mmWave radar.

mTrack [9] is the most relevant existing work that can
passively track handwriting using the 60 GHz radio waves.
However, the system requires calibration and specially de-
signed multiple transceivers. Also, mTrack requires special
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surfaces to absorb reflected signals and minimize background
reflections. To the best of our knowledge, this is the first work
to use a single commercial 60 GHz mmWave radar to achieve
fine-grained handwriting tracking. The main contributions of
this work can be summarized as follows:
• We propose a handwriting tracking system using a single

commercial 60 GHz radar. This is a privacy-preserving,
precise, robust and calibration-free system that can enable
a writing surface on top of any flat surface or in the air.

• We present a complete end-to-end system to retrieve
handwritten characters within regions as small as 1 cm x
1 cm.

• We perform extensive experiments to analyze the perfor-
mance of the proposed system in different experimental
conditions and environments.

This paper is organized as follows. Section II presents
the preliminary information required for this work. Section
III describes the different stages of the handwriting tracking
algorithm in detail. Section IV demonstrates the performance
of the proposed system through various experiments and
finally, Section V concludes the paper.

II. PRELIMINARIES

A. The 60 GHz radar

Rx1 Rx2 Rx32

 Tb = 400 �s

Tp =10 �s

(a) (b)

Fig. 1: (a) Coordinate system of the radar, (b) One burst
consisting of 32 pulses.

In this work, we use Qualcomm’s 60 GHz mmWave radar,
which reuses a commercial 60GHz Wi-Fi chip by attaching
an extra antenna array, to record the channel impulse response
(CIR) time series during handwriting and process it to obtain
the handwriting trajectory. It is a monostatic pulsed radar
consisting of 32 transceivers. The 32 antennas are arranged
in a 6×6 grid with a separation of 3 mm between the adjacent
pair of antennas. The arrangement of the 32 transceivers and
the coordinate system of the radar is shown in Fig. 1a. In
this work, we use 1 transmitting antenna and 32 receiving
antennas.

The pulsed radar emits electromagnetic waves in the form
of short pulses which are reflected by different objects and
captured by the receiver antenna. A group of 32 pulses is
termed as a burst. The reflected pulse of each of the 32 pulses
in a burst is received by a different receiving antenna as
demonstrated in Fig. 1b. The figure shows one burst consisting
of 32 pulses. The duration of each pulse is Tp = 10 µs and the

Peak location obtained 
from discrete signal

Fig. 2: Subsample peak interpolation.

duration of each burst is Tb = 400 µs. The burst dimension is
known as the slow-time dimension in the radar literature while
the time dimension corresponding to the CIR taps is known
as the fast-time. A bandwidth of BW = 3.52 GHz allows a
time resolution of ∆t = 0.28 ns and hence a range accuracy
of c∆t

2 = 4.261 cm, where c is the speed of light.

B. Subsample Peak Interpolation (SPI)

The location of the maximum value of a signal is of great
significance in several applications and Subsample Peak Inter-
polation (SPI) is one of the common approaches to determine
the location of the peak value at sub-sample accuracy. For
example, SPI finds applications in time-of-flight estimation
[10], power spectral peak estimation [11], delay estimation
from correlation peaks [12] and etc. One of the widely used
methods for SPI is the parabolic interpolation at the location
of the peak. Fig. 2 shows an example of SPI. The circular
points in black are the three data points of the discrete signal
at the location of the peak. From the discrete signal values,
the location of the peak is at X = 0. By performing parabolic
interpolation near the peak using the peak value and the two
samples adjacent to the peak, the new location of the peak
is estimated. The point in red shows the new location of the
peak which is the vertex of the fitted parabola. SPI plays a
significant role in accurate estimation of the location of the
target which will be demonstrated in Section III.

III. HANDWRITING TRACKING ALGORITHM

The aim of the proposed algorithm is to recover the hand-
writing trajectory from the CIR time-series recorded while
writing. The location of the writing object is estimated at each
time instance and all such location estimates are accumulated
to form a trajectory. This trajectory is further smoothed to
obtain the final handwriting trajectory. An overview of the
steps involved is shown in Fig. 3.

Let the CIR for each time instance t, recorded for all the
32 receiving antennas be denoted by h[nrx, n, t], where nrx

is the receiving antenna index and n is the tap index of the
CIR. The range could be estimated from the tap index. To
extract the directional information, the received signals are
spatially filtered by leveraging the phased array structure of the
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Fig. 3: Overview of handwriting tracking system.

antenna. This forms the first stage of the handwriting tracking
algorithm.

A. Stage 1: Beamforming

Beamforming allows spatial filtering of signals arriving
from different directions using a phased antenna array [13].
In this work, classical beamforming is used on the received
CIR. Assuming K reflected signals which are incident on the
receiving antenna array, the received signal h at the receiver
nrx can be modeled as:

h[nrx, n, t] =
K∑

k=1

anrx
(azk, elk)gk[azk, elk, n, t], (1)

where gk is the kth incoming reflected signal from azimuth
and elevation angles azk and elk respectively, anrx is the
measured antenna response of the receiver nrx, n is the CIR
tap index and t is the time instance. The beamformed CIR
hbf [az, el, n, t] for the angle (az,el) is obtained by compen-
sating for the array response as:

hbf [az, el, n, t] = aH(az, el)h(., n, t), (2)

where a(az, el) is the vector of antenna responses of all the
receiver antennas for a signal arriving at an angle (az,el). To
simplify the notation, a vector T is used to denote the triplet
(az,el,n) as follows:

h[nrx, n, t]
beamforming−→ hbf [ az, el, n︸ ︷︷ ︸

T=[az,el,n]

, t] = hbf [T, t]. (3)

Utilizing the dynamic nature of the writing object, the pro-
posed algorithm can differentiate the writing object from all
the other static objects in the environment. This will be the
aim of the second stage.

B. Stage 2: Transformation to Doppler domain

The correspondence between the relative velocity of the
target and the observed frequency of the received signal, from
the Doppler effect, motivated us to transform the beamformed
signal to the frequency domain. This is achieved by performing
a Fourier transform along the slow-time dimension t, using a
moving window approach. The Fourier transform is applied in
a window of length wl and with a step size of ws. A value of

wl = 192 and ws = 32 is used in this work. The transformation
can be written as:

Hbf [T, f, s]
FFT←− hbf [T, t+(s−1)ws−wl +1 : t+(s−1)ws],

(4)

Hbf [T, f, s]←→ Hbf [T, v, s], f =
2v

c
fo, (5)

where Hbf is the transformed CIR, s is the window index,
fo is the carrier frequency, c is the speed of light, f is the
Doppler frequency and v is the relative radial velocity of the
target. Assuming a single moving target (e.g., the hand) in the
field of view, the maximum power in the non-zero frequency
bins is assumed to be corresponding to the target of interest.
For each T, the maximum power from different velocity bins
is extracted as follows:

v?T,s = argmax
v 6=0

|Hbf [T, v, s]|, (6)

Ĥbf [T, s] = |Hbf [T, v?T,s, s]|. (7)

The extracted Doppler power is analyzed to detect the target
in Stage 3.

C. Stage 3: Target detection

As the Doppler power spectrum is now available along
with the range and spatial information, estimating the location
of the peaks in the Doppler power spectrum can give the
location of the target. However, the target may or may not
be present at any given time instant and the maximum power
could correspond to noise/interference. To avoid such false
detections, the Doppler power is compared to a threshold.
In real systems, the noise and interference are unknown and
determining an absolute threshold is not relevant. This problem
has been solved in the literature by using an adaptive threshold.
The CA-CFAR (Cell Averaging-Constant False Alarm Rate)
technique is one of the most widely used approaches in radar
target detection systems [14].

A CFAR threshold map is computed for Ĥbf [T, s] and
the maximum power exceeding the threshold is considered
as corresponding to the target. Fig. 4a shows the Doppler
power for different azimuth and elevation angles and a fixed
range tap of 7 and the corresponding Doppler power with
CFAR thresholding in Fig. 4b. The maximum power from the
thresholded Doppler power is considered as corresponding to
the target and the arguments indicate the location of the target.
In this example, the target is located at an elevation of -8
degrees and an azimuth of -4 degrees with a Doppler power
of 63.49 dB. The location of the target is indicated by the
corresponding arguments as:

T?(s) = argmax
T

(Ĥbf [T, s]), (8)

where T?(s) = [az?(s), el?(s), r?(s)].
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(a) (b)

Fig. 4: (a) Doppler power at range tap 7 for different azimuth
and elevation angles, (b) Doppler power after CFAR thresh-
olding.

D. Stage 4: Target localization

At this point, the location estimate of the target can be ob-
tained for each time instance. To further improve the accuracy
of the location estimates, we leverage the observation that the
Doppler power “flows” gradually from one bin to another since
normal handwriting is generally smooth and continuous with
no drastic movements.

The observation can be demonstrated by a simple experi-
ment. Let us focus on the range dimension, for instance, and
draw a straight line away from the device. Consider 3 taps at
ranges 46.46 cm (tap 11), 51.12 cm (tap 12) and 55.38 cm
(tap 13). As the target moves away from the device crossing
the above ranges, a gradual change in the Doppler power is
observed for the 3 taps as shown in Fig. 5a. Since we consider
the tap with maximum Doppler power as that corresponding
to the target, our range estimates are discrete as shown in the
black solid line in Fig. 5a. Leveraging the observation that the
Doppler power transition from one tap to another is smooth
and continuous, the range estimate can further be improved
using the Doppler power of the adjacent taps. Thus, a quadratic
curve is fitted through the three values near the peak and the
location of the vertex of the parabola is taken as the location
of the peak. This technique is known as the sub-sample peak
interpolation (SPI) as discussed in Section II. Fig. 5b shows
the range estimates before and after SPI. In this work, SPI
is applied to the range, azimuth and elevation dimension
independently. Let T?

a,b,c(s) = [az?(s)+a, el?(s)+b, r?(s)+c]
where a, b, c are the index offsets in the corresponding
dimensions. The final estimates of azimuth, elevation and
range coordinates are obtained from the SPI as:

az?I (s) = SPI{Ĥbf [T?
−1,0,0(s), s],

Ĥbf [T?
0,0,0(s), s],

Ĥbf [T?
1,0,0(s), s]}

(9)

el?I (s) = SPI{Ĥbf [T?
0,−1,0(s), s],

Ĥbf [T?
0,0,0(s), s],

Ĥbf [T?
0,1,0(s), s]}

(10)

r?I (s) = SPI{Ĥbf [T?
0,0,−1(s), s],

Ĥbf [T?
0,0,0(s), s],

Ĥbf [T?
0,0,1(s), s]}.

(11)

At time instant s, the location L(s) of the moving target
is given by L(s) = T?

I (s) = [az?I (s), el?I (s), r?I (s)] and the
trajectory P = {L(s),∀sεD}, where D is the set of all time
instances during handwriting.
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Fig. 5: (a) Doppler power for different range taps with time
for a straight line drawn along the range away from the device,
(b) Range estimates before and after SPI.

E. Stage 5: Trajectory construction

A raw trajectory can be constructed by combining the
location estimates from Stage 4 at different instances of time.
However, due to the difference in the point of reflection or
missed target segments, outliers are possible. To minimize the
effect of such outliers in the trajectory construction, trajectory
cleaning is performed in two steps, (a) Power-based and
(b) Range-based. These are demonstrated with an example.
Consider a handwritten trajectory of the letter “h” whose
range, azimuth and elevation estimates and the corresponding
reflected power with time are shown in Fig. 6 and the
corresponding projected 2D trajectory is shown in Fig. 7a.
The outliers are marked as regions A and B. In the following
steps, the procedure to remove the outliers is discussed.
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Fig. 6: Raw estimates of range, azimuth, elevation and power
with outliers denoted by regions A and B.
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(a)

(c) (d)

(b)

Fig. 7: Steps in trajectory construction. (a) Raw trajectory,
(b) Trajectory after power-based cleaning, (c) Trajectory after
power and range-based cleaning, (d) Trajectory after DCT-
based smoothing.

• Power-based: In our algorithm, the segment of the
pen/hand with maximum reflected power is tracked by
the radar. In some instances, the reflected wave from that
particular segment may not be received by the antenna
and thus, the next highest reflected power is recorded.
This results in outliers shown in region A, where a
sudden decrease in the reflected power can be observed.
Such points are removed by using the CFAR adaptive
thresholding technique discussed in Stage 4. The resultant
trajectory is shown in Fig. 7b.

• Range-based: For the outliers in region B, a sudden
change in the range estimates can be observed. Such
regions are filtered by using a tracking window. In this
example, if the range estimate at the current time instant
differs from the previous by greater than 1 cm, it is
discarded. The resultant trajectory after range-based and
power-based cleaning is as shown in Fig. 7c.

To further improve the smoothness of the recovered trajec-
tory and robust removal of outliers, a smoothing technique
is used on the recovered trajectory. Based on the cosine
transformation, this technique computes the Discrete Cosine
transform (DCT) of the data points, retains the higher and
significant coefficients while discarding the non-significant
coefficients which usually contain the noisy part of the signal
[15]. The significant coefficients are then converted back to
the data domain. Using a smoothing factor of 20, a smooth
trajectory is obtained as shown in Fig. 7d.

IV. EXPERIMENTAL EVALUATION

To evaluate the performance of the proposed handwriting
system, different experiments are conducted which will be

discussed in this Section. The basic experimental setup is
shown in Fig. 8 where the radar is placed on a table and
the writing region is elevated so that the elevation angle is
approximately zero. The writing is performed with natural
speed using a marker on a paper. The smoothing parameter
is automatically determined from the cross-validation score
[15] unless mentioned otherwise.

Fig. 8: Experimental set up for handwriting tracking.

A. Performance

In this section, the performance of the proposed handwriting
tracking system is evaluated using three different approaches.

1) Visual inspection: The trajectory traced by the proposed
system is visually compared with the ground truth with
respect to the shape of the trajectory. In the experiment,
English alphabets are traced on a paper and the extracted
trajectory is compared with the ground truth as shown
in Fig. 9. It can be observed that the relative shape of
the characters is preserved.

Ground truth
trajectory

Recovered 
trajectory trajectory trajectory

Ground truth Recovered 

Fig. 9: Trajectories recovered from the proposed handwriting
tracking system compared with the ground truth.

2) Character recognition accuracy: In this experiment,
English alphabets are written in different sized grids
and are traced multiple times. The obtained trajectory
is fed to a standard handwriting recognition software
(myScript). The character recognition accuracy from
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Fig. 10: Character recognition accuracy at different distances
from the device with characters written in different scales.
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Fig. 11: (a) An example of a circle fit through the recovered
trajectory points, (b) Cumulative distribution function of the
tracking error at different ranges from the transceiver.

the software is reported and is shown in Fig. 10. The
smoothing parameter s is set at 2. The figure shows
recognition accuracy for 50 characters at different dis-
tances from the device and on different scales. The
recognition accuracy decreases with distance and im-
proves with increasing scale. For instance, the character
recognition accuracy for characters written within 3 cm
x 3 cm is 80% and 72% at distances 20 cm and 30
cm respectively. The recognition accuracy for the same
distance of 20 cm is 80% and 82% for scales of 3 cm x
3 cm and 5 cm x 5 cm respectively. The recognition
accuracy also depends on the classifier used in the
recognition software and the values demonstrate the
potential of the proposed handwriting tracking system
in building smart surfaces.

3) Tracking accuracy: To estimate the tracking accuracy
of the proposed system, a circle is traced several times
on a paper and the corresponding trajectories are ob-
tained. A circle with the measured radius is fit through
the obtained trajectory points and the projected distance
is reported as the tracking error. An example of the
ground truth trajectory and the extracted trajectory is
shown in Fig. 11a and the CDF of the errors are shown
in Fig. 11b. The median error at distances of 30 cm,
70 cm, 120 cm, and 160 cm is 7.5 mm, 13.7 mm, 27.8
mm and 45.5 mm respectively which is about 2.5% of
the distance from the radar. The 90 percentile error at
distances of 30 cm, 70 cm, 120 cm, and 160 cm is 9.4

mm, 19.3 mm, 37.2 mm and 45.5 mm respectively.

V. CONCLUSIONS

In this work, we proposed a handwriting tracking system
using a single commercial 60 GHz radar. Beamforming and
radar target detection techniques allowed us to detect and
track a moving/writing target. Further, post-processing of the
obtained trajectory points using subsample peak interpolation
and smoothing techniques could retrieve handwritten charac-
ters from regions as small as 1 cm x 1 cm. The performance of
the proposed system is evaluated and discussed under different
experimental conditions. With this, any flat surface can be
a potential writing surface and the space for HCI can be
extended much beyond the touch screens.
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