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ABSTRACT

Gesture recognition using wireless sensing opened a plethora
of applications in the field of human-computer interaction.
However, most existing works are not robust without requir-
ing wearables or tedious training/calibration. In this work, we
propose WiGRep, a time reversal based gesture recognition
approach using Wi-Fi, which can recognize different gestures
by counting the number of repeating gesture segments. Built
upon the time reversal phenomenon in RF transmission, the
Time Reversal Resonating Strength (TRRS) is used to detect
repeating patterns in a gesture. A robust low-complexity al-
gorithm is proposed to accommodate possible variations of
gestures and indoor environments. The main advantages of
WiGRep are that it is calibration-free and location and envi-
ronment independent. Experiments performed in both line of
sight and non-line-of-sight scenarios demonstrate a detection
rate of 99.6% and 99.4%, respectively, for a fixed false alarm
rate of 5%.

Index Terms— Gesture recognition, Wireless sensing,
Channel state information, TRRS, Time reversal.

1. INTRODUCTION

In recent years, gesture recognition has been considered as a
new dimension to human-computer interaction and the num-
ber of possible applications is inconceivable [1]. Among the
many attempts to achieve robust gesture recognition using
device-free approaches, sensor-based approaches [2, 3] and
camera-based approaches [4] became superior due to their re-
liable performance while at the cost of user convenience and
scalability. Due to the ubiquitous deployment of wireless de-
vices, wireless sensing-based gesture recognition approaches
have gained increasing attention.

Early attempts have used features extracted from the re-
ceived signal strength indication (RSSI) to differentiate be-
tween gestures [5]. Since the RSSI is very sensitive to in-
door environment changes and lacks fine-grained informa-
tion about the channel profile, researchers turn to the more
fine-grained Channel State Information (CSI) readily avail-
able from 802.11 ac devices, and developed many new ap-
plications [6] such as breathing detection [7], indoor local-
ization [8], human authentication [9], gait recognition [10],

driver monitoring [11] and more.
Most of the current gesture recognition approaches using

CSI are learning-based, where patterns are extracted from the
CSI time series and matched with those obtained in the train-
ing phase, either by using machine learning techniques or by
similarity metrics [12, 13]. A similar idea has been exploited
in [14, 15] which further adopted the dynamic time warping
(DTW) technique to recognize fine-grained finger gestures
and keystrokes. WiCatch considered the angle of arrival ex-
tracted using the smooth-MUSIC algorithm to recognize one
and two hand gestures [16]. However, most of the approaches
suffer from the “location-dependency” problem. This is be-
cause the CSI is sensitive to small changes in the environment,
and when the environment or the location/orientation of the
gesture or the transceiver changes, the performance will be
degraded significantly, which is called the “location depen-
dency” problem. In addition, utilizing simple gestures can
potentially cause a lot of false alarms in a practical scenario.
A few other works used specialized hardware like USRPs and
antenna arrays to recognize gestures [17, 18]. However, spe-
cialized devices may not be readily available and could incur
additional costs.

Different from most existing works that try to determine
the exact nature of a gesture assuming a specific gesture is
mapped to a unique command/operation, in this work we pro-
pose WiGRep (Wireless Gesture Repetition counter) that de-
fines different number of repetitions of a specific gesture (e.g.,
hand waving) as different gestures. WiGRep does not require
any training and only needs to estimate the number of times
a gesture segment is repeated. It overcomes the “location-
dependency” issue and reduces false alarm greatly in a prac-
tical set up.

The main contributions of this work can be summarized
as follows:

• We propose WiGRep, a robust gesture recognition ap-
proach that can distinguish different gestures by count-
ing the number of repeating gesture segments. Since
the proposed approach relies on the number of repe-
titions, we do not impose any restrictions on the lo-
cation, environment or type of gesture. Also, the ap-
proach does not require any training and can work in
both line of sight (LOS) and non-line-of-sight (NLOS)
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scenarios.

• We define an effective metric to characterize the sim-
ilarity of the CSI collected when a gesture is repeated
and propose a low-complexity algorithm to automati-
cally extract the number of gesture repetitions. This
allows WiGRep to be implemented in real-time.

• We perform extensive experiments to demonstrate the
capability of WiGRep in various scenarios and potential
applications.

The rest of the paper is organized as follows. Section II
presents the preliminary knowledge of TRRS. The WiGRep
algorithm is discussed in Section III. Section IV presents
the experimental evaluation and potential applications of
WiGRep. Finally, Section V concludes the paper.

2. TIME REVERSAL RESONATING STRENGTH

In this work, we define the different numbers of repetitions
of a specific gesture segment as different gestures. Thus, the
problem of gesture recognition is converted to estimating the
number of gesture segment repetitions. To determine if a seg-
ment is repeated, a similarity metric on CSI needs to be de-
fined. Inspired by the time reversal focusing effect [7, 9], we
adopt time reversal resonating strength (TRRS) as the simi-
larity measure that can be defined as:

TRRS(H(t1),H(t2)) =
|
∑
kεν Hk(t1)Hk(t2)

∗|
||H(t1)||2||H(t2)||2

, (1)

where H(t1) and H(t2) are the channel frequency responses
at times t1 and t2 respectively, (.)∗ is the complex conjugate
operator, ||.||2 is the L2 norm and ν is the set of subcarrier
indices. The TRRS values range from 0 to 1, with a value of
1 achieved by a pair of identical CSIs.

Each gesture can be captured as a CSI time series. To
investigate the correlation/similarity between CSIs at every
two time instances, a TRRS matrix is built, whose (i, j)th en-
try corresponds to the TRRS between CSIs at the ith and jth

time instances. As an example, let us consider a gesture con-
sisting of 3 turns and 4 repeating gesture segments as shown
in Fig. 1, where a “turn” is said to have taken place when
the hand movement reverses direction and begins to retrace
the previous path. When a gesture is performed, due to the
movement of the hand, the multipath environment is altered.
An illustration of such a multipath profile change is shown in
Fig. 2a, where scatterers S1 and S2 are static while S3 (hand)
is dynamic. Now, as the hand moves, the multipaths involv-
ing S3 are changed from time t1 to t2. These changes impact
the CSI time series that essentially gets reflected in the TRRS
matrix according to (1), as shown in Fig. 2b.

Let us observe the TRRS matrix formed from the CSI time
series of the gesture, which is symmetric by construction. The

Fig. 1. An example of a gesture.

diagonal entries correspond to the TRRS between CSIs at the
same time instance and are thus equal to 1. Among the non-
diagonal entries, a relatively high value indicates a match be-
tween the CSIs that occurs when the dynamic scatterer(i.e.,
hand) is in the same position at the corresponding time in-
stances. In a typical gesture, the hand follows the same path
just before and after a “turn”, which results in a symmetric
CSI time series about the point of a “turn”. These match-
ing pairs of CSIs result in relatively high values of TRRS,
which form symmetric “cross” patterns with the main diago-
nal of the matrix, as can be visualized from Fig. 2b. The time
instances at the intersection points of the cross patterns cor-
respond to the “turn” events. Then, counting the number of
repeated gesture segments can be achieved by estimating the
number of “turn” events, which will be discussed in the next
section.
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Fig. 2. Demonstration of changes in CSI due to a gesture. (a)
Multipath profile change, (b) TRRS matrix.

3. WIGREP ALGORITHM

We have seen that the cross patterns in the TRRS matrix cor-
respond to the turn events. Hence, the problem now reduces
to finding the number of cross patterns, which is solved using
the following three steps.

In the first step, the points which form the non-diagonal
lines in the cross patterns of the TRRS matrix are extracted.
Each point in these lines represents a pair of matching CSIs
around a turn and are termed as “matching points”. These
points are extracted by using a moving window as shown in
Fig. 3a, that gathers the maximum value in the window. The
resulted matching points are shown in Fig. 3b. The window
length is controlled by the tunable parameter α, which is the
minimum number of time instances separating any two turns.
This parameter needs to be carefully chosen, as a very large
value of α tends to include matching points corresponding
to the adjacent cross pattern, while a very small value of α
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(a) (b) (c)

Fig. 3. Visualization of WiGRep algorithm on the TRRS matrix. (a) Moving maximum window to select “matching points”,
(b) Selected matching points and the moving sum window to calculate the T -score, (c) T -score, adaptive overall threshold and
the detected peaks which correspond to the “turns” in the gesture.

might result in false alarms due to detection of false matching
points. The moving window on the TRRS matrix (T) can be
explicitly written as:

maxWin(n, k) = [T(n+ w − k, n+ w + k)], (2)

where -α ≤ w ≤ α, 1 ≤ k ≤ α and n is the time index.
In each window, the maximum value is extracted only if it
is greater than the average of the values in the window by a
predefined threshold rth. For each time instance n and 1 ≤
k ≤ α, let T(n-k,n+k) = p. We define a score(n,k) as follows:

score(n, k) =


p, if p ≥ max(maxWin(n, k)) &

p ≥ mean(maxWin(n, k)) + rth

0, else.
(3)

The threshold rth above the mean of the entries in the moving
window, reduces the false detections in corner cases such as a
static environment, in which all the entries are high.

In the second step, a score which indicates the chance of a
time instance being a turn is computed. This is termed as the
T -score and is calculated by computing a sum of the scores
calculated in the first step, using a moving window method
as,

T − score(n) =
β∑

p=−β

α∑
k=1

score(n+ p, k). (4)

where a window of width β and height α is used as shown in
Fig. 3b. The choice of the parameter β is crucial to robustly
capture turns that involve differences in the speed of the ges-
ture segments. A very low value of β can only detect turns
in which the gesture speed is uniform. On the other hand, a

very high value of β may cause false alarms of turns. This im-
plicit design of the T -score metric captures the total number
of matching CSIs around any time instance. From Fig. 3b, we
can see that there are a large number of matching points near
the turn events. Thus, the higher the T -score, the higher the
chance of the corresponding time instance being a turn.

All the significant peaks of the T -score profile indicate
potential turn events. Thus as the final step, we detect such
significant peaks in the T -score profile by adopting the CFAR
thresholding [19] approach. In this approach, a CFAR win-
dow is designed as follows:

Cwin = [︸ ︷︷ ︸
α

1, 1, .., 1,

10β︷ ︸︸ ︷
1, 1, .., 1, 0, . ., 0, 1, 1, .., 1︸ ︷︷ ︸

α

]. (5)

The overall threshold Oth is calculated as:

Oth = Cnoise + cth, (6)

where Cnoise = Cwin ∗T -score, * is the convolution operator,
and cth is the additional threshold parameter that is chosen in
accordance with the acceptable false alarm rate. In our exper-
iments, we used a value of cth = 0.025 which resulted in a
false alarm of about 5%. With this setting, Fig. 3c shows the
T -score profile, the overall CFAR threshold and the detected
peaks which correspond to the locations of the cross patterns
and also the locations of turn events in a gesture. The number
of gesture repetitions is simply the number of turns plus 1.

4. PERFORMANCE EVALUATION

In this section, we evaluate the performance of WiGRep in
both the LOS and NLOS scenarios.
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4.1. Experiment results

In our experiments, commercial Wi-Fi devices operating on
5.845 GHz carrier frequency with a bandwidth of 40 MHz
and 3x3 MIMO transmission have been used. The devices
were placed in the 10th floor of an office building in (A) LOS
and (B) NLOS scenarios as shown in Fig. 4.

Fig. 4. Experimental setup.

A total of 50 gestures with 10 repetitions were collected
for each scenario using a sounding rate of 200 Hz, gathering
a total of 500 repetitions per scenario. These gestures were
performed in different locations that are randomly chosen in
the test region indicated in Fig. 4. The parameters α, β and
rth are fixed at α = 70, β = 2 and rth = 0.3 in our experi-
ments. By varying the additional threshold parameter cth, we
obtain the ROC curves for the detection of these 500 repeating
gesture segments, which are shown in Fig. 5. The detection
rates for the LOS and NLOS scenarios are 99.6% and 99.4%
respectively for a fixed false alarm rate of 5%. The area un-
der the ROC curve (AUC) for the LOS and NLOS scenarios
is 0.99934 and 0.99926 respectively, indicating an effective
gesture repetition detector in both the cases.

Fig. 5. ROC curves for varying cth in LOS and NLOS sce-
narios.

4.2. Discussions

WiGRep’s ability to recognize gesture repetitions can be uti-
lized for many applications. Here are two examples.

1. Gesture recognition: Fig. 6 shows the confusion ma-
trix for five gestures classified based on the number of
repeating segments. The detection rate decreases with
the number of repetitions as the probability of missing
a repetition/turn increases.

2. WiGRep can be used to input characters. Similar to
WiMorse [20], two gestures can be used to encode “dot”
and “dash”, and using the International Morse code,
characters can be formed. The codes for “dot” and
“dash” can be separated by defining “silent” periods be-
tween them.
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Fig. 6. Confusion matrix for five gestures.

One main limitation of WiGrep is that it can only handle
gestures which are “periodic” repetitions and requires care-
ful calibration when there are other repeating motions in the
environment. As a future work, we will study the impact of
different experimental conditions, background motions, pa-
rameter settings, and with different users.

5. CONCLUSION

We propose WiGRep, a time reversal based gesture recogni-
tion system that classifies gestures based on the number of
repeating patterns. Relying on the number of repetitions al-
lowed us to create location and environment independent fea-
tures, overcoming the major drawback of most of the existing
gesture recognition systems. A detection rate of 99.6% and
99.4% has been achieved in the LOS and the NLOS scenar-
ios respectively, for the repeating gesture segments. With Wi-
GRep, we envision a robust and user-friendly gesture recogni-
tion system that can be integrated into the future smart homes.
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