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Abstract—In the present evolving world, automobiles have
become an intelligent electronic machine and are no longer a
mere transport medium. In this article, we attempt to make
them smarter by introducing the idea of in-car driver authen-
tication using wireless sensing and develop a system that can
recognize drivers automatically. The proposed system can recog-
nize human identity by identifying the unique radio biometric
information recorded in the channel state information (CSI)
through multipath propagation. However, since the environmen-
tal information is also captured in the CSI, the performance
of radio biometric recognition may be degraded by the chang-
ing environment. In this article, we first address the problem
of “in-car changing environments” where the existing wireless
sensing-based human identification system fails. We build a
long-term driver radio biometric database consisting of radio
biometrics of seven people collected over a period of two months.
We leverage this database to create machine learning models that
make the proposed system adaptive to new in-car environments.
Second, we study the performance of the in-car driver authenti-
cation system with increasing effective bandwidth. We realize an
effective bandwidth of 960 MHz by exploiting the multiantenna
and frequency diversities in commercial WiFi devices. The
performance of the proposed system is shown to improve with
increasing effective bandwidth and the long-term experiments
demonstrate the feasibility and accuracy of the proposed system.
The accuracy achieved in the two-driver scenario is up to 99.13%
for the best case.

Index Terms—Driver authentication, human identification,
radio biometrics, radio shot, smart car, wireless sensing.

I. INTRODUCTION

THE FIELD of the Internet of Things (IoT) continues
to extend its capabilities and engulfs many interesting

applications within. With the deployment of tremendous smart
devices that can sense, exchange, and analyze information,
the IoT has enabled evolutionary changes in everyday lives.
Smart environments and smart vehicles are among the many
interesting applications in the IoT [1]. Using different sensors,
smart vehicles can predict traffic patterns, automate driving,
and optimize fuel consumption [2]. While these works focused
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more on automating the driving patterns, there are a plethora
of other works on driver monitoring and activity recognition.
Ohn-Bar et al. [3] and Jain et al. [4] used vision-based tech-
niques to detect head, eye, and hand movements to predict
driver behavior for accident prevention, although cameras, in
general, introduce privacy concerns.

On the other hand, wireless sensing is an innovative modal-
ity to achieve security and privacy at the same time and
has been widely used in many IoT applications because of
the ubiquitous deployment of WiFi devices. High accuracy
indoor localization has been achieved using WiFi fingerprint-
ing [5]–[7]. By extracting statistics and identifying other fea-
tures in the channel state information (CSI), multiple research
teams investigated the detection of indoor motion or dynam-
ics [8]–[10]. Recently, researchers have been working on using
wireless sensing to enable indoor vital sign estimation by
extracting the periodic components in the CSI [11], [12]. Other
applications such as keystroke recognition [13], movement
speed estimation [14], gesture [15], and gait recognition [16],
have also been explored through wireless sensing. In the
study on smart vehicles using wireless sensing, researchers
have investigated driver activity recognition where driving
actions have been estimated using received signal strength
information (RSSI) and CSI amplitudes in a simulated envi-
ronment [17]. However, not much research has been done on
driver authentication based on wireless sensing.

The driver authentication system improves security and can
automatically make in-car driver-specific adjustments, such as
temperature and seat and mirror positions. Nowadays, human
authentication is either done by using password-based meth-
ods, such as encryption keys, PINs, key cards, or by using
biometrics. The term biometrics refers to a measurement of
biological data. Any biological measurement that is potentially
unique to a person is considered as a biometric. Biometric-
based methods are gaining popularity due to their inherent
uniqueness and convenience, compared to passwords and keys
which may be easily forged or forgotten. Biometrics can be
broadly classified into two categories: 1) physical character-
istics comprising fingerprints, face, iris, and handprint and
2) behavioral characteristics, such as gait, keystroke dynam-
ics, specific gestures, etc. Physical characteristics are more
reliable and some may not change significantly with time,
while behavioral traits can change over time or be changed
intentionally [18].

In this article, we use a new type of physical bio-
metrics, radio biometrics, to achieve reliable in-car driver

2327-4662 c© 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 30,2020 at 19:33:24 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-3355-6502
https://orcid.org/0000-0003-2195-1254
https://orcid.org/0000-0001-7100-0815
https://orcid.org/0000-0001-7672-9357
https://orcid.org/0000-0001-5469-5811


2236 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 3, MARCH 2020

authentication [19]. Radio biometrics is the pattern of a human
body introduced to the wireless propagation environment.
Researchers have studied the electromagnetic wave propa-
gation through a human body [20], [21] and the dielectric
properties [22]–[24]. Alongside these studies, the work in [25]
showed that the electromagnetic propagation in and around a
human body is influenced by such factors as the height, weight,
body water volume, surface area, tissue density, and more. A
combination of these features could be potentially unique to
a person and serve as a biometric [19]. In an indoor envi-
ronment, the wireless signal undergoes many reflections and
scattering that generates multipath. At the receiver, the result
of all the multipath can be recorded in the form of a CSI.
Human radio biometrics can be recorded within the CSI and
is determined by the unique biological characteristics of each
individual. The captured CSI can be considered as a radio sig-
nature and the process of recording a radio signature is termed
as a radio shot.

The first wireless sensing-based human recognition
system [19] used CSI as the feature for individual physical
characteristics and utilized the time-reversal technique to com-
pare the similarity of radio biometrics. However, this prior art
assumed that the indoor environment remains static throughout
the period of the experiment. In reality, this is not the case and
even a small change in the indoor environment will introduce
a significant change into the multipath CSI. Different from
the existing work, we do not make any such assumptions in
this article. Instead, we build machine learning (ML) models
which can adapt to the changing in-car environment.

ML techniques require data to learn patterns, draw infer-
ences and generalize to new unseen references [26]. They
perform an automated feature selection from the training data.
ML and deep learning have achieved great success in the field
of computer vision because they have large amounts of data to
train on, while the performance of deep learning in other fields
is largely limited by the availability of the training data. In this
article, we build the first radio biometric database consisting
of radio biometrics of seven people collected over a period of
two months. Driver authentication is achieved by building ML
models using this database.

Previous works have shown that the pattern of radio propa-
gation through a human body is frequency-dependent [22].
Based on that, in this article, we try to obtain radio bio-
metrics from several channels. One way to implement this
idea is to use frequency hopping. Frequency hopping rapidly
switches channels to transmit wireless signals. For example,
Vasisht et al. [27] used frequency hopping to achieve a sub-
nano-level time of flight (ToF) and Chen et al. [7] achieved
high accuracy indoor localization by using augmented CSI
fingerprint from several channels. In this article, we imple-
ment the frequency hopping on portable commercial WiFi
devices that can be fixed in a car. Furthermore, we exploit the
multiantenna diversity in the MIMO systems to obtain more
differentiating features. We have evaluated the performance
of the proposed system in a long-term experiment for two
months and have studied the impact of different factors on
the performance of the proposed driver authentication system.
For two-driver authentication, an accuracy of 99.13% has been

achieved in the best scenario while an accuracy of 72.12% has
been achieved for the most difficult scenario.

The main contributions of this article can be summarized
as follows.

1) We propose the first in-car driver authentication system
using the human radio biometrics recorded in the wire-
less CSI.

2) We address the problem of in-car environmental
changes. We build the first multiple-driver radio bio-
metric database consisting of radio biometrics of seven
people collected over a period of two months. To our
knowledge, this is the first long-term study conducted
for human radio biometric recognition. With the help
of this database, we integrate ML techniques to make
the proposed driver authentication system adaptive to
different in-car environments.

3) We study the impact of multiantenna diversity and the
frequency diversity on the accuracy of the proposed
driver authentication system. For experimental eval-
uation, we have implemented frequency hopping on
portable commercial WiFi devices that can be fixed in
a car for the long term.

4) We perform an extensive analysis of the dependence of
the classification accuracy on different factors, includ-
ing the size of the training set, the similarity of
radio shots, the time gap between training and testing
days, the number of MIMO links, and the number of
channels.

In the proposed in-car driver authentication system, we
focus on cases in which there is only a single driver present in
the car with no passengers. The more practical scenario where
one or more passengers are present in the car will be studied
in future work. Also, the radio biometrics of the driver should
have been present in the radio biometric database of the car.
In the case of a temporary driver, keys or passwords should
be used. Here are some practical applications.

1) The proposed system can be used by parents preventing
a car driven by kids or an unauthorized driver who
might cause accidents. A physical key is easy to access
whereas the radio biometric system can be used to
differentiate kids from adults.

2) In a typical home, there are usually 2-3 daily drivers for
a car (e.g., the wife and the husband). In such cases, our
proposed system is very useful in both security enhance-
ment and personalization. Also, in the case of recogniz-
ing the husband and the wife, the difference in attributes
is usually higher and the proposed system performs
better.

This article is organized as follows. Section II describes
the challenges in the proposed in-car driver authentication
system. Section III discusses the dataset preparation, pre-
processing, and frequency hopping techniques. Section IV
presents different methodologies to achieve in-car driver
authentication and the experimental results are discussed in
Section V. In-depth analysis of the classification accuracy is
studied in Section VI. Limitations and future work are dis-
cussed in Section VII and finally, Section VIII presents the
conclusions.
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II. CHALLENGES

The similarity of two CSIs can be defined by the
time-reversal resonating strength (TRRS). For two channel
frequency responses (CFRs) h1 and h2, the TRRS in the
frequency domain is given by [19]

TRRS(h1, h2) =
maxφ

∣
∣
∣

∑L−1
k=0 h1[k]h2[k]∗ejkφ

∣
∣
∣

2

(
∑L−1

l=0 |h1[l]|2
)(

∑L−1
l=0 |h2[l]|2

) (1)

where L is the number of subcarriers. The higher the TRRS
is, the more similar the two CFRs are, and thus the more
similar the two radio biometric samples are. There are two
main challenges in the proposed in-car driver authentication
system.

A. Change of In-Car Environment

The human radio biometrics are highly correlated with the
environmental information in the CSI. Hence, when the in-
car environment is altered, the CSI containing the driver radio
biometrics is also changed. To measure the degree of changes
in an in-car environment, we record the CSI of the empty car
every day. The similarity between the CSI of an empty car
captured on different days and the CSI of an empty car cap-
tured on day 1 is calculated by the TRRS. Fig. 1 shows the
change of in-car environment with time measured in terms
of TRRS. Overall, we can observe that the TRRS decreases
as more changes accumulate in the in-car environment over
time. The in-car environment is similar to the indoor wireless
propagation environment with multipath created by numerous
scatterers. The received CSI is a composition of such multipath
signals. When one scatterer Sa is displaced, all the multipath
which involved Sa in their paths are altered and this causes
a change in the received CSI. Let the original CSI be CSIo
and the CSI after displacing Sa be CSIa. Let another scatterer
Sb be displaced and the corresponding CSI be CSIb. The dif-
ference between CSIa and CSIo is due to the multipath that
involved Sa only whereas the difference between CSIo and
CSIb is due to the multipath which involved Sa only, Sb only,
and both Sa and Sb. Therefore, as an increasing number of
scatterers are displaced with time, more multipath signals are
altered and the CSI becomes more and more distinct from the
original CSI. Since the displacement of scatterers in the car is
random and there are many multipath signals involving each
scatterer, it is highly unlikely to recreate the exact multipath
profile by reversing the displacement of scatterers or by a new
combination of scatterer locations. Therefore, on an average,
we see that the TRRS decreases with time as more changes
accumulate inside the car.

An existing WiFi-based human identification system used
TRRS matching to identify humans [19]. During the training
phase, the human radio biometrics which are embedded in the
indoor CSIs are recorded and stored as a database. In the test-
ing phase, the CSIs are compared with those in the training
database using the TRRS similarity metric. The identity of
the human is determined by the class of the highest match-
ing CSI from the training database provided that the highest
TRRS is greater than a predefined threshold (0.7). With the

Fig. 1. Change of in-car environment with time measured in terms of TRRS.
The blue curve shows the TRRS of each day with reference to day 1 and the
red curve shows the moving average of the blue curve.

Fig. 2. TRRS heatmap between different radio biometrics captured on
different days.

given degree of changes in the in-car environment, the TRRS
matching technique can no longer be applied. For example,
consider the CSIs of two drivers H1 and H2, collected on two
different days A and B. As shown in Fig. 2, the TRRS between
CSI of H2 on day A and CSI of H1 on day B is 0.81 while
TRRS between CSIs of H2 on different days is 0.63 resulting
in a misclassification. In this article, we overcome this chal-
lenge by adopting ML techniques to make the system adaptive
to new environments.

B. Low Resolution of Multipath

Second, the CSI recorded at each time instant is a collec-
tion of channel information on multipath signals that have
different path lengths. To resolve the multipath with a higher
resolution, a larger bandwidth is required. Since the bandwidth
(40 MHz) is fixed for a channel in commercial WiFi devices, in
this article, we achieve higher effective bandwidths by exploit-
ing the diversity in multiple MIMO links as well as different
frequency channels. The details are discussed in Section III.

1) Impacts of External Environment: The influence of the
external environment on the in-car CSI has been studied. Fig. 3
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Fig. 3. Experimental setup to study the impact of external environment on
the in-car CSI.

Fig. 4. TRRS matrix for in-car CSIs for different external environments.

shows the experimental set up where the test car is fixed and
another car is parked in different locations (1–5) around the
test car, in a public parking lot. In-car CSIs are recorded for
each of the five scenarios. To quantitatively measure the degree
of change of an in-car wireless propagation environment, we
have calculated the TRRS matrix for all the recorded CSIs
which is shown in Fig. 4. We can observe that the CSIs are
highly correlated and the TRRS values are all nearly equal to 1.
The car acts as a metal cage and only a few of the multipath
signals escape to the external environment through the glass
windows and only a smaller fraction of them are reflected by
external objects. Such multipath signals which are reflected
back into the car through the windows are severely attenuated
and almost negligible. We can safely assume that the effect
of the external environment is insignificant, and in this article,
we focus only on the in-car environment changes.

III. IN-CAR DRIVER AUTHENTICATION SYSTEM

The proposed in-car driver authentication system uses com-
mercial WiFi devices as transceivers that are placed in the

Fig. 5. Location of transceivers in the car. (a) Transmitter near the
speedometer at the back of the steering wheel. (b) Transmitter is at the audio
system.

car. The location of transceivers plays an important role in
the performance of the proposed system. The location of the
receiver is chosen at the back of the car at the typical location
of an in-car RF antenna. The best location for the transmit-
ter would be in front of the driver as we can capture more
differentiating features including the face of the driver in a
ray-tracing perspective. From our experience, the recorded
human radio biometrics were more distinct for different peo-
ple when the transmitter was placed in front of the driver.
This is because the multipath channel is affected the most
when the driver intercepts the LOS path between the trans-
mitter and the receiver. Also, a greater number of multipath
signals passing through the driver helps to capture more driver-
specific radio biometric features. Fig. 5 shows two possible
transceiver locations and the multipath propagation inside the
car. The blue line shows the LOS path which is intercepted
when the driver is present in the car. The orange-colored lines
show the NLOS paths which are received by the receiver after
several reflections inside the car. The transmitter is located
at the back of the steering wheel in Fig. 5(a), while it is
placed near the audio system in Fig. 5(b). The slight dif-
ferences in the locations are because of the space limitation
during experiments. The performance for other possible sets of
transceiver locations is left for future work. In the following,
we will describe the frequency hopping mechanism designed
in the proposed system, data collection procedure, and the
preprocessing technique.

A. Frequency Hopping on Commercial WiFi Devices

Frequency hopping refers to changing channels according
to a prespecified schedule/pattern and enables utilization of
frequency diversity. Using frequency hopping, we can record
CSIs on different channels sequentially. In this article, to
increase the number of features for in-car driver radio biomet-
rics, we record CSIs on four channels in the 5.2-GHz band,
during a radio shot. By doing so, we achieve a larger effective
bandwidth as explained in a later section.

The frequency hopping algorithm that we used is explained
in Algorithms 1 and 2. The transmitter and receiver function
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Fig. 6. Demonstration of channel hopping at the receiver with time.

Algorithm 1 Frequency Hopping Algorithm: Transmitter
1: channel-list← {36, 44, 153, 161}
2: ch← 0
3: while (1) do
4: Set channel to channel-list(ch)
5: Send CSI frames as channel probing signals on channel

channel-list(ch) for dwell time (μ)
6: Determine the next channel index

ch← (ch+ 1) mod 4
7: Next channel is channel-list(ch)
8: Construct and send k action frames with new channel index

information
9: end while

Algorithm 2 Frequency Hopping Algorithm: Receiver
1: channel-list← {36, 44, 153, 161}
2: Set channel to channel-list(0)
3: while (1) do
4: if CSI frame is received then
5: receive CSI
6: else if action frame is received then
7: ch

′ ←next channel extracted from action frame
8: Set channel to ch

′

9: end if
10: end while

in parallel. The channel index is taken as ch. The transmit-
ter sends the channel information to the receiver in specially
designed frames called action frames. These are sent at regular
intervals of time and the duration of each channel is specified
by the user as dwell time (μ). In this article, we use μ =
125 ms. Fig. 6 demonstrates the mechanism of hopping chan-
nels at the receiver. It also shows the absolute time of arrival of
the CSI frames at the receiver. The stairs-like pattern is caused
by the action frames before setting to a new channel during
which no CSI samples are recorded. Sometimes, due to chan-
nel congestion/packet loss, all of the k action frames might be
lost and the receiver continues to stay in the same channel as
in regions (B). In such cases, the next channel is not set until
the receiver receives action frames on the existing channel in

the next cycle. In Section VI, we evaluate the performance
of the proposed driver authentication system for a different
number of channels.

B. Dataset Preparation

In our experiments, during the radio shot, the driver sits in
the driver’s seat of a car and the wireless propagation envi-
ronment is captured in the CSI. This CSI is used as the radio
biometric for that particular driver. For every radio shot of
the driver, we also record the CSI of the corresponding in-car
environment without the driver.

The in-car driver authentication database was built by col-
lecting radio shots of seven people over two months. On each
day, for each test subject, four radio shots were taken in the
morning and evening, in a car parked at different locations
in a public parking lot. By doing so, a total of 60 different
environments have been considered. Multiple recordings of the
radio shots help us improve the classification accuracy using
the grouping technique which is explained in Section IV.

The prototype of the proposed in-car driver authentication
system was built using the commercial off-the-shelf WiFi chips
with no additional hardware. The CSIs were recorded using
a 2× 3 MIMO system. The system operated in the 5.2-GHz
band over four channels with 114 accessible subcarriers in
each channel. Also, multiple CSIs were recorded using a
sounding rate of 30 Hz to perform phase cleaning and remove
outliers as discussed later in this section. So, for each radio
shot, each CSI sample is a 2 × 3 × 456-D complex-valued
matrix.

C. Data Preprocessing

Timing and frequency synchronization errors in the Wi-
Fi systems introduce phase offsets in the recorded CSI.
The multiple CSIs recorded for each radio shot are highly
correlated to each other and thus can be used for phase
compensation and outlier removal. In data preprocessing, we
compensate for the linear and the initial phase offsets.
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(a)

(b)

(c)

Fig. 7. Demonstration of linear and initial phase compensation. Figure shows
the phase (a) of raw CSI, (b) after linear phase compensation, and (c) after
initial phase compensation.

Let ĥk
i be the received CFR of the ith sample on the kth

subcarrier. Let hk
i be the CFR without phase distortions. Then,

hk
i is given by the following [7]:

ĥk
i = sinc(π(�ε +�ηk))hk

i ej2π(βik+αi) (2)

where �ε and �η are the residual errors of channel frequency
offset and sampling frequency offset, respectively, and βi and
αi are termed as the linear and initial phase. Assuming the
argument of the sinc function is small, the linear phase can be
aligned with a reference CFR [19].

Consider two CFRs ĥk
1, ĥk

2, and ĥk
1 be the reference. Then,

we have the following equations:

ĥk
1 = hk

1ej2π(β1k+α1) (3)

ĥk
2 = hk

2ej2π(β2k+α2) (4)

δβ = arg max
φ

∣
∣
∣
kĥk

1ĥk∗
2 ej2πkφ

∣
∣
∣. (5)

The aligned linear phase is obtained by ĥk
′

2 = ĥk
2e−j2πkδβ .

The initial phase is equal to the phase of the first subcarrier
on each CFR sample. It is compensated as halign = ∠ĥ[0]

′
.

An example is shown in Fig. 7 where the linear and initial
phases are compensated for CSIs collected using four chan-
nels. In this case, the phase compensation should be done

independently for each channel as the phase offsets are dif-
ferent for different carrier frequencies. Fig. 7(a) shows the
phase of raw CSI for four channels. The first 114 subcarriers
correspond to channel 1, the next 114 to channel 2, and so
on. Fig. 7(b) shows the phase after linear phase compensation
and Fig. 7(c) shows the resultant phase after linear and initial
phase compensation. The CSIs are then appended to form the
feature vector for the in-car driver authentication system.

After the phase alignment, the combined CSI from the four
channels results in a 2×3×456 (i.e., 114 subcarriers per chan-
nel) dimensional complex-valued vector which can be flattened
to a 5472-D real-valued vector. With such a high dimension
of features, the number of parameters that need to be learned
in ML models is large and usually, the models require a lot
of data to train. Unlike computer vision techniques, obtain-
ing a large amount of data in our case is expensive. Hence,
we perform dimensional reduction using principal component
analysis (PCA) to reduce the number of parameters. PCA
transforms the original features into a new feature space based
on the degree of variance. In this article, we consider the num-
ber of features that contribute to 99% of the total variance in
the data. For instance, the dimension reduced from 5472 to
270 for the data using all the four channels and 2× 3 MIMO
links.

IV. LEARNING METHODOLOGIES

In this section, we introduce the ML techniques and meth-
ods that we adopt in the proposed driver authentication
system.

A. K-Nearest Neighbors

We know that the radio biometrics are embedded inside
the CSI of the environment and are highly correlated. In the
proposed in-car driver authentication system, a new in-car
environment is presented on a new day. This can be seen
as a new instance of the problem and one baseline approach
would be to use instance-based learning methods [28]. The
K-nearest neighbor approach is the simplest of these meth-
ods and often used as a baseline for classification algorithms.
In this approach, for a new test sample, we select K nearest
neighbors from the existing database and assign the majority
label to the test sample. We measure the similarity using the
Euclidean distance.

The value of K is a hyperparameter and can be chosen by
conducting several experiments and finding the best value of
K that gives the maximum average performance. For exam-
ple, consider radio biometric data of two drivers collected for
40 days. Fig. 8 shows the 40-fold cross-validation accuracy
with varying number of nearest neighbors (K). The maxi-
mum accuracy is achieved for a value of 3. Therefore, for
the classification of these drivers, we use 3-nearest neighbors.

B. Support Vector Machine

The support vector machine (SVM) is the most popular
approach for classification algorithms in ML [29]. The aim
of linear-SVM is to find a hyperplane that divides the classes
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Fig. 8. Average K-NN accuracy for varying value of K.

Fig. 9. Average classification accuracy with number of epochs in a neural
network.

with maximum margin where the margin is defined as the min-
imum distance of the hyperplane to points from either class.
When the data is not linearly separable which is often the case,
the “kernel-trick” is used to project the data to higher dimen-
sions where it is linearly separable [30]. In this article, we
use linear and RBF kernels to evaluate the proposed system
with the regularization parameter C = 1.0. Also, we use the
cross-validation technique to report classification accuracy.

C. Neural Network

As the in-car environment changes with time, we would
want the system to be more adaptive and learn human radio
biometrics for different environments. Therefore, we refer to
neural networks (NNs) which have been used in ML and
deep learning to learn more nonlinear and complex decision
boundaries for classification problems.

1) Architecture: The hyperparameters in the NN are tuned
using the K-fold validation technique. Consider, for exam-
ple, the number of training epochs. We find the classification
accuracy for all the K experiments for 1000 epochs. It is
observed that the model is overfitted much before 1000 epochs.
We then calculate the average performance for every epoch.
Fig. 9 shows the average classification accuracy obtained for
the pair A − D with the number of epochs. The maximum
value is reported as the final accuracy. Here, the maximum
is achieved near epoch 160 with an accuracy of 93.33%. The
number of hidden layers and hidden nodes are determined by
cross-validation. As we further increased the number of hid-
den layers or the hidden nodes, the capacity of the network
increased and it began to overfit. The NN architecture that
we use is shown in Fig. 10. The network consists of an input

Fig. 10. NN architecture.

Fig. 11. Grouping technique.

layer with the number of input nodes equal to the input fea-
tures, two hidden layers, and an output layer which gives the
class probabilities for a data point. In this article, we adopt the
ReLU activation function and cross-entropy loss with Adam
optimizer.

2) Data: We have used about 40 days of data for evaluat-
ing the performance using Kv-fold validation. The number of
samples per day is 8 and the total data available per class is
nearly 320 samples. The data are partitioned by date and in
total, we have 40 partitions. The 40-fold validation accuracy
is used as the evaluation metric in Section V.

D. Grouping

During the process of radio shots, slight variations in the
seating positions of the driver can cause a change in the CSI
and might sometimes lead to a misclassification. To capture
and compensate these small variations, we collect multiple
radio shots for the same in-car environment and take a com-
bined decision. We call it the grouping technique which is
explained in Fig. 11. During the testing phase, for each
test subject, assume the four radio shots are indexed as i;
i = 1, 2, 3, 4. Let PAi and PBi represent the predicted class
probability of the ith radio shot for class A and class B, respec-
tively. Then the identity of the test subject is determined as
class A, if 
PAi < 
PBi and vice versa. If 
PAi = 
PBi ,
the test subject cannot be determined and we considered such
samples as incorrectly classified in our accuracy calculations.
We used four radio shots since, for our test subjects, more
than four radio shots led to repetitions of the CSI. This can be
easily extended to more radio shots based on the consistency
of seating postures of the test subjects.

V. EXPERIMENTAL RESULTS

We evaluate the performance of the proposed in-car driver
authentication system using the ML models discussed in the
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TABLE I
INFORMATION ABOUT THE TESTERS

TABLE II
CLASSIFICATION ACCURACY: COMPARISON BETWEEN THE

LEARNING-BASED AND TRRS-BASED APPROACH

FOR TWO-DRIVER AUTHENTICATION

previous section. First, we discuss the special case of two
driver authentication which can serve a similar purpose as the
existing memory seating facilities in cars alongside provid-
ing authentication. Later, we evaluate the performance of the
proposed system in the multidriver scenario.

One of the main challenges in evaluating the in-car driver
authentication system is the availability of data. The study of
the trend of radio biometric data with the time required that
the testers be available throughout the experiment duration
which is two months. Since the amount of data is limited,
the accuracy values obtained are dependent on the split of
the train and test data. This is because the selected train data
may or may not be able to generalize well to the test data.
To overcome this, cross-validation techniques are used in ML
models [31]. In the simplest cross-validation technique, the
entire data set is divided into Kv parts and Kv experiments are
performed with each part as testing data and the remaining
Kv − 1 parts as the training data. In this article, the value of
Kv is taken as the number of days of available data, i.e., we
treat the data corresponding to each day as a partition. By
doing so, we make sure that the same instance of the in-car
environment is not present in both training and testing data.
Throughout this article, the reported accuracies are calculated
using the Kv-fold validation and the value of Kv is taken as
the total number of days of data available.

A. Two-Driver Authentication

In this scenario, we classify a driver into one of the two
known drivers, i.e., a two-class problem. We consider five test
subjects denoted by A, B, C, D, and E. More information about
the testers is shown in Table I.

The accuracy of the proposed system with different ML
techniques is evaluated using 40-fold validation with CSI
from one channel and with the proposed grouping technique.
Table II shows the classification accuracy for different sets of

TABLE III
PERFORMANCE ON TWO DRIVER AUTHENTICATION

drivers from the in-car driver radio biometric database. The
performance of the k-nearest neighbors (K-NN) in the first
column can be taken as the baseline performance. On an aver-
age, the NN approach gave about a 7% increase in accuracy.
The highest accuracy achieved is 99.13% for the pair A− D.

1) Comparison With State-of-the-Art Approach: To our best
knowledge, there is only one prior work which uses radio bio-
metrics embedded in the CSI of wireless signals for human
recognition [19]. However, as discussed in Section II, the
performance of the previous work will be compromised by the
in-car environment changes because it heavily relied on TRRS
to compare the similarity between different radio biometrics
embedded in the CSI. Table III demonstrates the improve-
ment delivered by the proposed learning-based approach. In
all the cases, the learning-based approach outperforms the
state-of-the-art TRRS-based approach by at least 7% and up
to 20%.

B. Multiple Driver Authentication

We also evaluate the performance of the proposed system
in identifying more than two drivers. Fig. 12 shows the con-
fusion matrices for multiple driver classification using the NN
approach. The average detection rate for an individual among
three drivers is 84.33% while among seven drivers is 53.85%.
This is much greater than the accuracy achieved by random
guessing of identities among seven people, i.e., 14.28%. The
performance decreases with an increasing number of drivers.
The increasing off-diagonal elements from confusion matrices
between three to seven people also indicate an increasing false
alarm. The average false alarm increased from 15.33% in the
three driver case to 46.14% in the seven driver case.

VI. DISCUSSION

The performance of a human radio biometric-based system
is dependent on many factors, such as the physical character-
istics of the people, the number of channels used to obtain
CSI, the environment, the amount of training data present,
the number of classes present, etc. In this section, we ana-
lyze and evaluate the impact of the various factors on the
in-car driver authentication system using the NN approach.
The hyperparameters are tuned using the Kv-fold validation
technique.
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Fig. 12. Confusion matrices for different number of people.

Fig. 13. Accuracy averaged over several pairs of people with the amount of
training data.

A. Size of the Training Set

We evaluate the performance of the proposed system as
the size of the training set increases. Fig. 13 shows the
performance of the system averaged over several pairs of
people. As the amount of training data increases, the clas-
sification accuracy improves. When a new user is added, the
performance will improve as the proposed adaptive NN con-
tinues learning and generalizing the distinctiveness between
his/her and others radio biometrics. From Fig. 13, we can
see that the accuracy improves drastically and reaches about
90% in 15 days. As the user continues to use the car, the
proposed system can capture more radio biometric information
of him/her and then improve the recognition accuracy.

B. Similarity of Radio Shots

We can observe from the previous experiments that the clas-
sification performance largely depends on the set of people
that we aim to differentiate. This is because some people
can have more similar radio biometrics compared to others.
Classification of such people might be more challenging than
others.

TABLE IV
SIMILARITY OF RADIO SHOTS AND CLASSIFICATION ACCURACY

To support our observation, we have calculated the similar-
ity of radio biometrics in the same environment for different
sets of people, where similarity is measured in terms of TRRS
as defined in (1). In Table IV, we show the TRRS calculated
for the pairs with maximum (A− D) and minimum accuracy
(C−D) averaged over all days. We can say that the similarity
of CSIs is one of the many factors affecting the classifica-
tion accuracy. The accuracy is lower for the pair with more
similar CSIs. However, many other factors can influence the
classification accuracy in addition to the similarity of radio
biometrics. A few of them are listed as follows.

1) Consistency of Seating Position: If the seating position
of a tester is consistent and similar during the train-
ing and testing period, the classification accuracy is
improved. On the other hand, if the tester tends to sit
in different seating postures or positions every time, it
might lead to a decreased classification accuracy but can
get mitigated with an adaptive training data set which
keeps refreshing with newly added radio biometrics
samples.

2) The Difference in the In-Car Environment: As the human
radio biometrics are highly correlated with the in-car
environment, if the difference in the in-car environments
(measured quantitatively by the TRRS) during the train-
ing and the testing period is significant, the classification
accuracy tends to decrease.

3) The Difference in the Training and Testing Data: For
example, if a tester wears a thick jacket during the train-
ing phase and no jacket during the testing phase, the
classification accuracy might decrease.
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Fig. 14. Accuracy and maximum TRRS with difference between train and
test days. Red line shows an accuracy with increasing gap between the training
and testing days. The blue line shows the TRRS which is the best match of
the empty in-car environment from the training database.

C. Performance With Increasing Gap Between Training and
Testing Data

As discussed in Section II, with time, the changes in the in-
car environment accumulate and the TRRS with reference to
day 1 continues to decrease. This causes a decrease in classifi-
cation accuracy. Fig. 14 shows the classification accuracy with
an increasing gap between the training and testing data. The
maximum TRRS achieved by the test sample with the samples
from the training database is shown in blue. The red line shows
the average accuracy achieved in the case of two-driver authen-
tication. We can see that with increasing difference between
train and test times (days), the maximum matching TRRS and
the classification accuracy have a decreasing trend. The clas-
sification accuracy does not monotonically decrease since it
also depends on other factors, such as variation in the seat-
ing positions, type of clothing, etc. From this observation, the
best performance of the system can be achieved when it is
used regularly and by constantly updating the database. The
more regular and longer this system is used, the better is the
performance.

D. Effect of Grouping

Grouping technique (Section IV-D) uses multiple radio shots
to determine the driver identity. In Table V, we show the clas-
sification accuracy with and without grouping for one channel
using the NN approach. We observe that in most cases, the
grouping technique can significantly improve the classification
accuracy and hence using multiple radio shots to predict the
identity is more reliable. Few exceptions in the case of KNN
could be due to a large variation in the seating position for
each radio shot.

E. Effect of the Number of Links

Through exploiting the antenna diversity provided by
multiple links of the MIMO system, we can explore different
multipath signals in the environment and there is a potential
increase in the number of independent features. Fig. 15 shows

TABLE V
PERFORMANCE WITH AND WITHOUT GROUPING

Fig. 15. Classification accuracy with an increasing number of links for
different sets of people.

TABLE VI
PERFORMANCE WITH INCREASING EFFECTIVE

BANDWIDTH USING THE NN APPROACH

the classification accuracy with an increasing number of links
for two driver authentication. Overall, we can see that the
performance, increases with the number of links.

F. Effect of the Number of Channels

The effective bandwidth has been defined as We = D×W×
N, where W is the bandwidth per channel per link which is
40 MHz in the proposed system, D is the number of chan-
nels, and N is the number of links [7], [32], [33]. The radio
shots are taken on a single channel at a time, according to the
proposed frequency hopping mechanism. In this article, we use
a maximum of four channels and achieved the largest effective
bandwidth of 2× 3× 40× 4, i.e., 960 MHz. Table VI shows
the performance using the NN approach with a training data
of 12 days for a different number of channels. While in a few
cases, there is a marginal difference in the accuracy, in other
cases such as B–E, a significant increase in the classification
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accuracy is observed from 64.13% to 80.65%. The effective
bandwidth that we achieve here is different from the physi-
cal bandwidth. Although we increase the number of channels
using frequency hopping, the system uses only one channel
at a time which cannot improve the resolution of multipath.
However, using different channels and thus different carrier
frequencies, more features can be extracted. The variation in
the performance improvement for different pairs of people
with the number of channels is yet to be analyzed by involving
more number of subjects in the study.

VII. FUTURE WORK

The proposed driver authentication system is the first gen-
eration of such an effort where we focused on key enabling
issues and carried out a proof-of-concept development. Several
limitations and issues deserve additional attention, which can
be addressed in our on-going work and future plan.

1) A small change in the environment can alter the
multipath channel and the CSI. All the techniques based
on the exact value of CSI are sensitive to these changes.
In this article, we attempted to address the problem of
“changing in-car environments” using learning methods
for a restricted environment such as a car. For more
general environments such as indoor, more advanced
techniques will be necessary. Also, environment inde-
pendent radio biometrics cannot be obtained by direct
subtraction of the CSI of an empty environment. As
a future work, we will study the pattern of the indoor
multipath channel change and the dependence of human
radio biometrics on the multipath channel.

2) We have used a simple NN in this article. Other NNs
with a more complicated architecture involve a larger
number of learnable parameters and thus require a much
larger number of samples for training. Gathering more
radio biometric data for different people in different
environments can enable the usage of a more com-
plex NN architecture and provides a better understanding
of human radio biometrics. Although this increases the
complexity, with the available level of computational
ability in the recently manufactured cars used for auto
pilot mode, adaptive cruise mode, and even face recogni-
tion, we believe that the future cars will be well equipped
to carry out the task of model updating in an NN. An
alternate approach can be cloud computing, by sending
gathered data to the cloud and fetching the recurrent
training computed on the cloud.

3) In a practical scenario, there will be at most two or three
authenticated drivers for a car. In such cases, the sim-
ilarity in all the physical attributes is highly unlikely.
As future work, more data need to be gathered to study
the performance of the proposed system for people with
similar physical characteristics like twins. The variabil-
ity in the accuracy of different pairs of people can also
be understood with more data and by including more
testers.

4) This system cannot recognize a new temporary driver
without learning the knowledge of his/her radio biomet-
ric information in advance. The radio biometrics of the

driver should be present in the driver radio biometric
database of the car. In case of a temporary driver, keys
or passwords have to be used.

VIII. CONCLUSION

In this article, we introduced the idea of in-car driver
authentication to make the automobiles smarter and more user-
friendly. To evaluate the feasibility and performance of the
proposed system, we conducted long-term experiments in a
car. We built the first long-term driver radio biometric database
for multiple persons and proposed to integrate ML techniques
into the system. Furthermore, we have implemented frequency
hopping and used MIMO systems to exploit the frequency and
multiantenna diversities, respectively. The experimental results
show that the proposed system is practically feasible with good
accuracy for two or three driver authentication, which is a
typical use case for a smart car.
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