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Detectability of the Order of Operations:
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Abstract— As it is more and more convenient to manipu-
late multimedia content, the authenticity of multimedia content
becomes questionable. While there are many forensic techniques
developed to identify the use of a single manipulation operation,
a few has considered the cases where multiple operations may be
involved. In these cases, investigators not only need to identify the
use of each operation, but also need to detect the order of these
operations. However, due to the interplay among operations, the
order of operations may not always be detectable. This leads to
a fundamental question of when we can and cannot detect the
order of operations. In this paper, we formulate the problem of
detecting the order of operations as a multiple hypotheses testing
problem. Then, we propose an information theoretical framework
to model the relationship between the detected hypothesis and
the true hypothesis. Under this framework, we propose a mutual
information-based criterion to obtain the best detector and use
it to determine whether we can or cannot detect the order of
operations based on certain set of features. A case study of
detecting the order of resizing and blurring has been examined
to demonstrate the effectiveness of the proposed framework and
criteria. In addition, two known forensic problems are considered
in the simulations to show that the results obtained from the
proposed framework and criteria match those of the existing
works.

Index Terms— Order forensics, conditional fingerprints,
mutual information, resizing and blurring.

I. INTRODUCTION

NOWADAYS, various editing software and online tools
have been developed to retouch and manipulate digital

multimedia content. Editing multimedia files becomes so easy
and inexpensive that we can hardly trust the authenticity of
multimedia content. However, since multimedia has been used
as important evidence to make decisions or statements by
authorities, such as law enforcement, news agency and gov-
ernment, it is critical to know whether the given multimedia
content is trustful or maliciously tampered. To answer this
question, many forensic techniques have been proposed to
identify the use of different manipulation operations, such
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as compression [1]–[3], resizing [4], [5], contrast enhance-
ment [6], blurring [7]–[9] and so on [10]–[12].

Most of these techniques expose specific fingerprints of
the considered operations and implicitly assume that no other
operations were applied [1], [4]–[9], [11]. However, in reality,
it is often the case that multiple operations are needed to
complete a forgery. For example, if a forger wants to replace
a person’s face in an image using another person’s face from
another image, he or she may need to apply the following
operations. First, the forger may need to apply resizing and
contrast enhancement operations to the new face to make
it match the size and color of the old face in the target
image. Then, to avoid visible boundaries of the new face to
the background of the target image, blurring may be applied
to smooth the transition. At last, this forged image may be
compressed for storage or transmission.

There have been some forensic techniques designed to iden-
tify the existence of a single operation in a certain operation
chain [2], [3], [13]–[16]. Double compression detectors were
developed to detect the existence of the first compression in
a processing chain of two consecutive compressions [2], [3].
In [13], an improved double compression detector was pro-
posed for the processing chain of two compressions with
resizing in between. Specifically, two hypotheses were con-
sidered: whether the image was single JPEG compressed, or
it was double JPEG compressed with resizing applied in the
middle. Authors in [14] considered a similar scenario where
linear contrast enhancement was interleaved with the two
compressions. In addition, the contrast enhancement detec-
tor proposed in [15] can effectively detect this operation
when it was applied to previously JPEG compressed images.
Furthermore, authors in [16] are able to recover the com-
pression history when full-frame linear filtering is applied
after JPEG.

While these techniques considered multiple operations, their
goal is to identify the existence of a specific operation in a
certain processing chain. Nothing can be inferred about the
order of operations from these techniques. However, when
multiple different operations may be applied to the multimedia
content, detecting the order of these operations is equally
important with identifying the existence of each operation.
By detecting the order of operations, we can obtain the com-
plete processing history of multimedia content. Furthermore,
given that different operations may be applied by different
forgers, detecting the order may also help us identify who
manipulated the multimedia content and when it was manipu-
lated. For example, if investigators receive an image that was
downloaded from the Internet and may be maliciously blurred
by either the uploader or the downloader. Suppose that when
an image is uploaded, resizing is needed to make the image fit
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Fig. 1. Fingerprints for detecting the order of resizing and blurring. (a) and (b) are the original image and the DFT of its p-map, respectively. (c) - (f) show
the DFT of the p-map of (c) the resized image, (d) the blurred image, (e) the blurred then resized image, and (f) the resized then blurred image. Resizing
factor is 1.5 (upscaling). Gaussian blur is used with variance 1. Regions of interests are highlighted by dotted squares and circles.

the website standard. In this scenario, detecting the order of
blurring and resizing can tell us who manipulated the image
and when it was manipulated.

Few works have been done on detecting the order of
operations. In [17], a forensic technique has been devel-
oped to detect the order of resizing and contrast enhance-
ment. Nevertheless, the order of operations is not always
detectable due to the interplay between operations. One rea-
son would be that when multiple operations are applied
to the multimedia content, later applied operations may
affect, or even destroy, the fingerprints of earlier applied
operations. For example, if JPEG compression or Gaussian
noise is applied after contrast enhancement, the finger-
prints of contrast enhancement would be too weak to be
detected [15].

Therefore, a natural question would be “when can and
cannot we detect the order of operations?” Authors in [18]
have proposed two measures to determine the distinguisha-
bility of the order of operations when simple hypotheses are
considered. In this work, we formulate the order detection
problems into multiple hypotheses testing problems. For such
problems, we propose an information theoretical framework by
using mutual information based criteria to determine whether
or not we can distinguish all considered hypotheses based
on certain set of features. Furthermore, for those indistin-
guishable cases, this criterion can tell us which hypotheses
are confused with each other and why they are confused.
In addition, we also give a rigorous definition of the existence
of conditional fingerprints. To verify the effectiveness of the
proposed framework and criteria, we apply them to two
known forensic problems to show that the obtained results
match those published in existing works. Then, the proposed
framework and criteria are applied to the problem of detecting

the order of resizing and blurring to obtain when we can or
cannot detect their orders.

The remaining of this paper is organized as follows.
Section II explains the fact that the order of operations is not
always detectable and presents our system model for determin-
ing when they can or cannot be detected. The mutual infor-
mation based criteria are proposed in Section III. Section IV
presents our proposed detection scheme for detecting the order
of resizing and blurring. To demonstrate the effectiveness
of our proposed framework and criteria, Section V provides
simulation results for both existing forensic problems and the
problem examined in Section IV. Lastly, Section VI concludes
our work.

II. SYSTEM MODEL

In this section, we first give an example to illustrate that
the order of operations is not always detectable. Then, based
on the analysis on the example, we propose an information
theoretical framework for generalized multiple hypotheses
testing problems.

A. Order of Operations May Not Be Detectable

When multiple operations are applied to multimedia content,
the effect of later applied operations on earlier applied ones
may lead to the undetectability of the order of operations. For
example, let us consider a processing chain which may contain
two operations: resizing and blurring. In order to identify the
complete processing history, we need to detect not only the
use of each operation, but also the order of them. Thus,
the following five hypotheses are considered in the analysis
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Fig. 2. A confusing example that we may not be able to detect the order. Plotted are DFTs of the p-map of (a) the blurred image, (b) the blurred then
resized image, and (c) the resized then blurred image when resizing factor is 1.5 and the variance of Gaussian blur is 0.7. Regions of interests are highlighted
by dotted squares and circles.

and needed to be distinguished.

H0 : It is unaltered,

H1 : It is altered by A only,

H2 : It is altered by B only,

H3 : It is altered by B then A,

H4 : It is altered by A then B , (1)

where A and B denote the operations of resizing and blurring
respectively.

Figs. 1(b) - 1(f) show the different fingerprints of each
hypothesis in the discrete Fourier transform (DFT) of an
image’s p-map. P-map is a probability matrix with each ele-
ment representing the probability of the corresponding image
pixel correlated with its neighbor pixels [4]. This matrix is
widely used in detecting the resizing operation [5] because the
linear interpolation process in resizing will lead to periodic
characteristics of the p-map. Thus, when we take the DFT
of the p-map, we would observe four distinct peaks in the
corresponding spectrum, as they are shown in Fig. 1(c).

We assume that the blur operation is applied by using
a linear filter on an image. Even though it does not give
direct correlations between neighboring pixels, the neighbor
pixels of a blurred image may still be correlated due to the
overlapped dependency on the pixels of the original image.
This alteration on pixel correlations caused by blurring may
result in certain fingerprints in the p-map of the blurred
image.

To see how pixel correlations are altered by blurring,
we examined the p-map and its DFT of a blurred image.
We have found that, in the DFT of the p-map, a blurred image
has an increase of energy in high frequency component while
the energy in the frequency domain of an unaltered image is
monotonically decreasing as the frequency increases. We can
see these fingerprints by comparing Fig. 1(d) with Fig. 1(b).
These fingerprints can be used to detect blurring, as we will
discuss in Section IV.

Furthermore, even when the image is previously resized,
these fingerprints of blurring may still exists, as it is shown
in Fig. 1(f). However, if resizing is applied after blurring,
the fingerprints of blurring will be hardly detectable, as it is
shown in Fig. 1(e). Nevertheless, either resizing then blurring
or blurring then resizing, the DFT of the p-map is more noisy
than that of the only resized case.

Based on the fingerprints of each hypothesis presented in
Fig.s 1(b) - 1(f), we can design algorithms to distinguish all
hypotheses in (1) and thus detect the order of resizing and
blurring. However, for some cases, these fingerprints are very
weak and hardly detectable. Fig. 2 shows a confusing example
where the same image in Fig. 1(a) was examined but the blur-
ring effect is weaker that in Fig. 1. We can see that, though we
may still be able to observe the fingerprints of blurring, we can
hardly tell the difference between the blurred then reszied
image and the resized then blurred one. Therefore, in this
case, we may not be able to detect the order of resizing and
blurring.

B. Information Theoretical Model for Multiple Hypotheses
Testing Problems

Given that the order of operations is not always detectable, a
natural question would be “when can we and cannot we detect
the order of operations?” To answer this question, we first
consider a generalized multiple hypotheses testing problem as
follows.

For forensic problems where we want to estimate the
processing history of multimedia content, hypothesis test is
commonly used. For example, In [5] of detecting resizing,
two hypotheses were considered: H0, the image is unaltered;
H1, the image is resized. In [17], five hypotheses were
considered, similarly to those in (1) with B denoting the
operation of contrast enhancement.

In order to distinguish these considered hypotheses, inves-
tigators go through the following typical steps [19]. First,
possible fingerprints that can be used to distinguish each
hypothesis are found. Then, based on these fingerprints, fea-
tures are extracted from an examined image. At last, a set of
detectors with tunable thresholds or parameters will be used
to make the final decision of the detected hypothesis based on
the extracted features. Fig. 3 shows this process.

Given certain features, detectors with different parameters
will lead to different detection performance. For example,
when detecting the resizing operation, simple hypothesis test
was used [5]. Parameters of the detector determined the
detection rate and false alarm rate. The overall performance of
the detector can be measured by plotting a receiver operating
characteristic (ROC) curve, which contains all reachable pairs
of detection rates and false alarm rates.
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Fig. 3. A typical process of contrasting different hypotheses.

Let us consider another forensic problem where more
than two hypotheses are involved. In [17] of detecting the
order of resizing and contrast enhancement, five hypotheses
were considered in the analysis. To demonstrate the detection
performance, authors in [17] modified the ROC curves and
plotted the curves of detection rate against the false discovery
rate. Nevertheless, multiple curves were needed to show the
detection performance.

This representation of multiple modified ROC curves could
be problematic. Because when tuning the parameters, some
curves may become better while others may be worse. It is
hard to say which parameters yield the best overall detection
performance.

In order to give a simple yet effective characterization,
we use a transition probability matrix between the true
hypotheses and the detected hypotheses to represent the
performance of the detector with certain parameters. This
representation is applicable for general multiple hypotheses
testing problems. Furthermore, it can be used to compare the
detection performance of different detectors, which will be
discussed in the next section.

The transition probability matrix is defined as follows.
Let H = {H0, H1, . . . , HM−1} denote the set of considered
hypotheses in a multiple hypotheses testing problem. Then
the true hypothesis and the detected hypothesis, denoted as
H and Ĥ respectively, belong to this set. Based on certain
features, a set of detectors with different parameters θ , denoted
as dθ , are used to contrast the different hypotheses. For
each choice of θ , the performance of the specific detector is
presented by a transition probability matrix T(θ) with each
element denoting the conditional probability of a detected
hypothesis given a true hypothesis, i.e.,

Ti, j (θ) = Pθ (Ĥ = H j |H = Hi), 0 ≤ i, j < M. (2)

With this definition, we propose a feature dependent abstract
channel to characterize the relationship between true hypothe-
ses and detected hypotheses. The channel characteristics,
i.e., the transition probabilities between input and output (2),
is specified by the parameters of the set of detectors, as it is
shown in Fig. 3.

III. INFORMATION THEORETICAL CRITERIA

As we have formulated the order detection problem into a
multiple hypotheses testing problem, our goal is to tell when
we can and cannot distinguish all considered hypotheses based
on certain features. Given that detectors with different para-
meters yield different detection performance, a natural thought
would be to see if the best detector is able to distinguish all
hypotheses. Then, the question becomes “which detector is the

best?” In this section, we first propose a mutual information
criterion to determine the best detector. Then, based on this
criterion, detection theoretical criteria will be used to deter-
mine when we can and cannot distinguish all hypotheses.

A. Mutual Information Criterion to Obtain the Best Detector

In the previous section, we have used a transition probability
matrix to characterize the performance of a detector. The
relationship between true hypotheses and detected hypotheses
has been modeled as an abstract channel with transition prob-
abilities T(θ). Then, for the best detector, we would expect
that the detected hypotheses contain the maximal information
about the true hypotheses. Since mutual information is a
measure of the information that the output of a channel
contains about the input, we define the best detector based
on this measure.

Definition 1: In a problem of detecting hypothesis H ∈ H,
detectors dθ1

and dθ2
are based on the same features. Let

Ĥ denote the detected hypothesis. T(θ1) and T(θ2) are
transition probability matrices of detector dθ1

and dθ2
, respec-

tively. Let pH denote the priors of H . Then, detector dθ1
is better than dθ2

, w.r.t. the mutual information criterion,
when

IpH ,T(θ1)(H ; Ĥ) > IpH ,T(θ2)(H ; Ĥ), (3)

for the cases where we know the priors of H ; or

max
pH

IpH ,T(θ1)(H ; Ĥ) > max
pH

IpH ,T(θ2)
(H ; Ĥ), (4)

for the cases where we do not know the priors. I (H ; Ĥ)
denotes the mutual information between H and Ĥ .

This criterion compares the detection performance of differ-
ent detectors based on the maximal information that detected
hypotheses can possibly contain about true hypotheses by
using a certain detector. Note that (3) is a special case of (4)
when pH is fixed. This criterion enables us to evaluate the
best detector for general multiple hypotheses testing problems,
especially when more than two hypotheses are considered.
Furthermore, the properties of this measurement also match
to those of the traditionally used ROC curves for simple
hypothesis testing problems.

In order to show the effectiveness of our proposed mutual
information criterion in simple hypothesis cases, we make a
comparison between our information theoretical characteriza-
tion of the detection performance and the traditional ROC
curve, as it is shown in Fig. 4. In these cases, H = {H0, H1}.
Let pd and p f denote the detection rate and false alarm rate
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Fig. 4. Compare a simple hypothesis channel with a ROC curve.

as follows,

pd = P(Ĥ = H1|H = H1), (5)

p f = P(Ĥ = H1|H = H0). (6)

Given that uniform priors are usually implied when plotting
ROC curves [12], we take P(H = H0) = P(H = H1) = 1/2.

The performance of a detector with a specific parameter θ
can be represented by either the value of mutual information
IpH ,T(θ)(H ; Ĥ) or a point (p f , pd) in the ROC curve. Because
the mutual information only depends on pd and p f under
the assumption of uniform priors, for comparison, we use a
function I (p f , pd) to denote the mutual information between
H and Ĥ . Then, we have the following properties of the
mutual information criterion.

Lemma 1: For a simple hypothesis channel with uniform
priors, the mutual information between H and Ĥ , i.e., the
function I (p f , pd), has the following properties.

1) I (p f , pd) = I (pd , p f )
2) pd1 > pd2 > p f ⇒ I (p f , pd1) > I (p f , pd2)
3) arg min

p f

I (p f , pd) = pd ; arg min
pd

I (p f , pd) = p f

Proof: Given the uniform priors and likelihood probabili-
ties, we can obtain the probabilities of detected hypotheses as

P(Ĥ = H0) = 1 − 1
2 (pd + p f ), (7)

P(Ĥ = H1) = 1
2 (pd + p f ). (8)

Then, the mutual information for the simple hypothesis
channel is

I (p f , pd) = h
( 1

2 (pd + p f )
) − 1

2 h(p f ) − 1
2 h(pd), (9)

where h(p) denotes the binary entropy function of (p, 1− p).
From (9), we can see that I (p f , pd) is a symmetric,
i.e., I (p f , pd) = I (pd , p f ) Then, the first property is proved.

To prove the second property, we take the partial derivative
of I (p f , pd) w. r. t. pd ,

∂ I (p f , pd)

∂pd
= −1

2
ln

(1

2
(pd + p f )

)+ 1

2
ln

(
1 − 1

2
(pd + p f )

)

+ 1

2
ln pd − 1

2
ln(1 − pd)

= 1

2
ln

(
1 + pd − p f

(pd + p f )(1 − pd)

)
(10)

Then, when pd ≥ p f , the above derivative is greater than
zero. Thus, for pd ≥ p f , I (p f , pd) is an increasing function
of pd . The second property is also proved.

Furthermore, we can also see from (10) that pd = p f
is the minimal of I (p f , pd), i.e., arg min

pd

I (p f , pd) = p f .

Similarly, we can also prove that arg min
p f

I (p f , pd) = pd .

Then, the last property is proved and it concludes our
proof.

Since I (p f , pd) measures the detection performance of a
detector with detection rate pd and false alarm rate p f , it can
also be interpreted as the measure of detection performance
at a point (p f , pd) of a ROC curve. Then, the properties in
lemma 1 can be interpreted in the following way.

1) Detection performance of each point in a ROC is sym-
metric along the random guess line pd = p f . This infers
that, if our current detector is a point below this random
guess line, we can simply invert all decisions of the
detector to obtain its symmetric point above the line.

2) For points above the random guess line, given a certain
false alarm rate, a detector with a higher detection rate
is a better detector.

3) The worst performance is the random guess line.
We can easily see that the above properties match those in
ROC curves.

Therefore, for simple hypothesis test cases, our proposed
mutual information criterion is consistent with a ROC curve.
Furthermore, the proposed criterion gives a way to evaluate
the overall detection performance for cases where more than
two hypotheses are considered. Our mutual information crite-
rion is a general measurement of the detection performance
for multiple hypotheses testing problems.

B. Detection Theoretical Criteria to Determine the
Detectability of Multiple Hypotheses Testing Problems

By using the mutual information criterion, we can obtain
the best detector and thus know how well investigators can
achieve to contrast different hypotheses based on certain
features. Furthermore, given the best detector, we can finally
answer the question of when we can or cannot distinguish
all considered hypotheses by checking if the best performed
detector can distinguish all hypotheses. Specifically, if priors
are uniform, we examine the likelihood probabilities of the
best detector and check for each true hypothesis, if the detec-
tion probability is greater than any misdetection probabilities.
If nonuniform priors are assumed or we do not know the
priors, we examine the posterior probabilities of the best
detector.

Definition 2: For a multiple hypotheses testing problem,
where considered hypotheses are H = {H0, H1, . . . , HM−1},
let H and Ĥ denote the true hypothesis and the detected
hypothesis, respectively. Assume that priors are positive. Then,
under the mutual information criterion, all hypotheses can
be distinguished by detectors dθ , θ ∈ R

k , if and only if the
following conditions are satisfied.

• If priors are uniform, the conditions are

Pθ∗(Ĥ = Hi |H = Hi) > Pθ∗(Ĥ = H j |H = Hi) + δi, j ,

for any i, j = 0, 1, . . . , M − 1, and i �= j ; (11)

• If priors are nonuniform or unknown, the conditions are

Pθ∗(H = Hi |Ĥ = Hi) > Pθ∗(H = H j |Ĥ = Hi) + δi, j ,

for any i, j = 0, 1, . . . , M − 1, and i �= j, (12)

and

Pθ∗(Ĥ = Hi) > ε, ∀i = 0, 1, . . . , M − 1, (13)
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where δi, j ≥ 0 are confidence factors indicating how well
the hypothesis can be distinguished from others. ε is a small
positive constant and θ∗ are parameters of the best detector
w.r.t. the mutual information criterion. That is, if we know the
priors,

θ∗ = arg max
θ

IpH ,T(θ)(H ; Ĥ). (14)

If we do not know the priors,

(θ∗, p∗
H ) = arg max

θ,pH

IpH ,T(θ)(H ; Ĥ). (15)

Note that for cases of unknown priors, the above definition
of distinguishability cannot guarantee that the best detector
can distinguish the hypotheses for any priors. However, this
definition can be easily extended for cases where we have
more information about the priors.

Furthermore, by examining the conditions in (11) and (12),
we are able to tell which hypotheses are confused with each
other when we cannot distinguish all hypotheses.

Definition 3: For the problem in Definition 2, two hypothe-
ses, Hi and H j , i �= j , are confused with each other when
the following conditions meet.

• If priors are uniform,

Pθ∗(Ĥ = Hi |H = Hi) ≤ Pθ∗(Ĥ = H j |H = Hi) + δi, j ,

or,

Pθ∗(Ĥ = H j |H = H j ) ≤ Pθ∗(Ĥ = Hi |H = H j) + δ j,i .

• If priors are nonuniform or unknown,

Pθ∗(H = Hi |Ĥ = Hi) ≤ Pθ∗(H = H j |Ĥ = Hi) + δi, j ,

or,

Pθ∗(H = H j |Ĥ = H j ) ≤ Pθ∗(H = Hi |Ĥ = H j) + δ j,i .

The reason of why hypotheses may be confused with each
other is related to the strength of fingerprints or conditional
fingerprints [17]. As our examples in (1) and at the begin-
ning of Section II-B show, each hypothesis represents an
operation chain. This operation chain can be an empty chain
which denotes the hypothesis of unaltered multimedia content.
It can also be a single operation chain or a multiple operations
chain. We first define fingerprints and conditional fingerprints
of operation chains as follows.

Definition 4: Consider an operation chain and its corre-
sponding hypothesis, denoted as Si and Hi respectively. Let
S∅ and H∅ denote the empty operation chain, and the hypoth-
esis of unaltered multimedia content. If Si �= S∅, then the
fingerprints of Si are a set of features that can be used to
distinguish {Hi , H∅}. Next, we consider another operation
chain, denoted as S j . If Si is a sub-chain of S j , let S j\i denote
the operation chain of S j excluding Si . H j\i is denoted as
the corresponding hypothesis of S j\i . Then, the conditional
fingerprints of Si given S j are a set of features that can be
used to distinguish the following hypotheses:

{H j\i, Hi , H j }.
Remarks: To better understand the difference between

fingerprints and conditional fingerprints, we give the following
example. Let Si and S j denote the operation chain of only

contrast enhancement and contrast enhancement then resizing,
respectively. Then, S j\i represents the operation chain of
only resizing. When detecting contrast enhancement, the
fingerprints we commonly used are the high frequency
components of the DFT of the pixel histogram [6].
However, these cannot be the conditional fingerprints of
contrast enhancement given contrast enhancement then
resizing [17]. This is because that resized images and
contrast enhanced then resized images, i.e., {H j\i, H j },
cannot be distinguished by examining the fingerprints of
contrast enhancement. In [17], the conditional fingerprints
of contrast enhancement given contrast enhancement then
resizing are two features. One is the maximum gradient of
the periodogram of the Fourier transformed p-map, which is
the fingerprint of resizing. The other feature is the distance
of normalized histograms between the full image and the
down-sampled image [17]. By using these two features,
we can distinguish resized images, contrast enhanced
images, and contrast enhanced then resized images,
i.e., {H j\i, Hi , H j }.

Based on fingerprints and conditional fingerprints, forensic
techniques can be designed to detect operations and their
orders [12], [17]. Similarly, in a multiple hypotheses testing
problem, the existence of required fingerprints and condi-
tional fingerprints enables us to distinguish all hypotheses.
Based on Definition 3, rigorous definitions of the existence
of fingerprints and conditional fingerprints can be obtained
as follows.

Definition 5: Consider a multiple hypotheses testing prob-
lem where H = {H0, H1, . . . , HM−1}. Let H∅ denote the
empty chain hypothesis. For a hypothesis Hi ∈ H, Hi �= H∅,
let Si denote the processing chain represented by this hypoth-
esis. Then, the fingerprints of Si exist if

Hi is not confused with H∅ by Definition 3.

Now, consider another hypothesis H j , j �= i and H j �= H∅,
the processing chain it represents is S j . The fingerprints of
Si and S j are different if

Hi is not confused with H j by Definition 3.

Furthermore, if Si is a sub-chain of S j , let H j\i denote the
hypothesis representing Sj\i , then the conditional fingerprints
of Si given S j exist if

any two of {H j\i, Hi , H j } are not confused by Definition 3.

Having all concepts defined for general hypotheses testing
problems, let us examine the special cases of detecting the
order of operations where five hypotheses are considered in the
analysis (1). Then, the order of A and B can be detected if and
only if we can distinguish all hypotheses in (1) by Definition 2.
This requires that any two hypotheses cannot be confused with
each other by Definition 3. That is, the following conditions
on fingerprints and conditional fingerprints should hold by
Definition 5.

• Fingerprints of A, B , A → B , and B → A exist.
• Conditional Fingerprints of A given A → B exist.
• Conditional Fingerprints of B given B → A exist.
• Fingerprints of A → B and B → A are different.
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Fig. 5. The central horizontal line of the DFT of the p-map of (a) an unaltered image, (b) a resized image, (c) a blurred image, (d) a blurred then resized
image, and (e) a resized then blurred image.

IV. DETECTING THE ORDER OF RESIZING AND BLURRING

To demonstrate the effectiveness of the proposed framework
and criteria, we consider a case study of detecting the order of
resizing and blurring. In this problem, we are distinguishing
the five hypotheses in (1). Thus, this is a multiple hypotheses
testing problem and can be analyzed using our information
theoretical framework.

As we have shown in Fig. 1, each of the five hypothe-
ses has its unique fingerprints in the DFT of an image’s
p-map, which may help us contrast these hypotheses. Based
on these fingerprints, we take two features to distinguish these
hypotheses. One feature is to detect the existence of four peaks
and measure the strength of these peaks. The other feature is to
capture the increase of noise energy in high frequency regions.

A. Feature 1: PSNR

In order to measure the strength of the peaks with respect
to noise nearby, we use a peak signal to noise ratio (PSNR)
feature which calculates the ratio of the peak value to the
mean of the absolute value of noise close to this peak.
To obtain this measure, we first extract the central horizontal
lines of the DFT of the p-maps from Fig.s 1(b)-1(f) and plot
the magnitude versus the horizontal index of each pixel on
these lines in Fig.s 5(a)-5(e), respectively. By appropriately
choosing thresholds, this measure can be used to categorize
the five hypotheses into three classes: unaltered or only blurred
images; blurred then resized or resized then blurred images;
only resized images.

Specifically, let us take the resized then blurred case as an
example, i.e., the signal in Fig. 5(d). Given the symmetry of
the signal, we first consider the left half of the signal. Let
yl and x denote the magnitude and the index, respectively.
Since the noise mean increases with the index, we first use
the following linear regression model to make the noise mean

Fig. 6. The process of how to calculate the PSNR from the central horizontal
line of the DFT of a p-map. Take Fig. 5(d) as an example.

uniform so that the peak is more prominent.

yl = a1x + b1 + n. (16)

An example of the linear regression process is shown in the
upper left figure of Fig. 6. After estimating the parameters
as â1 and b̂1 by least squares, we obtain the difference
signal

dl = yl − â1x − b̂1, (17)

as it is shown in the bottom left figure of Fig. 6.
Then, the peak is detected from dl by finding the coordinates

of its maximum value (x p, yp). From the bottom left figure
in Fig. 6 we can see that, the noise variance changes a lot
as it is farther from the peak. Thus, instead of calculating
the mean of the absolute value of noise in the whole range,
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Fig. 7. The noise energy pattern signal (dotted blue lines) extracted from the DFT of the p-map and their polynomial fitting curves (solid red lines) for
(a) an unaltered image, (b) a resized image, (c) a blurred image, (d) a blurred then resized image, and (e) a resized then blurred image.

we only consider the regions close to the peak. Then, PSNR is
calculated as follows.

PSNRl = yp

mean0<|x−x p|<ε

(∣
∣dl(x)

∣
∣
) . (18)

Similar process is then applied to the right half of the signal
in Fig. 5(d) to obtain PSNRr . Then, the PSNR measurement
for the central horizontal line of the DFT of a p-map is

PSNRh = max(PSNRl , PSNRr ). (19)

Given that the peaks also present in the central vertical line
of the DFT of the p-map, we calculate the above PSNR mea-
surement, denoted as PSNRv , for the central vertical line
signal as well. Then, the first PSNR feature used to distinguish
hypotheses in (1) is

PSNR = max(PSNRh , PSNRv ). (20)

We can make the following detection based on this feature,

Ĥ =

⎧
⎪⎨

⎪⎩

H0 or H2, if PSNR < τ1,

H3 or H4, if τ1 ≤ PSNR < τ2,

H1, if PSNR ≥ τ2,

(21)

where τ1 and τ2 are tunable parameters.

B. Feature 2: Noise Energy Pattern

To further distinguish H2 from H0 and H4 from H3,
we examine the fingerprints of blurring. As shown in Fig. 1(d)
and Fig. 1(f), when blurring is applied as the last operation,
we would observe an increase of noise energy at high fre-
quencies of the DFT of the p-map. In order to capture this
change of noise energy, we calculate a noise energy pattern
signal near the boundaries of the DFT of a p-map.

Specifically, let Z = {Zm,n} denote the magnitudes of the
DFT of a p-map. The origin is located at the upper left corner
of the matrix with size a by a. The noise energy signal, which
is denoted as a matrix E , is first calculated as a summation
of neighboring magnitudes in Z , i.e.,

E = Z ⊗ 1w, (22)

where 1w is an all one matrix of size w by w, and ⊗ is
a convolution operator. Then, we take a one dimensional
signal ye near the boundaries of E as the noise energy pattern
signal:

ye(x) =
(
Ev,a/2+x + Ea/2+x,a−v + Ea−v,a/2−x + Ea/2−x,v

)

4
,

(23)

where v − a/2 ≤ x < a/2 − v and v = �w/2 + 1.
In Fig.s 7(a)-7(e), the dotted blue lines are noise energy

pattern signals for the DFT of the p-maps in Fig.s 1(b)-1(f),
respectively. We can see that the fingerprints of blurring result
in an increase of the noise energy with |x | for higher values
of |x |, as shown in Fig.s 7(c) and 7(e). To measure these
fingerprints, we use a second order polynomial model to fit
the signal as

ye = a2x2 + b2x + c2, (24)

and see if the estimated function is convex or concave. The
solid red lines in Fig. 7 are the estimated curves. If the
estimated â2 is positive, then the noise energy pattern signal
is estimated as a convex function. This indicates that the noise
energy tends to increase with |x | for higher |x |’s. Thus blurring
fingerprints are detected. Otherwise, if the estimated function
is concave, blurring fingerprints are not detected. The detection
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we can make by this feature is

Ĥ =
{

H0 or H1 or H3, if â2 < 0,

H2 or H4, if â2 > 0.
(25)

Combining the detection results from (21) and (25), our
decision rule of the proposed detector for detecting the order
of resizing and blurring is

Ĥ =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

H0, if PSNR < τ1 and â2 < 0,

H1, if PSNR ≥ τ2,

H2, if PSNR < τ1 and â2 > 0,

H3, if τ1 ≤ PSNR < τ2 and â2 < 0,

H4, if τ1 ≤ PSNR < τ2 and â2 > 0.

(26)

In our proposed algorithm, the detection has two tunable
parameters, and thus θ = (τ1, τ2). Given the detector and
its parameters, we will apply our mutual information based
criteria to simulation results to answer the question of “when
can we and cannot we detect the order of resizing and blurring”
in Section V-C.

V. SIMULATION RESULTS

In this section, we conduct several simulations to demon-
strate the effectiveness of our information theoretical frame-
work and mutual information based criteria. We first examine
two existing forensic problems, one simple hypothesis problem
and one order detection problem, to verify the correctness of
our framework and criteria. Then, the detection of the order of
resizing and blurring is examined to show when we can and
cannot detect the order of these two operations.

A. Detect Double JPEG Compression

Since our framework and criteria can be used for general
multiple hypotheses testing problems, we start with a well-
known simple hypothesis testing problem in forensics, double
JPEG compression detection [2], [3], [20]–[23]. We want to
prove that the results obtained from our method match those
from published literature.

To detect double JPEG compression, two hypotheses are
considered in the analysis:

H0 : The image is single JPEG compressed,

H1 : The image is double JPEG compressed. (27)

There are many features that can be used to distinguish
these hypotheses [2], [3], [20], [22]. All of them can yield
over 90% detection rates for most JPEG compression quality
factors. While our framework can be applied to any features
and corresponding detectors, we use the first digit feature of
DCT coefficients as an example to see if the results obtained
from our framework match those in the existing work [3].

The detector in [3] was proposed based on the double JPEG
compression fingerprints in the first digit of DCT coefficients.
Specifically, If an image is single JPEG compressed,
the first digit of its DCT coefficients obeys a general
Benford’s law:

p(d) = N log10

(
1 + 1

s + dq

)
, d ∈ {1, 2, . . . , 9}, (28)

where s and q are model parameters and N is a normalization
factor. The first digit d of a non-zero integer x is computed as

d =
⌊ x

10�log10 x�
⌋
, (29)

where �·� is the floor rounding operation. If the image is
double JPEG compressed, however, this law will not hold for
the first digit of its DCT coefficients.

Given these fingerprints, a detector for distinguishing
hypotheses in (27) can be designed as follows. First, we obtain
the normalized histogram of the first digit of DCT coefficients.
Then, we use these statistics to estimate the general Benford’s
law and calculate the sum of squared errors (SSE) between the
estimated distribution and the normalized histogram. The final
decision is made by comparing the mean SSE of the 20 lowest
frequency subbands with a tunable threshold θ as follows [3],

Ĥ =
{

H0, if mean SSE < θ,

H1, if mean SSE ≥ θ.
(30)

In order to determine whether we can detect double
JPEG compression, we first generate a testing database using
the 1338 unaltered images from the UCID database [24].
Specifically, these images are first JPEG compressed by quality
factors from 50 to 95 with step size of 5 to obtain the
single JPEG compressed image database. Then, each of the
image in this database is re-compressed by the same set of
quality factors to compose the double JPEG compressed image
database. Let Q1 and Q2 denote the quality factors used in
the first and second JPEG compression, respectively. Then,
for each pair of Q1 and Q2, the testing database contains
1338 single compressed images using Q2 and 1338 double
compressed images using Q1 then Q2.

We first assume uniform priors for the two hypotheses as
most literatures do [3], [22]. Then, using (3) in Definition 1,
we can obtain the best parameter θ∗ that yield the high-
est mutual information between the detected hypotheses and
the true hypotheses. By checking the conditions (11) in
Definition 2, we determine whether we can distinguish these
two hypotheses for a given pair of Q1 and Q2. Unless specified
otherwise, we use confidence factors δi, j = 0 in simulations.
The results of all combinations of Q1 and Q2 are shown
in Fig. 8(a).

We can see that for most cases, double JPEG compression
can be detected by using the proposed model. This matches
the results in [3].

For indistinguishable cases, confused hypotheses are
H0 and H1 by Definition 3. This means that the conditional
fingerprints of JPEG compression given the operation chain
of double JPEG compression do not exist in these cases by
Definition 5. Specifically, this is because 1) Q1 = Q2, though
there are other features that can be used to deal with this
situation [23]; 2) the secondary quantization step size is a
multiple integer of the first quantization step size for most of
the extracted DCT subbands.

Note that we may be able to distinguish more cases if using
a support vector machine (SVM) as the detector and tune the
position of the hyperplane as the parameters [3].

Then, we consider a general case where we do not know
the priors of the two hypotheses. The best detector would
be determined by (4) in Definition 1 and we should use the
criterion (12) in Definition 2 to determine whether we can
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Fig. 8. Distinguishability test results of detecting double JPEG compression by applying our information theoretical framework and criteria. (a) Priors are
known and uniform. (b) Priors are unknown.

distinguish the hypotheses. Fig. 8(b) shows the results under
this assumption.

Since there are fewer constraints on the priors in the
case of unknown priors, the best detector can yield higher
mutual information in this case than that of the uniform
priors case. Then, the best detection performance we can
get from unknown priors would be better than that from the
uniform priors. Therefore, we have more distinguishable cases
in Fig. 8(b) than those in Fig. 8(a). In other words, the reason
that some scenarios are detectable in the case of unknown
priors but not in the case of known priors is that, the priors
which make the scenario detectable in the case of unknown
priors may not be those considered in the case of known priors.

B. Detect the Order of Resizing and Contrast Enhancement

The next case study we examine is the order detection of
resizing and contrast enhancement, which contains more than
two hypotheses [17]. In this forensic problem, five hypotheses
are considered and needed to be distinguished as in (1) with
A and B denoting resizing and contrast enhancement.

The fingerprints of H3 and H4 were found in [17] as
follows. If an image is first resized then contrast enhanced,
both fingerprints of resizing and contrast enhancement can be
revealed from the image. However, if an image is first contrast
enhanced then resized, only the fingerprints of resizing can
be revealed. Nevertheless, we can still detect the previously
applied contrast enhancement by examining a down-sampled
image of the resized image. This is because that, if the resizing
factor can be represented as a rational number s = a/b such
that a, b ∈ N and are mutually prime, then every a pixel in
the resized image will occur at the same spatial location as a
pixel in the original image. Therefore, the resizing operation
can be reverse engineered by down-sampling the image with
factor 1/a. If contrast enhancement is previously applied, then
its fingerprints can be revealed from this down-sampled image.

Given these fingerprints, a tree structured detection scheme
was proposed in [17]. First, resizing fingerprints are exam-
ined [5]. In this step, the feature extracted is the maximum
derivative of the cumulative periodogram calculated from the
DFT of the p-map. We denote this feature as frs . If frs is

greater than a threshold, denoted as α, it means that resizing
has been applied to this image. Thus, we can detect the
hypothesis as one of {H1, H3, H4}. Otherwise, the image
belongs to either H0 or H2.

If resizing fingerprints have been detected from the image,
then we can use the conditional fingerprints of contrast
enhancement given contrast enhancement then resizing to
detect the previously applied contrast enhancement [17]. The
feature extracted is the distance of normalized pixel histograms
between the full image and the down-sampled image with
factor 1/a. To obtain a, the resizing factor needs to be
estimated [25], which involves the use of a training database
and SVM. Let fcers denote the feature extracted in this step.
If fcers is greater than a threshold λ, then previously applied
contrast enhancement is detected in the resized image. Thus,
the detected hypothesis is H3. Otherwise, the image belongs
to either H1 or H4.

To distinguish H2 from H0 or H4 from H1, the fingerprints
of contrast enhancement are examined [6]. The feature is
taken from the high frequency components of the DFT of
the normalized pixel histogram. Let fce denote this feature.
To distinguish {H0, H2}, if fce is greater than a threshold β1,
then the image is detected as H2. Otherwise, it is detected
as H0. Similar decision is applied for distinguishing {H1, H4},
whose threshold is denoted as β2.

In summary, the detection algorithm is as follows.

Ĥ =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

H0, if frs < α and fce < β1,

H1, if frs ≥ α, fcers < λ and fce < β2,

H2, if frs < α and fce > β1,

H3, if frs ≥ α and fcers ≥ λ,

H4, if frs ≥ α, fcers < λ and fce > β2,

(31)

There are four tunable parameters and thus θ = (α, λ, β1, β2).
In order to know when we can and cannot detect the order

of resizing and contrast enhancement, we use 1000 images
from the UCID database to generate our test database.
The rest 338 images are used to generate the training
database for the resizing factor estimation step. We use
gamma corrections with parameter γ to simulate the contrast
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Fig. 9. Distinguishability test results of detecting the order of resizing and contrast enhancement by applying our information theoretical framework and
criteria. (a) Priors are known and uniform. (b) Priors are unknown.

enhancement operation [6]. For each γ ∈ {0.5, 0.6, . . . , 2} and
s ∈ {0.5, 0.6, . . . , 2}, the test database contains: 1000
unaltered images, 1000 resized images with scaling factor s,
1000 contrast enhanced images with gamma correction
parameter γ , 1000 contrast enhanced then resized images,
and 1000 resized then contrast enhanced images. Note that for
γ = 1 or s = 1, contrast enhancement or resizing is not
actually applied. Thus, we cannot distinguish all five
hypotheses in these cases. To estimate the resizing
factor, the training database for SVM contains
5070 (=338 × 15) images whose resizing factors are
taken from {0.5, 0.6, . . . 0.9, 1.1, . . . , 2} [25].

We still consider two cases regarding the priors of the
considered hypotheses. For uniform priors, the simulation
results are shown in Fig. 9(a). While for the cases that
we do not know priors, the results are shown in Fig. 9(b).
As expected, when we do not have constraints on priors of
the hypotheses, we have more distinguishable cases than that
when uniform priors are assumed.

In [17], two examples of resizing factors and gamma
correction parameters, (s = 1.5, γ = 0.5) and (s = 1.25,
γ = 0.7), are examined in experiments. Specific detection
performance for these two pairs of parameters are plotted in
five ROC curves. In both cases, authors in [17] have shown
that the proposed detector can successfully detect the order of
resizing and contrast enhancement. To compare these results
with those obtained by our framework, let us examine the
uniform priors case. From Fig. 9(a), we can see that (s = 1.5,
γ = 0.5) and the four neighbors of (s = 1.25, γ = 0.7)
are distinguishable points. We conducted an additional exper-
iment on (s = 1.25, γ = 0.7) and found that this point is also
distinguishable. This shows that the results obtained by our
approach match those in [17].

Besides the two example cases examined in [17], we obtain
the detectability results for the whole range of resizing fac-
tors and gamma correction parameters. From these results,
we have found that, though we can detect the order of resizing
and contrast enhancement for most of the cases, there are
a few indistinguishable cases. We examine these cases and
use Definition 3 to find which hypotheses are confused to
make it indistinguishable. In addition, the reasons of why

these hypotheses are confused is summarized as follows by
Definition 5.

• H2 is confused with H4 for the indistinguishable cases
where s = 1.1. This means that the conditional finger-
prints of resizing given resizing then contrast enhanced
do not exist in these scenarios. The effect of later applied
contrast enhancement on the fingerprints of previously
applied resizing is more obvious as the strength of
contrast enhancement increases, i.e., for larger values of
|γ − 1|.

• H3 is confused with H1 or H4 when s = 0.6, 0.9. Given
the tree structure of the detection algorithm, this is due
to the failure of distinguishing H3 from H1 and H4 by
the conditional fingerprints of contrast enhancement given
contrast enhancement then resizing. This conditional fin-
gerprints do not exist for these scenarios either because
of the incorrect estimation of the resizing factor or due
to the insufficient number of pixels extracted from the
down-sampled image.

C. Detect the Order of Resizing and Blurring

By applying our information theoretical framework and
criteria to double JPEG compression detection and the order
detection of resizing and contrast enhancement, we have
shown that the results obtained from our proposed framework
match those in existing works. In this section, we examine the
order detection of resizing and blurring and find when we can
and cannot detect the order of these two operations.

For forensic problems examined in previous
Sections V-A and V-B, the considered hypotheses can
be distinguished for most of the cases. However, as we have
shown in Fig. 2, there are some cases where the fingerprints
of resizing then blurring and those of blurring then resizing
are very similar. In these cases, the order of resizing and
blurring may not be detectable according to Definition 2 with
confidence factors δi, j = 0. Then, our framework and criteria
can be used to determine when this order can or cannot be
detected.

In this experiment, we use all 1338 unaltered images in
UCID database to generate the test database. We use Gaussian
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Fig. 10. Distinguishability test results of detecting the order of resizing and blurring by applying our information theoretical framework and criteria.
(a) Priors are known and uniform. (b) Priors are unknown.

TABLE I

POSTERIOR PROBABILITIES USED BY DEFINITION 2 TO DETERMINE THE
DISTINGUISHABILITY OF DETECTING THE ORDER OF RESIZING AND

BLURRING WHEN RESIZING FACTOR IS 1.5, AND (A) GAUSSIAN
BLUR VARIANCE IS 1 AND (B) GAUSSIAN BLUR VARIANCE

IS 0.7. H0, H1, . . . , H4 ARE DEFINED IN (1). THE NUMBER

IN CELL (Ĥ = Hi , H = H j ) DENOTES THE POSTERIOR

PROBABILITY Pθ∗ (H = Hi |Ĥ = Hi ). THE CELL

IN GREEN INDICATES THE MAXIMUM POSTERIOR
PROBABILITY IN THE ROW

blur with filter window 5 by 5 and variance ν to simulate
the blurring operation. For each s = {0.5, 0.55, . . . , 2} and
ν = {0.5, 0.55, . . . , 1}, the test database contains: 1338 unal-
tered images, 1338 resized images with scaling factor s,
1338 blurred images with Gaussian variance ν, 1338 blurred
then resized images, and 1338 resized then blurred images.
The reasonable range of ν ≤ 1 is obtained by calculating the
distortion introduced by blurring using the structure similar-
ity (SSIM) index [26] and then setting the reasonable SSIM
values to be greater than 0.9.

Based on the detector proposed in Section IV with tunable
parameters θ = (τ1, τ2) (26), we use our information theoret-
ical framework and criteria to obtain the distinguishable and
indistinguishable cases for different pairs of s and ν.

We first examine the two examples presented in Section II-A
where resizing factor is 1.5 and Gaussian blur variances are
1 and 0.7 respectively. Table I lists the posterior probabilities
used by Definition 2 to determine the distinguishabilities of
detecting the order of resizing and blurring when priors are

unknown for these two cases. We can see that in Table I(A),
the maximum posterior in each row locates at the diagonal
line of the table. This means that ∀i, j, i �= j , Pθ∗(H = Hi |
Ĥ = Hi) > Pθ∗(H = H j |Ĥ = Hi). Thus, according to
Definition 2, the order can be detected in this case.

For the other case where Gaussian blur variance is 0.7,
Table I(B) shows that not all maximum posteriors are along
the diagonal line of the table. Thus, the order cannot
detected in this case. Furthermore, the exception happens
when Pθ∗(H = H4|Ĥ = H3) > Pθ∗(H = H3|
Ĥ = H3). According to Definition 3, this indicates that the
confusing hypotheses which make the order undetectable are
H3 and H4. This matches the results shown in Fig. 2 where the
fingerprints of blurring then resizing and resizing then blurring
are similar and can be hardly distinguished.

Then, following the same procedure, we obtain the dis-
tinguishabilities of all considered s and ν and plot them
in Fig. 10. Fig. 10(a) shows results for the case of uniform
priors and Fig. 10(b) considers the case where priors are
unknown. Due to the fewer constraints on hypothesis priors,
Fig. 10(b) contains more distinguishable cases than Fig. 10(a)
does.

To further understand why we cannot detect the order
of resizing and blurring in those indistinguishable cases,
we examine the transition scenarios where distinguishable
cases becomes indistinguishable. That is, we analyze the
indistinguishable cases close to the range of distinguishable
cases in Fig. 10. By Definition 3, we have found that for
most cases, the confusing hypotheses that makes the order
undetectable are H3 and H4 in (1). Thus, by Definition 5,
the reason that we cannot detect the order of resizing and
blurring in these cases is that the fingerprints of blurring then
resizing and resizing then blurring are the same. This matches
the example we have shown in Fig. 2 where the fingerprints
in Fig. 2(b) and Fig. 2(c) are similar.

In addition, we consider a scenario where manipulations
are applied to a compressed image. Then, more than two
operations are involved in the analysis. In this scenario,
investigators obtain a JPEG image, and want to distinguish
the following hypotheses:

H0 : It is single compressed,
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Fig. 11. The DFT of the p-map of (a) a single JPEG compressed image with compression quality factor 75, and (b)-(e) double JPEG compressed images
with compression quality factors 75 then 85 and interleaved by (b) reszing, (c) blurring, (d) blurring then resizing, and (e) resizing then blurring. The same
image in Fig. 1(a) is examined in this example. Resizing factor is 1.5 and the variance of Gaussian blur is 1. Regions of interests are highlighted by dotted
rectangles.

H1 : It is double compressed interleaved by resizing,
H2 : It is double compressed interleaved by blurring,
H3 : It is double compressed interleaved by

blurring then resizing,
H4 : It is double compressed interleaved by

resizing then blurring. (32)

Fig. 11 shows the DFT of the p-map for each of the
hypotheses. Since the blocking artifact also results in peaks
in the DFT of the p-map, both fingerprints of resizing and
blurring are weakened by the last applied JPEG compression.
Thus, these five hypotheses are easily confused with each
other and may not be distinguishable based on p-map related
features.

We want to note that, our framework and the mutual
information based criterion can be applied to any chosen
features. Furthermore, by comparing the maximum mutual
information that each set of features can achieve, one can
determine the best set of features within the candidate feature
sets based on our proposed criterion.

VI. CONCLUSION

In this paper, we proposed an information theoretical frame-
work and mutual information based criteria to answer the ques-
tion of when we can or cannot detect the order of operations.
Specifically, we first formulated the order detection problems
into multiple hypotheses testing problems. Then, based on
a certain set of detectors, mutual information based criteria
were proposed to determine whether we can distinguish all
considered hypotheses. To demonstrate the effectiveness of our

proposed framework and criteria, we first apply them to two
existing and detectable problems: double JPEG compression
detection and the order detection of resizing and contrast
enhancement. Simulations show that the results obtained by
our framework match with those from existing literatures.
Then, the case study of detecting the order of resizing
and blurring is examined, where the order may not always
be detectable. In this case study, we proposed a detection
technique to detect their order. Based on this detector, we used
our information theoretical framework and criteria to obtain
the detectable cases and find the reasons for undetectable
cases.
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