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Abstract— While more and more forensic techniques have
been proposed to detect the processing history of multimedia
content, one starts to wonder if there exists a fundamental limit
on the capability of forensics. In other words, besides keeping
on searching what investigators can do, it is also important to
find out the limit of their capability and what they cannot do.
In this paper, we explore the fundamental limit of operation
forensics by proposing an information theoretical framework.
In particular, we consider a general forensic system of estimating
operations’ hypotheses based on extracted features from the
multimedia content. In this system, forensicability is defined as
the maximum forensic information that features contain about
operations. Then, due to its conceptual similarity with mutual
information in an information theory, forensicability is measured
as the mutual information between features and operations’
hypotheses. Such a measurement gives the error probability lower
bound of all practical estimators, which use these features to
detect the operations’ hypotheses. Furthermore, it can determine
the maximum number of hypotheses that we can theoretically
detect. To demonstrate the effectiveness of our proposed infor-
mation theoretical framework, we apply this framework on a
forensic example of detecting the number of JPEG compressions
based on normalized discrete cosine transform (DCT) coefficient
histograms. We conclude that, when subband (2, 3) is used in
detection and the size of the testing database is <20000, the
maximum number of JPEG compressions that we can expectedly
perfectly detect using normalized DCT coefficient histogram
features is four. Furthermore, we obtain the optimal strategies for
investigators and forgers based on the fundamental measurement
of forensicability.

Index Terms— Forensicability, fundamental limit, operation
forensics, information theory, JPEG compression.

I. INTRODUCTION

DUE to the ease of tampering a multimedia file, foren-
sics has gained much attention in the recent decade
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for providing technical tools to verify the authenticity of
multimedia content [1]. Enabled by techniques in existing
forensic literature, forensic investigators can not only identify
the acquisition environment of multimedia content [2]–[7],
but also detect the processing history that the content has
gone through after acquisition [8]–[13]. For the purpose of
improving the detection performance and identifying more
sophisticated manipulations, forensic researchers have always
been working on discovering new fingerprints and designing
new schemes [14]–[17].

However, as the effort of developing more powerful forensic
techniques goes on, evidence has shown difficulties when deal-
ing with complicated manipulation scenarios [16]. One would
then wonder if there exists a fundamental limit on forensic
capability that can never be exceeded? In other words, what is
the limit of investigators’ capability? How many manipulation
operations that investigators can detect at most? Given this
information, we would be able to tell whether the existing
technique has achieved the limit. If not, how far can it go?
Furthermore, by quantifying the forensic capability, we may
also obtain information about how to achieve the capability
limit. In addition, given that forgers may manipulate multime-
dia content to the extent beyond the limit of forensics, special
care would be needed for such cases.

There are few works exploring the fundamental limit of
forensic capabilities. To the best of our knowledge, the most
related work on fundamental limit analysis of forensics was
done by Swaminathan et al. [18], [19]. They explored the
fundamental limit in component forensics by establishing
two theoretical frameworks: an estimation framework and
a pattern classification framework. Three types of forensic
scenarios were defined in each framework regarding how
much information investigators have about the components of
a camera. Then, fundamental relationships of their forensic
performance were derived using the above two theoretical
frameworks. Moreover, in the estimation framework, Fisher
information was used to obtain the optimal input for semi
non-intrusive component forensics. However, these theoretical
frameworks were designed for camera identification forensics,
and thus they may not be suitable for answering fundamental
questions in operation forensics, which focuses on detecting
manipulation operations.

In this paper, we explore the fundamental limit of operation
forensics by building an information theoretical framework.
We consider the forensic scenario of detecting the processing
history of given multimedia content. We aim to answer the
question of how many operations that investigators can detect,
at most? To answer this question, we define forensicability as
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Fig. 1. Typical process that a multimedia signal may go through when
considering forensics.

the forensic capability of detecting operations. Unlike the mea-
sure of distinguishability proposed in [20], which was based
on a simple hypothesis model, our definition is applicable for
more general scenarios where multiple operations may happen
and many hypotheses can be considered. Given that investi-
gators often use features to estimate process history, in our
information theoretical framework, forensicability indicates
the maximum forensic information that extracted features can
contain about detecting operations. Furthermore, by properly
modeling the distribution of features, forensicability deter-
mines the fundamental limit of forensic detection performance
of any scheme based on those features. Then, by introducing
a statistical concept of expected perfect detection, we are able
to use forensicability to determine the maximum number of
operations investigators can detect. In addition, the fundamen-
tal measure of forensicability provides insights and theoretical
support for predicting forgers’ behavior and designing optimal
forensic schemes.

The remaining of this paper is organized as follows.
Section II introduces our information theoretical framework
for operation forensics, where forensicability is defined and
analyzed for general scenarios. Then, to demonstrate our
framework, we apply it to the forensic problem of multiple
JPEG compression detection in Section III. In this section,
specific models for normalized DCT coefficient histogram fea-
tures are proposed to derive the expression of forensicability
in this example. Then, Section IV performs all experiments
corresponding to the theoretical analysis in Section III. Among
these experimental results, we obtain the maximum number
of JPEG compressions one can detect using normalized
DCT coefficient histograms. In addition, the best strategies
for investigators and forgers are also analyzed in this section.
Lastly, Section V concludes our work.

II. INFORMATION THEORETICAL FRAMEWORK

In this section, we introduce our information theoretical
framework for general operation forensic systems. Under this
model, we define the capability of investigators as forensica-
bility, which determines the lower bound of estimation error
probability and helps us answer the question of when we
cannot detect any more operations.

A. Relationship Between Multimedia States and Features

Let us consider the process of a typical forensic analysis
shown in Fig. 1. Unaltered multimedia content may go through
some processing before investigators obtain it. In order to
identify the processing history that the obtained multimedia
content went through, investigators extract features from the
content. Based on the extracted features, specific estimators
are proposed to finally estimate the processing history.

Fig. 2. Information theoretical framework of operation forensics.

Fig. 3. Information theoretical framework applied to multiple compression
detection forensics.

During this process, it is often assumed that there are a
finite number of hypotheses on processing histories that the
multimedia content may go through. Investigators determine
which hypothesis actually happened based on the analysis
of extracted features. For example, to detect if the multime-
dia content was edited by a certain operation, like contrast
enhancement [10], resizing [8] or compression [21], simple
hypothesis test was used to distinguish the unaltered multime-
dia content and the content edited by the certain operation.
In another example of detecting the number of compressions,
the hypotheses would include single compression, double
compression, triple compression and so on. In this work,
processing history hypotheses considered in a certain forensic
analysis are denoted as multimedia states. Then, investigators’
goal is to distinguish multimedia states based on extracted
features.

Given the discussion above, we reformulate the forensic
system in a different way such that the relationship between
multimedia states and features can be emphasized. As it is
shown in Fig. 2, in this new formulation, the multimedia
state is the input to the system. When a certain multimedia
state is applied on unaltered multimedia content, features can
be extracted from the processed multimedia content. Then,
estimators will be applied on these features to estimate the
input multimedia state.

By exploring fundamental limits in operation forensics,
we want to answer “what is the maximum information
about multimedia states that investigators can obtain from
the extracted features?” In other words, we are concerning
the fundamental relationships between multimedia states and
features, regardless of specific detectors or estimators that
investigators may use to make final decisions. Given that the
unaltered multimedia content can be any particular content,
we model it as a random variable. Then, the relationship
between multimedia states and features becomes stochastic
instead of deterministic.

To demonstrate our information theoretical framework and
further explain the relationship between multimedia states
and features, let us consider an example of detecting the
number of JPEG compressions using the DCT coefficients
feature. As it is shown in Fig. 3, the multimedia state is
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Fig. 4. An illustration of the mapping between multimedia states and
features in the example of multiple compression detection. As the number
of compressions increases, it gets harder to detect the exact number of
compressions.

the number of JPEG compressions from 1 to M . The feature
is normalized DCT coefficient histogram represented in a
vector. Fig. 4 illustrates the mapping between multimedia
states and features in this example. Specifically, with the same
number of compressions applied, different images result in
different normalized DCT coefficient histograms, which we
call them a histogram set. When we detect double compres-
sions, we are distinguishing single compression, X = 1,
and double compression, X = 2. Given the distinctive fin-
gerprints for single compression and double compression, the
normalized DCT coefficient histogram sets resulted from these
two multimedia states can be well separated after some post-
processing [11]. Thus, for M = 2, classification schemes
can be used to distinguish the considered multimedia states
according to the features. However, as the number of com-
pressions considered in the system increases, more overlapping
between different histogram sets may occur, which will affect
the accuracy of the detection. Finally, at a certain point,
we cannot distinguish all considered multimedia states and we
say that we have reached our limit of detecting multiple com-
pressions. Detailed modeling and analysis will be discussed
in Section III.

We note that when only two multimedia states are consid-
ered in the analysis, one may use Kullback-Leibler divergence
to quantify the overlap between the two feature sets [20].
However, our proposed measure, forensicability, can be gen-
erally used for operation forensics where multiple hypotheses
are considerd.

B. Forensicability

Given the information theoretical framework built up
between multimedia states and features, we are ready to define
forensicability for operation forensics. Let us consider the
general framework shown in Fig. 2. Let random variable
X ∈ {1, 2, . . . , M} denote the multimedia state considered in
a forensic analysis. Let random variable Y denote the feature
vector that is examined by investigators. After obtaining
feature Y , investigators design estimators based on their sta-
tistics to estimate X . We define forensicability in this forensic

system as the maximum information that features contain
about multimedia states, regardless of any specific estimators
used afterward. It is well known in information theory that
mutual information implies the reduction in uncertainty of
one random variable due to the knowledge of the other
random variable. Thus, given the similarity between these
two concepts, we define forensicability as follows.

Definition 1: In operation forensics, where features are used
to identify multimedia states, forensicability of using feature
Y towards identifying multimedia state X is defined as the
mutual information between X and Y , i.e., I (X; Y ).

Forensicability of an operation forensic system implies the
maximum forensic information that features contain about
multimedia states. More importantly, it determines the best
performance investigators can obtain by examining these fea-
tures through all possible estimators. We demonstrate this
significance in the following theorem.

Theorem 1: Consider any estimator of the multimedia
state X̂ such that X → Y → X̂ is a Markov Chain,
i.e., the value of X̂ depends only on Y and not on X . Let
Pe = P(X �= X̂) denote the error probability. If the estimator
is better than a random decision where X̂ is uniformly and
randomly drawn from the set of X , i.e., Pe ≤ M−1

M , then we
have

Pe ≥ P0
e , (1)

where P0
e is the lower bound of error probability. It is unique

and satisfies the following equation

H (P0
e ) + P0

e log2(M − 1) = H (X) − I (X; Y ). (2)
Proof: From the corollary of Fano’s inequality in [22],

we have

H (Pe) + Pe log2
(|X | − 1

) ≥ H (X |Y ), (3)

where |X | is the cardinality of the considered multimedia
state X and thus |X | = M . In order to later examine the equal-
ity conditions, we briefly review the derivation of [22, eq. (3)]
as follows. First, let E = 1(X̂ �= X) denote an error random
variable, then H (E, X |X̂) can be expanded in two ways,

H (E, X |X̂) = H (X |X̂) + H (E |X, X̂)

= H (E |X̂) + H (X |E, X̂). (4)

While H (E |X, X̂) = 0 and H (E |X̂) ≤ H (E) = H (Pe), the
upper bound of H (X |E, X̂) is obtained as

H (X |E, X̂) = P(E = 0)H (X |X̂, E = 0)

+ P(E = 1)H (X |X̂, E = 1)

≤ (1 − Pe)0 + Pe log2
(|X | − 1

)
. (5)

Thus, combining the above results, we have

H (Pe) + Pe log2
(|X | − 1

) ≥ H (X |X̂) ≥ H (X |Y ). (6)

Given (3), we examine the derivative of the left hand side
of this inequality with respect to Pe,

∂
(
H (Pe) + Pe log2(M − 1)

)

∂ Pe
= log2

(
1− Pe

Pe
(M − 1)

)
≥ 0.

(7)
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The last step holds because Pe ≤ M−1
M . Therefore, the

left hand side of (3) is an increasing function of Pe for
Pe ≤ M−1

M . Then, the minimum of Pe, which is denoted by P0
e ,

can be obtained by solving the equality of (3). Hence, we have,
Pe ≥ P0

e , where P0
e is the unique solution of the following

equation,

H (P0
e ) + P0

e log2(M − 1) = H (X |Y ) = H (X) − I (X; Y ).

(8)

The lower bound P0
e can be achieved if and only if all of

the following conditions are satisfied.
1) H (E |X̂) = H (E), i.e., E and X̂ are independent.

Furthermore, it can be easily proved that the indepen-
dence between E and X̂ implies that the error probability
for each given estimated result is the same, i.e., P(X �= i |
X̂ = i) = P(X �= j |X̂ = j),∀1 ≤ i, j ≤ M . For the
specific setting of this work, it indicates that multimedia
states are equally hard to be correctly identified.

2) H (X |X̂, E = 1) = log2(M − 1), which implies
that no information can be inferred from a known
missed detection towards finding the correct one. For the
specific setting of this work, this condition means that,
given a wrong estimated multimedia state, probabilities
of the true multimedia state being any other multimedia
states are the same.

3) I (X; X̂) = I (X; Y ), i.e., X → X̂ → Y is also a Markov
chain. This implies that, the estimated X̂ contains all
information that the real X has about Y . For the specific
setting of this work, it means that the distribution of
features given an estimated multimedia state will not
change if the real multimedia state is also known.

In addition, with the assumption of uniform prior for X ,
which is commonly used in forensic analysis, the error prob-
ability lower bound will be only dependent on forensicability:

H (P0
e ) + P0

e log2(M − 1) = log2 M − I (X; Y ). (9)

Note that, while uniform priors are adopted in this paper, cases
with non-uniform priors can be similarly handled by using the
initial equation (2) instead of (9).

C. Expected Perfect Detection

While the lower bound of error probability gives funda-
mental limit on estimators’ performance, we also want to
answer the question of “when cannot we detect any more
operations?” For example, in the multiple compression detec-
tion problem discussed earlier, we may want to know how
many compressions we can detect at most. To answer these
questions, we need a criterion to make decisions on whether
we can or cannot detect more. One possible way is to check
the equality of I (X; Y ) ≤ H (X). If equality holds, then there
exists some estimator which can distinguish all considered
multimedia states with zero error probability. Otherwise, it
implies that not all multimedia states can be distinguished with
zero error probability by any estimator.

However, for many cases, the equality of I (X; Y ) = H (X)
may never hold. For example, when a multiple hypothe-
ses test is used to forensically detect the operation chain,

then the multimedia state X is usually a discrete variable.
However, the feature vector Y given a certain multimedia
state X can be modeled as continuous variables, such as
the multivariate Gaussian random variables we will use in
the case study of Section III. Thus, as long as the supports
of conditional distributions of Y given different X have any
overlap, it is impossible to perfectly estimate X from Y ,
i.e., I (X; Y ) < H (X). For these cases, the question becomes
“how small should the error probability be so that we can still
consider it as a perfect detection?”

Such a question leads us to examine the relationship
between theoretical and experimental results. Given a rare
incident, i.e., the probability that this incident happens tends
to zero, it is very likely that we will not observe it in real
experiments. Therefore, if the theoretical error probability is
small enough, then we may not see the occurrence of error
within a limited number of observations. Inspired by this idea,
we reformulate the process of experimental testing as follows.

Given an image that may belong to any multimedia state
considered in the analysis, there is probability Pe that the
image will be misidentified. When we experimentally evaluate
the performance of a detector on a database, we go through
the following steps. First, an image is picked from a database
containing images of all possible multimedia states. Then
the detection scheme is applied on this image to obtain an
estimated multimedia state. Lastly, by comparing the estimated
multimedia state with the ground truth, we know whether the
detection was correct or not. Given that nothing is known until
the last step, each image is treated equally during estimation.
By iterating these steps for every image in the database,
the experimental error probability can be calculated as the
total number of misclassifications divided by the size of the
database. This process can be considered as a sequential
process, where each time an image is randomly picked and its
multimedia state is estimated by a detector, whose theoretical
detection error probability is Pe. Then, by definition of Pe, for
each individual detection, the tested image has probability Pe

of being misidentified and probability 1−Pe of being correctly
detected. From this formulation, we can see an analogy
between the process of experimental testing and a Bernoulli
process.

Motivated by the discussion above, we model each sample
in the testing database as an independent and identical
Bernoulli random variable with probability Pe of missed
detection. It is well known in probability theory that, the
expected time of the first occurrence of missed detection
happens at 1/Pe. In other words, if the experimental database
only has S < 1/Pe samples, then the missed detection will
not occur in expected sense, where the expectation is taken
among all databases with the same size S. Thus, we propose
the definition of expected perfect detection as follows.

Definition 2: Given an experimental database of size S, the
expected perfect detection happens if and only if the theoretical
error probability satisfies Pe < 1/S.

Based on this definition, a simple corollary below can give
us the criterion to determine when we cannot detect any longer.

Corollary 1: For an experimental database of size S, if the
lower bound of error probability obtained from (2) satisfies
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P0
e > 1/S, then no expected perfect detection can be obtained

for any estimators.
We note that all above analysis is based on the law of large

number. Experimentally, we find that the size of the database
needs to be at the order of thousands for the expected perfect
detection argument being hold. Fortunately, most experimental
databases used in forensic analysis satisfy this condition.

III. INFORMATION THEORETICAL MODELING

FOR JPEG COMPRESSION FORENSICS

To demonstrate the effectiveness of our proposed framework
for operation forensics, we use the multiple JPEG compres-
sions detection forensics as an example [23].

A. Background on JPEG Compression Forensics

An image’s JPEG compression history is forensically impor-
tant because it helps investigators to identify the image’s acqui-
sition process and detect possible manipulations [24], [25].
Specifically, by estimating the quantization table of a singly
compressed image, one can identify the model of the camera
that captured the image [24]. Furthermore, when a forger
manipulates a JPEG image and re-saves it in the same format,
double JPEG compression fingerprints may be left in the
image [11], [25]–[28]. The more times the JPEG image is
manipulated, the more times of JPEG compressions it may go
through. Thus, detecting the number of JPEG compressions
that an image has gone through can help investigators to under-
stand how much the image has been tampered. However, as the
number of JPEG compressions increases, the multiple com-
pression fingerprints become less distinguishable [16], [17].
So a natural question would be “how many JPEG compres-
sions can we detect, at most?”

Before applying our information theoretical model to
answer this question, let us first review the typical process
of a JPEG compression. When JPEG compressing an image,
block-wise DCT transform is first applied on the pixel domain
to obtain coefficients in DCT domain. Then, these coefficients
are quantized and encoded by an entropy coder to get the
JPEG data file. Whenever the image is edited or processed,
decompression is needed, which follows the reverse proce-
dure of compression. During decompression, the quantized
DCT coefficients cannot be recovered. Thus, by examining
the difference of DCT coefficients between uncompressed and
compressed images, one can observe important fingerprints of
JPEG compression. Furthermore, multiple JPEG compressions
can also be detected by examining these coefficients.

Let D0 denote a coefficient of a certain DCT subband
of an uncompressed image. We use the Laplacian model to
characterize the distribution of D0 [29], where

fD0(ρ) = λ

2
e−λ|ρ|, ρ ∈ R. (10)

During JPEG compression, let a1 be the quantization step
used in this subband, and D1 denote the DCT coefficient after
compression, then

D1 = round
( D0

a1

)
· a1. (11)

Thus, D1 has a discrete distribution of

P(D1 = l1a1) =
∫ (l1+1/2)a1

(l1−1/2)a1

fD0(ρ)dρ, l1 ∈ Z,

=
{

1 − e−λa1/2, if l1 = 0,

e−λ|l1a1| sinh
(λa1

2

)
, if l1 �= 0.

(12)

By examining the normalized DCT coefficient histogram,
investigators can detect whether the image is singly com-
pressed or not. Furthermore, quantization step sizes can also
be estimated if the image is detected as a singly compressed
one [24].

When recompressing this singly compressed image using
quantization step of a2, a2 �= a1, in the examined subband, let
D2 denote the DCT coefficient after two compressions, then
we have

D2 = round
( D1

a2

)
· a2 = round

(
round

( D0

a1

) · a1

a2

)
· a2,

(13)

and

P(D2 = l2a2) =
∑

(l2− 1
2 )a2≤l1a1<(l2+ 1

2 )a2

P(D1 = l1a1), l2 ∈ Z.

(14)

Due to the effect of double quantization, the histogram of
D2 will present periodic characteristics, either periodic peaks
or periodic near zeros. Then, by examining the Fourier
transform of the histogram, investigators can distinguish
between singly compressed images and doubly compressed
images [11], [25], [26].

B. DCT Coefficients Feature Model

Given that the normalized histogram of DCT coefficients
is a commonly used feature to detect JPEG compressions,
in this example, we examine the fundamental limit of using
normalized DCT coefficient histograms to detect multiple
JPEG compressions. We note that, other features used to detect
JPEG compressions can be analyzed by similar approaches.
As it is shown in Fig. 3, we consider an information theoretical
framework where the multimedia state X ∈ {1, 2, . . . , M}
is the number of JPEG compressions and the feature Y is
the normalized DCT coefficient histogram written in a vector
form.

To demonstrate the relationship between X and Y , we take
one subband as an illustration. We use λ to denote the
parameter of the Laplace distribution of the coefficient D0
in this subband when it is not compressed (10). Let QM =
(q1, q2, . . . , qM ) denote the set of quantization step sizes
that may be used for this subband during compressions.
Since in multiple compression detection forensics, the given
image is a JPEG image and investigators try to detect how
many compressions have been done before this last one,
we keep the last compressions the same for all hypotheses.
Without loss of generality, we take qM as the quantization
step size used in the last compression for all hypotheses.
Then, if there are actually m applications of JPEG compres-
sions, the DCT coefficient should have been quantized by
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Fig. 5. Relationships between multimedia state and features for the model
in Fig. 3.

step sizes {qM−m+1, qM−m+2 . . . , qM } in order. Let Dm denote
the DCT coefficients if m times of JPEG compressions are
applied. By following the analysis in (13) and substituting
{a1, a2 . . . , am} with {qM−m+1, qM−m+2 . . . , qM }, we have,

Dm = round

(
. . . round

(
round

( D0
qM−m+1

) × qM−m+1
qM−m+2

))
× qM .

(15)

Given this equation and (10), we can derive the distribution
of Dm , which only has nonzero values at integer multiples
of qM . Let vector vm(λ,QM ) denote this theoretical distribu-
tion, with each element vn,m(λ,QM ) representing the nonzero
probability mass function P(Dm = nqM ), then

vm(λ,QM ) = [
P(Dm = −NqM ), . . . , P(Dm = NqM )

]
.

(16)

In reality, however, we may not observe the theoretical
distribution from the normalized DCT histogram due to
the model mismatch and/or the rounding and truncation in
the compression and decompression. Instead, the normalized
DCT coefficient histogram that we observe may be a noisy
version of the theoretical distribution. Let random variable
Y m(λ,QM ) denote the observed normalized histogram if
m applications of JPEG compressions were applied, i.e.,

Y m(λ,QM ) = [Bm(−NqM ), . . . Bm(NqM )], (17)

where Bm(nqM ),−N ≤ n ≤ N, denotes the normalized
histogram bin at location nqM when m times of compressions
happened. Then, by assuming that the observation noise,
denoted by W , is an additive noise, we have

Y m(λ,QM ) = vm(λ,QM ) + W . (18)

Let random variable V (λ,QM ) ∈ {v1(λ,QM ),
v2(λ,QM ), . . . , v M (λ,QM )} denote the theoretical
distribution of DCT coefficients. Then, for a certain
subband, given a fixed λ and QM , the relationship between
multimedia state and features in Fig. 3 can be depicted as
the diagram in Fig. 5. Specifically, for each hypothesis on
the number of JPEG compression X , it dictates a theoretical
distribution on DCT coefficients V , which can be calculated
by (10) and (15). But due to the observation noise W , the
obtained normalized DCT coefficient histogram is Y in (18).

C. Forensicability for JPEG Compression Forensics

Based on our information theoretical framework, forensica-
bility of using normalized DCT histogram to detect multiple
JPEG compressions is I

(
X; Y (λ,QM )

)
.

To calculate forensicability, we first assume that the obser-
vation noise on different histogram bins are independent with
each other, then the covariance of W is a diagonal matrix.
Furthermore, based on experimental results, which will be

shown in Section IV, we use the multivariate Gaussian dis-
tribution to model the observation noise as follows

W (λ,QM ) ∼ N
(

d, diag
(
βV 2α(λ,QM )

))
, (19)

where d , β > 0 and α > 0 are constant parameters, which will
be estimated later. We note that, in our model, the variance of
observation noise, Var(W ), is proportional to the signal V that
the noise is added on. This is because that the model mismatch
and the rounding and truncation effect in the compression and
decompression are more obvious on significant histogram bins.

In this example, we consider the case where we have no
biased information on how many compressions that the image
might have gone through, i.e., X has equal probability of
being any value in {1, 2, . . . , M}. Then, given (18) and (19),
we can derive the forensicability of using normalized DCT his-
togram to detect multiple JPEG compressions as the following
expression

Iλ,QM (X; Y ) = log2 M − 1

M

M∑

m=1

E

[
log2

M∑

j=1

ex p
(
�m

j (V )
)]

,

(20)

where

�m
j (V ) =

N∑

n=−N

[
α ln

vn,m

vn, j
− (Yn − vn, j )

2

2βv2α
n, j

+ (Yn − vn,m)2

2βv2α
n,m

]
.

(21)

Detailed derivation can be found in Appendix. Note that the
right hand side expression in (20) and (21) still depend on
λ and QM . We remove these dependencies from variables
in the sequel to simplify the expression. We also note that
forensicability does not depend on the constant mean d of
the observation noise because any constant deviation of the
features can be first subtracted before estimating multimedia
state without any effect on the estimation performance.

Before calculating forensicability, we need to estimate para-
meters β and α in the variance of observation noise (19).
Based on (18) and (19), we apply maximum likelihood esti-
mator to obtain the optimal β and α. Given that d has no effect
on forensicability, we first derive the estimator for d = 0. Let
Yλi ,n,m denote the nth histogram bin of the i th image (whose
Laplace parameter is λi ) after m times of compressions. Then,
the optimal β and α are

(β̂, α̂) = arg max
β>0,α>0

log
K∑

i=1

N∑

n=−N

M∑

m=1

P(Yλi ,n,m = yλi ,n,m).

(22)

According to Karush-Kuhn-Tucker conditions, we have
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K∑

i=1

N∑

n=−N

M∑

m=1

(yλi ,n,m − vλi ,n,m)2 ln vλi ,n,m(
1

vλi ,n,m
)2α̂

= β̂

K∑

i=1

N∑

n=−N

M∑

m=1

vλi ,n,m , (23)

K∑

i=1

N∑

n=−N

M∑

m=1

(yλi ,n,m − vλi ,n,m)2

v2α̂
λi ,n,m

= β̂K (2N + 1)M.

(24)
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Fig. 6. Normalized histograms of observation noise and their estimated Gaussian distributions (plotted in red lines) on different histogram bins for (a) single
compressed images with quantization step size of 6 in the examined subband and (b) doubly compressed images with quantization step size of 6 then 7 in
the examined subband. Bin i means that the observation noise on normalized histogram bin B(iqlast ) is examined, where qlast denotes the last quantization
step size. The mean square error of each estimation is also shown in the subfigure.

Given that the theoretical distribution vλi ,n,m ∈ [0, 1], the left
hand side of (23) is monotonically increase with α̂. Then α̂ can
be approximated for any given β̂. In addition, from (24), β̂ can
be derived for any fixed α̂. Thus, an iterative algorithm can be
used to obtain the optimal β̂ and α̂ from (23) and (24). For
d �= 0 cases, similar estimators can be derived with yλi ,n,m

substituted by yλi ,n,m − dn , where dn, n ∈ [−N, N], is the
nth element in d .

Lastly, we note that, as the first work proposing and calculat-
ing forensicability in operation forensics, JPEG compression
forensics has been chosen as it is a well studied problem
in literature. Furthermore, the existing model of normalized
DCT coefficient histograms has helped us simplify the analysis
of the relationship between multimedia state and features.
Nevertheless, similar approaches can be applied to other
forensic problems to find their fundamental limit of forensi-
cability. For example, in contrast enhancement detection [10],
multimedia state is either unaltered, i.e., X = 0, or contrast
enhanced, i.e., X = 1. The extracted feature can be taken as the
high frequency component of the image pixel histogram. Then,
similar approaches can be applied to model the relationship
between features and multimedia states. Forensicability can
also be calculated to imply the best performance one can
possibly obtain. Furthermore, our framework may also be used
to explore the fundamental limit of detecting the order of
manipulation operations [15]. In this case, multimedia states
would be any combinations of considered operations, and
features can be built by concatenating all useful features for
distinguishing the order of these operations.

IV. DATA-DRIVEN RESULTS AND ANALYSIS

In this section we provide experimental support for our
proposed framework and calculate the forensicability for
JPEG compression forensics. From analyzing forensicability,

we are able to answer how many JPEG compressions, at most,
that investigators can detect. Furthermore, we also exam-
ine the effect of compression quality factors and different
DCT subbands on forensicability in order to provide guidance
of strategies for both investigators and forgers.

A. Verification of Observation Noise Model

To support our proposed observation noise model in (19),
we conduct an experiment to examine the difference between
observed normalized histograms and their theoretical distrib-
utions. Our test images are generated from the 1338 uncom-
pressed images from UCID database [30]. We first create the
1338 singly compressed images by JPEG compressing the
uncompressed images using quality factor of 80. We examine
the (2, 3) subband, where the corresponding quantization step
size is 6. Double compressed images are also examined for
verification, where we obtain these test images by double
JPEG compressing the uncompressed 1338 images using qual-
ity factors 80 and then 75. The corresponding quantization step
sizes for the examined subband are 6 and 7 respectively. The
observed normalized histograms are obtained directly from
these two sets of compressed images. We calculate the theo-
retical distributions for singly compressed images and doubly
compressed images based on their uncompressed versions.
Specifically, for each of the 1338 images, we first estimate
the Laplace parameter λ based on the DCT coefficients of
the uncompressed image. Then the theoretical distribution
is calculated according to (15) and (16) for given λ and
quantization step sizes. Observation noise is calculated by
subtracting the theoretical distributions from the observed
normalized histograms.

Fig. 6 plots the normalized histograms of observation
noise and their estimated and quantized Gaussian distributions
for different histogram bin locations. Fig. 6(a) considers
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singly compressed images and Fig. 6(a) examines doubly
compressed images. For each subfigure, the maximum like-
lihood estimator is used to estimate the Gaussian parameters.
Then, the quantized Gaussian distribution is obtained by
integrating the estimated Gaussian distribution within the his-
togram bins. At the top of each subfigure, the KullbackLeibler
divergence between the normalized histogram of observation
noise and the estimated and quantized Gaussian distribution
is indicated. From these results, we can see that Gaussian
distributions can well approximate the distributions of the
observation noise for most of cases. Furthermore, the mean
of the histograms does not change much between singly
compressed images and doubly compressed images. This gives
support on our constant mean model of the observation noise.

Fig. 7 plots the variance of observation noise for dif-
ferent histogram bin locations for both singly compressed
images and doubly compressed images. Given the discussion
in Section III-A, the DCT coefficient distribution of singly
compressed image is quantized Laplace distribution. Although
different images have different Laplace parameters and their
DCT coefficient distributions may be different, these dis-
tributions share a common shape of having a central peak
at zero and decreasing fast as the absolute value of the
variable increases. The observation noise variance of singly
compressed images exhibits similar characteristics as it is plot-
ted in Fig. 7(a). Furthermore, for double compressed images
where the second quality factor is lower than the first one,
double compression fingerprints of periodic peaks will be
presented in DCT coefficient histograms. Similar fluctuation of
the observation noise variance is shown in Fig. 7(b). Therefore,
both figures in Fig. 7 show that the variance of observation
noise changes in the similar way as the value of theoretical
distribution changes. In other words, these experimental results
show that the variance of observation noise is proportional
to the theoretical distribution. This validates the proposed
variance model of the observation noise in (19). Furthermore,
instead of using a linear model, an exponential proportionality
principle is adopted in the variance model to make it more
general.

We note that there may be more accurate but complicated
models for the observation noise. We use the model in (19) as a
tradeoff between the accuracy of modeling and the complexity
of analysis.

B. Forensicability Calculation

In order to calculate forensicability, we first estimate para-
meters β and α from (23) and (24). We use the normalized
DCT coefficient histograms of singly compressed images and
their corresponding theoretical distributions obtained from
last subsection to estimate. Due to the nonzero mean of
observation noise, we subtract this mean from the observed
normalized histograms before using them in (23) and (24).
Then, we exclude insignificant histogram bins due to the
severe noise effect on those small histogram bins. Specifically,
we use those normalized histogram bins whose theoretical
probabilities are equal or greater than 5×10−4. This results in
total 36298 histogram bins used for estimation. The estimated

Fig. 7. Variance of observation noise versus histogram bin index for (a) single
compressed images with quantization step size of 6 in the examined subband;
and (b) doubly compressed images with quantization step size of 6 then 7 in
the examined subband.

parameters’ values are

β̂ = 0.0494, α̂ = 0.744. (25)

Given β and α, forensicability of multiple JPEG compres-
sion forensics can be obtained from (20) and (21). Since (20)
is not a closed form and we cannot calculate the precise value,
we use Monte Carlo simulation to approximate the result. This
is a commonly used method in information theoretic analy-
sis [31]. Specifically, the expected value in (20) is estimated
by a Monte Carlo averaging method as follows: For each
iteration, randomly generate a vector of Y based on the prior
of X and the conditional probability distribution of Y given X ;
Then, �m

j (V ) is calculated from (21) and also the expression
within the expectation in (20). After 10000 times of iterations,
we average all obtained values of log2

∑M
j=1 ex p

(
�m

j (V )
)

and use it as the estimate of the expectation value in (20).
We demonstrate the results for subband (2, 3), where we take
a typical value of λ = 0.1. We find that the quantization step
size in this subband changes from 1 to 14 when varying the
JPEG compression quality factor from 50 to 100. By excluding
the trivial cases where one quantization interval is an integer
multiple of another, we choose the candidate quantization step
sizes as

{5, 6, 7, 8, 9, 11, 13}. (26)

Then, for each M , we randomly select values from this candi-
date set to construct QM , under the constraint that two adjacent
elements are not equal.

For each different QM , Iλ,QM (X; Y ) is estimated by
Monte Carlo averaging and plotted in Fig. 8. The green lines
with triangle ending points show the range of all possible
forensicabilities at each M for different QM ’s. As we can
expect, quantization step sizes play an important role in
determining forensicabilities. We will analyze this effect in
later sections. In Fig. 8, we also plot the line of Iλ,QM (X; Y ) =
log2 M , which is the upper bound of forensicability for uni-
form priors, indicating perfect detection. Despite variations
of forensicabilities for different QM ’s, the gap between the
highest reachable forensicability and its upper bound becomes
larger when M increases. This can be seen more obviously
in the subfigure of Fig. 8 where we plotted the difference
between log2 M and the highest I (X, Y ). Based on (2), when
log2 M − I (X, Y ) increases, the error probability lower bound
will also increase. Thus, as M increases, the lowest error
probability we can obtain from the best detector becomes
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Fig. 8. The reachable forensicabilities of different compression quality
factors QM and the upper bound of forensicability for different M’s.

further away from zero. This implies that, when M increases,
it will be harder to detect the exact number of applied JPEG
compressions, which validates our theory.

C. Estimation Error Probability Lower Bound

According to Theorem 1, forensicability determines the
lower bound of error probabilities. In this section, we perform
several experiments to examine the effectiveness of the lower
bound by comparing the theoretical lower bound of all possible
error probabilities with the experimental error probability
obtained from specific estimators. We perform this comparison
on two examples of Q20, which are constructed by randomly
selecting quantization step sizes from the candidate set in (26).

The first estimator we examine is the maximum likeli-
hood estimator. The experimental error probabilities of this
estimator on real images are obtained as follows. For each
M ∈ [2, 20], QM is obtained as the last M quantization
step sizes in Q20. The 1338 uncompressed images from the
UCID database are first used to construct a test database.
Specifically, for each M , we JPEG compress each of the
1338 images M times using quality factors, whose quantiza-
tion step sizes in the (2, 3) subband are {q20−M+1, . . . , q20}.
The resulting 1338 images compose the data set of M times
compressed images. Then, normalized DCT coefficient his-
tograms in the (2, 3) subband are extracted for analysis. Their
theoretical distributions are also calculated based on Q20 and
the estimated λ’s from their uncompressed versions.

Given the assumption of uniform priors and the proposed
conditional distribution of a normalized histogram given the
theoretical distribution in (18) and (19), the maximum likeli-
hood estimator is used to estimate the number of compressions
for each M . Specifically, when M hypotheses of X are
considered in the system, let m be the actual number of
compressions that an image has gone through. Its normalized
DCT coefficient histogram is denoted as y

m
. Then the maxi-

mum likelihood estimator for m is

m̂ = arg max
1≤m∗≤M

P(Y m∗ = y
m
), (27)

where the distribution of Y m∗ is given in (18) and (19).
To examine the experimental result for different databases,

we applied the above maximum likelihood estimator on

another database, the Dresden Image Database [32]. This
database contains 1491 unprocessed images, with each has
size of 2000 ×3008 or larger. We can see from Fig. 9 that the
estimator performs similarly on these two databases.

Furthermore, we examine the error probability of maximum
likelihood estimator on synthetic data. The synthetic database
is generated as follows. First, we take λ as the mean value
of 1338 uncompressed images in UCID database. Based on
QM and λ, we calculate the theoretical distribution of the
DCT coefficient for each M . Then, based on the conditional
probability of the observed histograms given these theoretical
distributions, we generate 1000 synthetic observed histograms
for each M to compose a test database. To calculate the
experimental error probability for each M , maximum likeli-
hood is used to obtain the estimation results of the number of
compressions for each synthetic histogram in the test database.
We can see from Fig. 9 that the error probabilities obtained
from synthetic data are lower than those obtained from real
data.

Another estimator we examine is the forensic technique
in [16], where the histogram of first significant digit (FSD)
of DCT coefficients is used to train a support vector machine.
Because the histogram of the FSD of DCT coefficients can be
obtained directly from the histogram of the DCT coefficients,
this estimator is eventually based on the feature of DCT
coefficient histograms and fits our model. The estimation
results of using this estimator on subband (2, 3) is also plotted
in Fig. 9. We can see that as the number of considered
compressions increases, the performance of this estimator
becomes comparable to the maximum likelihood estimator.

Last, for every M , the theoretical lower bound of error prob-
abilities is calculated for each image, i.e., each estimated λ,
using (2), then we take the mean value and plot it in Fig. 9.

Both examples in Fig. 9(a) and Fig. 9(b) show that the error
probability of specific estimators are higher than the theoretical
lower bound, which verifies the validity of our proposed
lower bound. For the example in Fig. 9(b), most experimental
results are worse than those in Fig. 9(a), even when detecting
double compressions, i.e., M = 2. This matches the results in
forensic literatures of detecting double compressions, which
shows difficulty when the detected image has a secondary
compression quality factor lower than the primary one [11].

We note that the error probability does not necessarily
monotonically increase with M because the error is calculated
as an average value of miss detections of M considered
hypotheses. When M increases, both the numerator, i.e., the
sum of miss detections, and the denominator, i.e., M , will
change. Thus, it is not guaranteed that their ratios will be
monotonically increase.

D. Maximum Number of Detectable Compressions

Given the error probability lower bound, we can determine
what is the maximum number of compressions investigators
can detect by using Corollary 1. First, based on Theorem 1,
we use the highest reachable forensicability for each M to
calculate the minimum lower bound of error probabilities
for all possible compression quality factors. The calculation
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Fig. 9. Experimental error probabilities of several estimators comparing with the theoretical lower bound of error probabilities, where two randomly selected
Q20’s are taken as examples: (a) Q20 = {. . . , 8, 11, 13, 6, 5} and (b) Q20 = {. . . , 11, 9, 7, 8, 13}. Estimators used in experiments are, in order of displayed
legends, maximum likelihood estimator using normalized DCT coefficient histogram on UCID database, Dresden databases, and synthetic data; support vector
machine using first significant digit of DCT coefficients on UCID database.

TABLE I

minQM
P0

e FOR DIFFERENT M

results are shown in Table I. From this table we can see
that, for double compression detection where M = 2, the
lower bound of error probability is approximately 0 (note that
it is not exactly zero, it is just smaller than the precision
of Matlab processor), which matches the result of existing
techniques [11]. Furthermore, the table shows that the mini-
mum lower bound of error probability increases dramatically
with M .

Then, to determine the point where we cannot expectedly
perfectly detect any more compressions, we adopt the concept
of expected perfect detection defined in Definition 2 and use
the conclusion in Corollary 1. For example, if the forensic
investigator performs experiments on a test database of size
S = 5000, then because minQ4 P0

e < 1/S = 2 × 10−4 but
minQ5 P0

e > 2 × 10−4, we claim that no expected perfect
detection exists for M > 4.

Furthermore, by noticing that

1

minQ4 P0
e

= 20000,
1

minQ5 P0
e

= 4762, (28)

we have the following conclusion. For any database of size
bigger than 4762 and smaller than 20000, expectedly, no per-
fect detection can be achieved for detecting more than 4 times
of JPEG compressions. In other words, for typical sizes of
database, investigators can only expectedly perfectly detect
up to 4 times of JPEG compressions using DCT coefficient
feature.

We note that, since we are analyzing the minimum
lower bound of error probability, which is the best perfor-
mance we may get from all estimators and all compression
quality factors, these results only provides an upper limit of

investigators’ capability. In other words, “cannot expectedly
perfectly detect 5 compressions” does not mean “can expect-
edly perfectly detect 4 compressions for sure”. Our theorem
tells what we cannot do rather than what we can do.

It is also noted that, for databases bigger than 20000, the
maximum number of compressions can be expectedly per-
fectly detected may be less than 4. It implies that the number
of detectable compressions depends on the test database size.
It is reasonable because, as the database size goes bigger, there
will be higher probability that we may meet an instance that
is hard to detect and thus error may occur.

The last note is that, though we used one subband to obtain
the experimental results for demonstration, our information
theoretical framework is generally applicable for multiple
subbands analysis. One way of extending our experiments to
consider multiple subbands is to concatenate all normalized
histogram vectors from considered subbands and use this much
longer vector as the feature Y .

E. Quality Factor Patterns Having the
Highest and Lowest Forensicabilities

As Fig. 8 shows, forensicability varies significantly
with QM . In order to characterize this effect, we examine
all combinations of quantization step sizes and their foren-
sicabilities. From there, we find the patterns of QM which
will yield the highest and lowest forensicabilities, as they are
shown in Fig. 10.

We find that, if the next compression always uses a higher
quality factor than the previous one, forensicabilities will be
the highest, i.e., they are easiest to be detected. Denote the set
of quality factors yielding the highest forensicabilities as Qh ,
then

Qh = {QM |qm < qm−1,∀1 < m ≤ M, M ∈ Z
+}. (29)

To explain this phenomenon, let us examine a DCT coefficient
histogram of an image that has been compressed m times using
decreasing quantization step sizes a1 > a2 > . . . > am in the
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Fig. 10. Patterns of QM yielding the highest and lowest forensicabilities.

concerned subband. Recall the discussion in Section III-A, the
singly quantized coefficients D1 obeys a quantized Laplace
distribution with quantization step size a1. Then, given that
the next quantization step size is smaller than the current one,
when re-quantizing this histogram, every bin will remain its
original value but be shifted to its nearby integer multiple
of a2. Zeros may be introduced into the histogram of D2, but
all nonzero histogram bins will be the same as those in the
histogram of D1. Similar analysis applies for the following
quantizations. Therefore, the normalized DCT histogram after
m times of quantizations will have all of its nonzero bins being
equal to those after the first quantization.

For detecting M times of compressions with quantization
step sizes QM , we are distinguishing the following M hypothe-
ses on the normalized DCT coefficient histogram:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

H1 : 1 time of quantization by qM ,

H2 : 2 times of quantizations by {qM−1, qM } in order,

H3 : 3 times of quantizations by {qM−2, qM−1, qM },
...

HM : M times of quantizations by {q1, q2, . . . , qM }.

(30)

It is easy to notice that, for different hypotheses, the first quan-
tization step sizes are different. Thus, for case of q1 > q2 >
. . . > qM , theoretically, the nonzero bins of the normalized
histogram obtained from one hypothesis are completely differ-
ent from those obtained from another hypothesis. Furthermore,
there may also have cases where a location of a zero histogram
bin in one hypothesis has a nonzero bin in another hypothesis.
This will further enlarge the disparity of normalized DCT
histograms obtained from different hypotheses. Therefore, the
complete distinguishability of theoretical distributions of DCT
coefficients among different hypotheses results in the easiest
detection and the highest forensicability.

The compression quality factors resulting in the lowest
forensicabilities, as it is shown in Fig. 10, are those which
use same quality factors periodically. More specifically, denote
the set of quality factors yielding the lowest forensicabilities
as Ql . We have found that

Ql = {QM |qM = qM−2 = . . . = q(M+1)%2+1

> all other q ′
i s, M ∈ Z

+}, (31)

where % is a remainder operator. The reason can be explained
by the following theorem.

Theorem 2: Given a quantized DCT coefficient Dm−2 with
the last quantization step size as qm−2. We further quantize it
two more times using quantization step sizes qm−1 then qm .
The obtained coefficient is denoted as Dm . If the quantization
step sizes satisfy qm = qm−2 > qm−1, then the DCT coef-
ficient remains the same after these two more compressions,
i.e., Dm ≡ Dm−2.

Proof: Take any possible value of Dm−2 = lm−2qm−2,
where lm−2 ∈ Z, after the two quantizations, we obtain

Dm = round

(
round

( lm−2qm−2

qm−1

)qm−1

qm

)
qm . (32)

Given that ∀A ∈ R, A−1/2 < round(A) ≤ A+1/2, we have

Dm

qm
> round

(( lm−2qm−2

qm−1
− 1

2

)qm−1

qm

)
(33)

= round
(

lm−2 − 1

2

qm−1

qm

)
(34)

> round
(

lm−2 − 1

2

)
(35)

> lm−2 − 1, (36)

where (34) and (35) are obtained from the condition qm−2 =
qm > qm−1. Since Dm

qm
is an integer, we obtain Dm

qm
≥ lm−2.

Similarly, we can prove that Dm
qm

≤ lm−2. Thus,

Dm = lm−2qm = Dm−2. (37)

Given the above theorem, the M hypotheses in (30) can
be reduced to only singly quantized hypothesis and double
quantized hypothesis. Specifically, all odd numbered hypothe-
ses will be identical to each other. While all even numbered
hypotheses will be simplified to 2 times of quantization with
different primary quantization step sizes. Furthermore, for
the simplified double quantization hypotheses, the second
quantization step size is larger than the first one, which is
harder for estimation compared to its opposite case. Therefore,
such a pattern of compression quality factors is the hardest to
be detected, and thus has the lowest forensicability. Moreover,
since the estimation performance will always be similar to a
double compression detection regardless of how many com-
pressions investigators really want to detect, forensicability
almost remains the same as M increases.

F. Optimal Strategies for Forgers and Investigators

The fundamental measurement of forensicability can also
be used to obtain the optimal strategies for both investigators
and forgers. In this multiple compression detection system,
investigators try to detect the number of compressions forgers
have done on an image. Thus, investigators can choose exam-
ined subbands to maximize forensicability, while forgers have
the right of choosing compression quality factors to minimize
forensicability. Given that forensicability is a function of both
subband parameter λ and compression quality factors QM ,
we model the optimal strategies for forensic investigators and
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anti-forensic forgers in this multiple compression detection
system as

δF = arg max
(i, j )

EQM

[
Iλ(i, j) ,QM (X; Y )

]
, (38)

δAF = arg min
QM

Eλ(i, j)

[
Iλ(i, j),QM (X; Y )

]
, (39)

respectively, where (i, j), i, j ∈ [1, 8], denotes the subband
index.

Since we have just discussed the effect of compression qual-
ity factors on forensicability, let us obtain the optimal strategy
for forgers (39). From the discussion in last subsection,
we notice that the patterns of compression quality factors
yielding the highest and lowest forensicabilities do not depend
on the subband parameter λ. Instead, the results are merely
dependent on how the DCT coefficients are quantized. Thus,
regardless of which subband or subbands investigators will
choose, Ql will always yield the lowest forensicability. Thus,
we obtain the optimal strategy for forgers is

δAF = Ql . (40)

We note that, when M = 2, we have δAF = Ql =
{Q2|q1 < q2}, which is opposite to the pattern of Qh .
This result matches our early work on the concealability-
rate-distortion tradeoff of compression anti-forensics, where
we found that forgers would prefer to use a lower secondary
quality factor instead of a higher one in their second com-
pression [33]. We also note that the above analysis is based
on the assumption that the choice of compression quality
factors does not cause visible distortion on the image. A more
comprehensive study of the interaction between forgers and
investigators can be found in [34].

To obtain the optimal strategy for investigators, we take
λ(i, j ) as the mean value of all estimated λ’s from the
(i, j)th subband coefficients of 1338 uncompressed images
in the UCID database. We examine the cases of detect-
ing 2, 3, 4 and 5 times of compressions, i.e., we take
M ∈ [2, 5]. For each M , QM for the (2, 3) subband is
still constructed by randomly selecting quantization step sizes
from the candidate set {5, 6, 7, 8, 9, 11, 13} in (26). Given
that the compression quality factors corresponding to these
quantization step sizes are {82, 78, 75, 70, 67, 60, 55}, QM for
other subbands can also be determined from their correspond-
ing quantization tables. Then, for each of the 63 alternating
current (AC) DCT subbands, forensicabilities are calculated
for all QM ’s, whose number of possibilities can reach
(7 × 64 =)9072 when M = 5. We assume that investigators
do not know the priori of the compression quality factors used
by forgers. Thus, for each subband, EQM

[
Iλ(i, j),QM (X; Y )

]
is

calculated as the mean value of forensicabilities with respect
to different QM ’s.

By comparing the expected value of forensicabilities for
all 63 subbands, we order them in descending order and
take the top 9 subbands to show in Fig. 11. Our results show
that, the top 9 subbands yielding the highest forensicabil-
ities remain the same when detecting different numbers of
compressions, though their orders are slightly different. Thus,

Fig. 11. The best 9 DCT subbands (shown as blue cells) for detection, which
yield the highest forensicabilities for (a) M = 2, (b) M = 3, (c) M = 4 and
(d) M = 5. Numbers 1 through 9 represent the order of these subbands
regarding their forensicabilities from the highest to the lowest.

if investigators take the best 9 subbands for detection, their
the optimal strategy, which is denoted as δ

(9)
F , will be

δ
(9)
F = {(2, 1), (1, 2), (3, 1), (1, 3), (2, 2),

(4, 1), (1, 4), (3, 2), (2, 3)}. (41)

It matches the set of subbands that many successful double
compression forensic techniques have used in their algo-
rithms [11]. This result gives theoretical support of why we
use those subbands for detecting double compressions. It also
suggests that we should continue to use these subbands to
detect 3, 4 or 5 times of compressions. Furthermore, the
ranks on these subbands tell us which subband contains more
forensic information and which one will give us the most
trustful result.

G. Forensicabilities for Image Outliers

Given that forensicability depends on the Laplace para-
meter λ of DCT coefficients, it may also vary for different
types of images. While our results were obtained by choosing
a representative λ value and thus can be considered as the
most expected performance for natural images, there are some
outliers that are much harder or much easier to be detected.
For example, if an image is underexposed and most of its
pixels are equal to zero, then it would be very hard to detect
the number of compressions on this image.

To track the change of the Laplace parameter λ for dif-
ferent images, we examine natural images from both the
UCID database (1338 images) and the Dresden image database
(1491 images). Fig. 12 shows the histogram of λ in the (2, 3)
subband of these 2829 images. We can see that most images
have their λ values close to 0.1, which was chosen as the
representative value of λ in Section IV-D.

In order to examine forensicabilities for other images, we
take two extreme cases of λ = 0.02 and λ = 0.7 to obtain
the bounds of performance. Table II(A) and II(B) show the
minimum error probability lower bound for different numbers
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TABLE II

minQM
P0

e FOR DIFFERENT M WHEN (A) λ = 0.02 AND (B) λ = 0.7

Fig. 12. Histogram of λ in subband (2, 3) of images from UCID and Dresden
databases.

of compressions when λ = 0.02 and λ = 0.7, respectively.
By comparing these two tables with Table I, we can see that
the minimum lower bound of error probabilities minQM P0

e
increases with λ, and thus forensicability decreases with λ.
This matches the results in the previous subsection where
forensicability decreases for higher frequency subbands which
have higher values of λ. This is because for large λ’s, the
DCT coefficient histograms have high kurtosis and low
variances. Most bins in these histograms have small values
that can be severely contaminated by noise. Only a few
histogram bins have large enough values that can be used for
estimation. Thus, little information can be extracted from these
histograms. By following the analysis in Section IV-D we can
infer that, if we have a database of size 10000, then for image
outliers whose λ = 0.02, investigators can detect up to 7 times
of compressions. While for image outliers whose λ = 0.7,
we can only detect 2 times of compressions.

Lastly, in order to see what types of images are outliers,
we select some representative images from each extreme case
and show them in Fig. 13. As it is shown in Fig. 13(a),
the outliers having the lowest λ’s and the highest forensi-
cabilities are highly textured images whose AC components
have sufficient information to be used for forensic detection.
On the other hand, the outliers having the highest λ’s and
the lowest forensicabilities are images having a large amount
of smooth or uniform areas but few textured regions. As it
is shown in Fig. 13(b), this phenomenon may be caused by
overexposure, underexposure, strong blurring, or little textured
image content.

V. CONCLUSION

In this paper, we proposed an information theoretical frame-
work to explore the fundamental limit of operation forensics.
In this framework, we defined forensicability in operation
detection forensics as the maximum information that features
contain about operations. Based on this measure, we obtained
the lower bound of error probabilities for any estimators using
these features. Furthermore, by introducing the concept of
expected perfect detection, we were able to determine the limit
of how many operations we can successfully detect. To show

Fig. 13. Representative image outliers in UCID and Dresden databases with
(a) λ ∼= 0.02 and (b) λ ≥ 0.7.

the effectiveness of our framework, we applied it to the case
of detecting multiple JPEG compressions using normalized
DCT coefficient histogram features. By appropriate modeling
of the features, we calculated forensicabilities and concluded
that, when subband (2, 3) was used for detection and the
size of the testing database was less than 20000, under the
definition of expected perfect detection, at most 4 times of
compressions were perfectly detectable. Furthermore, based
on this fundamental measurement, we found the patterns of
compression quality factors holding the highest and lowest
forensic information. Lastly, the optimal strategies for inves-
tigators and forgers were discussed using forensicability.

APPENDIX

Since d is a constant, we have I (X; Y ) = I (X; Y − d).
Thus, in the following derivation, we take d = 0 for simplicity.
Then, the conditional probability of Y given X = m is

fY (y|X = m) =
N∏

n=−N

1
√

2πβv2α
n,m

ex p

[
− (yn − vn,m )2

2βv2α
n,m

]

= 1
N∏

n=−N

√
2πβv2α

n,m

ex p

[ N∑

n=−N

− (yn−vn,m)2

2βv2α
n,m

]
.

(42)
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Based on Bayes’ theorem and P(X = m) = 1
M ,∀m ≤ M ,

we calculate the conditional entropy of X given Y as follows,

H (X |Y )

=
∫

R2N+1

M∑

m=1

pX (m|Y = y) log2
1

pX (m|Y = y)
fY (y)d y

=
∫

R2N+1

M∑

m=1

fY (y|X = m)

M fY (y)
log2

M∑

j=1
fY (y|X = j)

fY (y|X = m)
fY (y)d y

= 1

M

M∑

m=1

∫

R2N+1

fY (y|X = m) log2

[ M∑

j=1

fY (y|X = j)

fY (y|X = m)

]
d y.

(43)

By (42), the ratio between fY (y|X = j) and fY (y|X = m)
can be calculated as
fY (y|X = j)

fY (y|X = m)

=
N∏

n=−N

vα
n,m

vα
n, j

ex p

[ N∑

n=−N

− (yn − vn, j )
2

2βv2α
n, j

+ (yn − vn,m )2

2βv2α
n,m

]

� ex p
[
�m

j (v)
]
, (44)

where

�m
j (v) =

N∑

n=−N

[
α ln

vn,m

vn, j
− (yn − vn, j )

2

2βv2α
n, j

+ (yn − vn,m)2

2βv2α
n,m

]
.

(45)

Take the notation of (44) into (43), we have

H (X |Y )

= 1

M

M∑

m=1

∫

R2N+1

fY (y|X = m) log2

{ M∑

j=1

ex p
[
�m

j (v)
]}

d y

= 1

M

M∑

m=1

E

[
log2

M∑

j=1

ex p
(
�m

j (V )
)]

. (46)

Given that I (X; Y ) = log2 M − H (X |Y ), we have com-
pleted the derivation of (20) and (21).
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