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Abstract— Identifying a signal’s origin and how it was acquired
is an important forensic problem. While forensic techniques
currently exist to determine a signal’s acquisition history, these
techniques do not account for the possibility that a signal could
be compressively sensed. This is an important problem since
compressive sensing techniques have seen increased popularity in
recent years. In this paper, we propose a set of forensic techniques
to identify signals acquired by compressive sensing. We do this
by first identifying the fingerprints left in a signal by compressive
sensing. We then propose two compressive sensing detection
techniques that can operate on a broad class of signals. Since com-
pressive sensing fingerprints can be confused with fingerprints
left by traditional image compression techniques, we propose a
forensic technique specifically designed to identify compressive
sensing in digital images. In addition, we propose a technique to
forensically estimate the number of compressive measurements
used to acquire a signal. Through a series of experiments, we
demonstrate that each of our proposed techniques can perform
reliably under realistic conditions. Simulation results show that
both our zero ratio detector and distribution-based detector yield
perfect detections for all reasonable conditions that compressive
sensing is used in applications, and the specific two-step detec-
tor for images can at least achieve probability of detection of 90%
for probability of false alarm <10%. In addition, our estimator
for the number of compressive measurements can well reflect the
real number.

Index Terms— Compressive sensing, digital forensics,
(nearly) sparse signal, image compression.

I. INTRODUCTION

S INCE the initial development of digital multimedia foren-
sics, researchers have sought to identify how different

digital signals were captured and stored. Information about
how a signal was acquired can be used to both identify the
specific device used to capture the signal and to verify the
signal’s authenticity. Furthermore, knowledge of how a signal
was captured can be used to help trace its processing history.
As a result, determining how a signal was acquired has become
an important forensic problem.

Manuscript received September 23, 2014; revised January 2, 2015 and
February 27, 2015; accepted March 10, 2015. Date of publication March 13,
2015; date of current version May 15, 2015. This work was supported in
part by Air Force Office of Scientific Research, Arlington, VA, USA, under
Grant FA95500910179 and in part by the National Science Foundation under
Grant CCF1320803. The associate editor coordinating the review of this
manuscript and approving it for publication was Prof. Husrev T. Sencar.

X. Chu and K. J. R. Liu are with the Department of Electrical and
Computer Engineering, University of Maryland at College Park, College Park,
MD 20742 USA (e-mail: cxygrace@umd.edu; kjrliu@umd.edu).

M. C. Stamm is with the Department of Electrical and Computer
Engineering, Drexel University, Philadelphia, PA 19104 USA (e-mail:
mstamm@coe.drexel.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIFS.2015.2413389

Typically, forensic algorithms determine how a signal was
acquired by identifying imperceptible traces introduced into
a digital signal during the acquisition process. These traces,
which are known as fingerprints, arise due to properties of
the sensor used to capture the signal or as a result of the
signal processing operations used to form the digital signal.
Existing forensic algorithms capable of identifying a signal’s
acquisition history are focused almost exclusively on images
and videos [1]–[5]. While each of these specifically designed
techniques performs strongly, it is necessary to develop foren-
sic algorithms capable of identifying the acquisition history of
a broader class of signals.

Recently, a new method of capturing signals known as
compressive sensing has gained considerable attention. Com-
pressive sensing is a signal processing technique capable of
acquiring sparse signals at sampling rates below the Nyquist
rate [6]. Rather than measuring the signal’s value at a series
of uniformly spaced points, each compressive measurement
corresponds to a randomly weighted summation of the entire
signal. The sparse signal can then be reconstructed using l1
minimization from much fewer measurements than are needed
by traditional uniform sampling [7]. Furthermore, many real
signals that are not ideally sparse can be modeled as either
sparse signals in the presence of noise or signals that are
‘nearly sparse’. Compressive sensing can be used to acquire
these signals with low amounts of reconstruction error [8].

Due to the effectiveness of compressive sensing’s sub-
Nyquist acquisition rate, researchers in various signal process-
ing fields have applied compressive sensing techniques to
many signal acquisition systems. These applicable fields
include but not limited to magnetic resonance imaging [9],
photoacoustic imaging [10], astronomical imaging [11],
radar [12], electrocardiography [13], networked data [14], and
speech and audio [15].

While acquisition schemes based on compressive sensing
principles are widely studied in the realm of research, the
impact of compressive sensing has led people to design
and build real devices based on this technique. Single pixel
or single sensor acquisition devices have been developed
for capturing conventional images [16] and hyperspectral
images [17]. In these applications, compressive sensing not
only reduced the acquisition power but also solved the
‘out of focus’ problem encountered in traditional cameras [16].
Moreover, due to the power consumption of billions of
A-to-D conversion in video acquisition, a custom CMOS chip
was designed by adopting compressive sensing technology to
slash energy consumption by a factor of 15 [18]. Devices
that apply compressive sensing to other applicable signals
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have also been developed and built [19]. Researchers from
Rice University have even started a company, called InView,
to develop low cost shortwave infrared cameras using com-
pressive sensing [20].

While an increasing number of technologies have begun
to make use of compressive sensing, there are currently no
existing forensic techniques capable of differentiating between
signals captured using compressive sensing and those captured
by traditional uniform sampling. This has important conse-
quences for the forensics community.

As the number of devices that incorporate compressive sens-
ing into their signal processing pipeline increases, detecting
the use of compressive sensing will become an important
part of forensically identifying a signal’s origin. A motivat-
ing example can be seen in hyperspectral imaging, which
is used in many critical applications such as surveillance
drones and environmental monitoring. Compressive sensing
has been recently used to capture and store hyperspectral
images [21]. Detecting evidence of compressive sensing in
a hyperspectral image can help forensic investigators identify
the device. Furthermore, there may be scenarios where our
government is presented with an image captured by another
government’s surveillance drone. In this scenario, we may
want to analyze the image to 1) verify the validity of the
image and 2) understand the capabilities of the other govern-
ment’s surveillance drone. Similarly, hyperspectral images of
landscapes may potentially be used in court cases related to
environmental contamination or mineral rights.

Additionally, the use of compressive sensing can affect the
output of existing forensic algorithms. For example, compres-
sive sensing may also be used to acquire, compress, and store
certain types of images [21]. However, existing compression
detection schemes in [22] and [23] may misidentify a com-
pressively sensed image as an image that has been captured
by a standard digital camera, then subsequently compressed.
Thus, it is necessary to design a specific forensic scheme
for compressive sensing detection to solve such confusions.
In summary, it is clear that the identification of compressively
sensed signals is an important forensic problem.

In this paper, we propose a new forensic technique capable
of identifying signals that have been acquired by compressive
sensing. We begin by identifying the fingerprints that com-
pressive sensing introduces into a signal. Because virtually
no compressively sensed signal is truly sparse, we show that
the reconstruction error introduced into compressively sensed
signals has certain characteristics. We use these characteristics
as compressive sensing’s fingerprints and examine these finger-
prints under three models commonly applied to compressively
sensed signals: sparse signals in the presence of noise, nearly
sparse signals, and nearly sparse signals in the presence of
noise. We then propose a set of forensic techniques to identify
compressively sensed signals that fit each of these models.
Furthermore, we develop a forensic technique specifically
designed to identify compressively sensed images and differ-
entiate them from images that have undergone traditional lossy
compression. Additionally, we propose a technique to forensi-
cally estimate the number of compressive measurements used
to acquire a signal.

The remainder of this paper is organized as follows.
In Section II, we provide a brief review of compressive sensing
and present three different models of compressively sensed
signals. In Section III, we identify and analyze the fingerprints
left in a signal by compressive sensing. Using these finger-
prints, we propose two different compressive sensing detec-
tion techniques in Section IV. To address specific challenges
encountered when identifying compressive sensing in digital
images, we present a two step compressive sensing detection
technique that can discriminate between images that have
been compressed using wavelet-based coders and images that
have been compressively sensed in Section V. In Section VI,
we propose an estimator for the number of compressive mea-
surements used to acquire a signal. A series of experimental
results are presented in Section VII that demonstrate the
effectiveness of our proposed forensic techniques. Finally,
in Section VIII we conclude this paper.

II. SYSTEM MODEL

We begin this section by providing a brief overview of com-
pressive sensing. We then discuss the three different models
used for real world signals that are compressively sensed.
Throughout this paper, we will use s and x to denote the
original signal and the observed signal, respectively. Given the
observed signal may be obtained by either traditional sensing
or compressive sensing, it will correspondingly equal to the
direct, maybe noisy, observation of the original signal, or the
reconstructed one from compressive measurements.

A. Compressive Sensing Overview

Traditionally, a discretely indexed signal is formed from a
continuously indexed signal through uniform sampling. During
uniform sampling, observations of the continuously indexed
signal are performed at uniformly spaced intervals over a
fixed duration. As a result, each entry si in a discretely
indexed signal s = (s1, s2, . . . , sn)T corresponds to a single,
direct measurement of the continuously indexed signal, and
we directly observe these measurements in traditional sensing.
Thus, if we use x to denote the observed signal in such case,
then x = s.

The recent development of compressive sensing has allowed
sparse signals, which have only a few nonzero entries, to be
captured with far fewer observations than traditional sampling.
During compressive sensing, each compressive measurement
corresponds to a linear combination of the continuously
indexed signal’s values at all the locations that would be
observed during uniform sampling. Defining the weighting
vector for the i th compressive measurement as ϕ

i
, then each

compressive measurement yi can be written as

yi = ϕT
i

s. (1)

If m(m � n) compressive measurements are collected, the
transpose of the set of weighting vectors can be vertically
concatenated to form the observation matrix �. As a result, the
measurement vector y = (y1, y2, . . . , ym)T containing each
compressive measurement can be written as

y = �s. (2)
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Typically, random matrices are used for observation
matrices � in order to satisfy the restricted isometry property
for later reconstruction [8]. In this paper, we use Gaussian
distribution with zero mean and unit variance to generate
matrix �.

After the compressive measurements are obtained, the
discretely indexed signal x , which we will observe from
compressive sensing, is reconstructed from the compressive
measurements. This is done by solving the following con-
strained l1 minimization problem

min
x̃

||x̃ ||l1, s.t . �x̃ = y. (3)

If s is sparse, then given enough compressive measurements,
O(k log n), where k and n are the sparsity and length of
s respectively, the signal can be perfectly reconstructed, i.e.
x = s [7].

Compressive sensing forensics, however, is a reverse engi-
neering problem of compressive sensing, which starts from
the reconstructed signal and tries to reveal how the signal
was acquired. Forensic investigators only observe a recon-
structed signal x . Then, based on the fingerprints extracted
from this signal, they identify whether the observed signal
was traditionally sensed or compressively sensed and recon-
structed. Furthermore, forensic investigators can also estimate
the number of compressive measurements m solely based on
the reconstructed signal.

B. Signal Model
In theory, if a truly sparse signal is compressively sensed,

it can be perfectly reconstructed [7]. In practice, however, this
is rarely the case. Often, the compressive measurements of
a truly sparse signal will be corrupted by noise. This can
occur due to sensing in a noisy environment or due to noise
within the sensors themselves. Furthermore, it is often the case
that signals of interest are not truly sparse, but rather nearly
sparse or ‘compressible’. While non-sparse but compressible
signals cannot be perfectly reconstructed, a bound can be
placed on the reconstruction error [8]. If enough compressive
measurements are captured, the reconstruction error can be
made sufficiently small.

Here, we discuss several commonly used models applied to
signals that are compressively sensed in real world scenarios.
In subsequent sections, we will exploit the effects of these
nonideal conditions to identify the use of compressive sensing.

1) Sparse Signals in the Presence of Noise: There are many
scenarios in which a true signal has only a few nonzero coeffi-
cients (i.e., nonzero entries si in s), but the signal is corrupted
by noise during sensing. These signals can be modeled as
sparse signals in the presence of noise. For example, in radar
signal analysis the time-frequency plane is discretized into a
grid where the number of grid cells is much larger than the
total number of targets. The radar coefficients under this time-
frequency shift operator basis are modeled as sparse signals
in the presence of noise [24].

Under this model, let s represent a sparse signal to be
sensed. If s is sensed using traditional uniform sampling, the
observed signal x is given by

x = s + η. (4)

where η is a vector containing i.i.d. noise. Regardless of
whether the noise originates in the sensor or is due to an
environmental source, a unique noise measurement occurs at
each signal observation xi .

If s is compressively sensed, however, noise can be
introduced into the compressive measurements. Under some
scenarios, additive noise directly corrupts each compressive
measurement [24]. This is equivalent to sensing using a noisy
sensor. We refer to this type of noise as measurement noise,
and model the compressive measurements as

y = � s +ηm, (5)

where ηm is i.i.d. noise. In other scenarios, the sparse signal
directly mixes with some noise process while it is being
sensed [15]. We refer to this type of noise as environment
noise. We model compressive measurements in the presence
of i.i.d. environment noise ηe as

y = �(s +ηe). (6)

If the compressive measurements are corrupted by either
measurement or environment noise, the sparse signal is no
longer reconstructed using (3). Instead, the reconstructed
signal x is obtained by solving

min
x̃

||x̃ ||l1, s.t . ||y − �x̃ ||2l2 ≤ ε (7)

where ε is a parameter that depends on the noise power [25].
We note that in this equation, the constraint present in (3) is
replaced with the inequality ||y − �x̃ ||2l2 ≤ ε.

2) Nearly Sparse Signals: While many important types of
signals are not truly sparse, they satisfy certain conditions
allowing them to be well approximated by sparse signals.
These signals are known as nearly sparse or compressible
signals. The discrete wavelet transform coefficients of a digital
image corresponding to a natural scene are a widely used
example of a nearly sparse signal [26]. Gabor coefficients
of certain classes of oscillatory signals can also be modeled
as nearly sparse signals [27]. Though nearly sparse signals
cannot be perfectly reconstructed if they are compressively
sensed, they can be reconstructed with little error if enough
compressive measurements are obtained.

To formally define nearly sparse signals, we first sort the
entries of the signal s in descending order s(1), s(2), . . . , s(n),
such that |s(1)| ≥ |s(2)| ≥ . . . ≥ |s(n)|. The signal s is
compressible if and only if its sorted coefficients fall inside a
weak l p ball of radius R for some 0 < p < ∞ [8], i.e.

|s(i)| ≤ R · i−1/p, i = 1, 2, . . . , n. (8)

We model nearly sparse signals as compressible signals whose
entries are i.i.d. random variables. Signals drawn from many
commonly occurring distributions such as the Laplace and
Gaussian distributions are compressible [8].

3) Nearly Sparse Signals in the Presence of Noise: In some
real world scenarios, a nearly sparse signal may be compres-
sively sensed in a noisy environment. As a result, we adopt
nearly sparse signals in the presence of noise as a third signal
model. These signals can be viewed as a combination of the
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Fig. 1. Fingerprints of compressive sensing for sparse signals in the presence of measurement noise or environment noise. The upper row shows the observed
signals from (a) traditional sensing, (b) compressive sensing corrupted with measurement noise and (c) compressive sensing corrupted with environment noise.
The bottom row shows the corresponding noise histograms of the observed signals above.

previous two models. Provided that the noise power is suffi-
ciently small, nearly sparse signals will remain compressible
when corrupted by noise. As a result, we will see that detecting
compressive sensing in signals that fit this models is similar
to detecting compressive sensing in nearly sparse signals.

III. COMPRESSIVE SENSING FINGERPRINTS

To identify the fingerprints left by compressive sensing, we
first examine sparse signals in the presence of noise, then
examine nearly sparse signals.

Consider a signal x formed by sensing a sparse signal s
in the presence of noise. Assuming that the locations of the
nonzero components of s are known, the entries of x that do
not correspond to nonzero values can be gathered together to
form the vector xn. If x was acquired using traditional uniform
sampling, each entry in xn will directly correspond to a single
noise observation. As a result, the normalized histogram of xn

approximates the distribution of the noise source. This can be
seen in Fig. 1(d).

This is not the case, however, if x was acquired via com-
pressive sensing. If measurement noise is encountered during
sensing, the noise affects each compressive measurement.
During reconstruction, no single value of x will correspond
to a single noise observation. If environment noise is present
during compressive sensing, both the sparse signal and the
noise will be captured during the measurement process. Recon-
structing the signal by solving (7), however, ensures that x
will accurately reconstruct the s but not the noise. As a result,
if x was captured using compressive sensing, the normalized
histogram of xn will not match the distribution of the noise
source. In fact, because x was chosen to maximize the sparsity
of the reconstructed signal, a significant number of entries
in xn will be zero or near zero. This will result in the presence
of an impulsive peak at zero in the normalized histogram of xn

as can be seen in Figs. 1(e) and (f). This peak is the fingerprints

Fig. 2. Example showing the fingerprints of compressive sensing in a nearly
sparse signal with and without the presence of noise. The top row shows the
histograms observed from a nearly sparse signal after (a) traditional sensing
and (b) compressive sensing. The bottom row shows the histograms observed
from a nearly sparse signal in the presence of noise after (c) traditional sensing
and (d) compressive sensing.

left by compressive sensing for sparse signals in the presence
of noise.

A similar effect can be observed if x was formed by
sensing a nearly sparse signal. As it is shown in Fig. 2(a),
the normalized histogram of traditionally sensed signal x will
closely match the distribution of the nearly sparse signal
being sensed. However, the use of compressive sensing will
greatly increase the histogram’s kurtosis and result in a big
concentration at zero as can be seen in Fig. 2(b). Furthermore,
this result holds true for nearly sparse signals in the presence
of noise, as can be seen in Fig. 2(c) and (d).

To show the effectiveness of compressive sensing finger-
prints in real applications, we take a hyperspectral image,
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Fig. 3. (a) A hyperspectral image taken from [28] with dimension
1024 × 1024 pixel. (b) Its monochromatic image (obtained from raw data)
corresponding to wavelength of 400 nm. (c) The same monochromatic image
obtained by compressive sensing and reconstructed from 10242 × 50% com-
pressive measurements. (d) and (e) Histograms of DWT subband 3 coefficients
from (d) the traditionally sensed image and (e) the compressively sensed
image.

which is shown in Fig. 3(a), as an example. Hyperspectral
images are composed of many sub-images in different spec-
trum bands, each of which can be obtained by compressive
sensing [17]. Therefore, in this example, we take one sub-
image out to examine. Comparing the traditionally sensed
sub-image in Fig. 3(b) and the compressively sensed image in
Fig. 3(c), we can hardly tell the difference. However, the his-
togram of transform domain coefficients from compressively
sensed image, as it is shown in Fig. 3(d), has a much higher
kurtosis at zero than that from the traditionally sensed image,
which is shown in Fig. 3(e).

Furthermore, in order to show that such fingerprints also
exist in real compressive sensing devices, we examine a
single pixel camera captured image and an image of the same
scene but being captured by a traditional digital camera [29].
The single pixel camera in [29] obtains each compressive
measurement by projecting the scene onto a randomized
digital micromirror array and optically calculate the linear
combination. We use the ‘mug’ image captured by a single
pixel camera in [29], as it is shown in Fig. 4(a), to present the
fingerprints of compressive sensing. Because the reconstruc-
tion step was performed by minimizing the total variation,

Fig. 4. An example showing compressive sensing fingerprints in the
(a) ‘mug’ image captured by a single pixel camera [29]. (b) The histogram of
pixel variations (magnitude of the gradient) for the ‘mug’ image captured
by a traditional digital camera. (c) The pixel variation histogram for the
compressively sensed image of the same scene acquired using the single pixel
camera.

the domain that compressive sensing fingerprints are
present in is the pixel variations, i.e., gradient magnitudes.
Figs. 4(b) and 4(c) show the histograms of pixel variations for
the traditionally sensed ‘mug’ image, and its compressively
sensed version, respectively. We can see from Fig. 4(c) that
a peak corresponding to a large concentration of components
is present at the zero bin for the compressively sensed image.
These fingerprints are absent from the traditionally captured
image’s histogram on the left.

We note that the compressive sensing fingerprints’ existence
is due to the sparse representation of the signal created upon
reconstruction. Because all reconstruction algorithms enforce
sparsity in one way or another, these fingerprints will be
present in the sparsity domain regardless of the reconstruction
algorithm.

Though we focus on the basis pursuit (BP) reconstruc-
tion algorithm in this paper, we note that there are several
algorithms that can be used to reconstruct a compressively
sensed signal such as orthogonal matching pursuit (OMP) [30],
least absolute shrinkage and selection operator (LASSO) [31],
and total variation (TV) [32]. We note that as long as a
reconstruction algorithm seeks a sparse representation of the
compressive measurements, similar fingerprints will be present
in the reconstructed signal.

IV. COMPRESSIVE SENSING DETECTION

Now that we have identified the fingerprints left by compres-
sive sensing, we are able to develop a set of forensic techniques
to detect its use [33]. Detecting the use of compressive
sensing is equivalent to differentiating between the following
hypotheses

H0 : x was obtained using traditional sampling,
H1 : x was obtained using compressive sensing,

(9)

where x is a discretely indexed signal of unknown origin.
To do this, we first need to obtain some measure of the



CHU et al.: COMPRESSIVE SENSING FORENSICS 1421

strength of any compressive sensing fingerprints present in x.
Measurement of these fingerprints’ strength, however, depends
on the appropriate signal model for x as well as the amount
of side information known by the forensic investigator.
To account for this, we propose two different compressive
sensing detection techniques that are appropriate in different
forensic scenarios.

A. Zero Ratio Detection Scheme

In many cases, a forensic investigator knows little more
than the fact that the signal in question fits one of the three
signal models outlined in Section III. If this is the case,
the forensic investigator cannot leverage any side information
such as the signal or noise distribution while measuring the
strength of compressive sensing fingerprints. The investigator
can, however, make use of the fact that if compressive sensing
was performed, it was done under nonideal conditions.

Assume temporarily that x can be modeled as a sparse
signal s sensed in the presence of noise. We assume that the
noise has a continuous distribution and a nonzero variance, i.e.
its distribution is not an impulse. From Section III, we know
that under hypothesis H0 each entry of xn will correspond
directly to a noise observation. As a result, the distribution of
the entries in xn will match the noise distribution. By contrast,
under hypothesis H1, an impulsive peak located at zero will
occur in the distribution of the entries of xn. Because of this,
we can state

P(xn
i = 0|H0) � P(xn

i = 0|H1). (10)

Though a forensic investigator may not know the noise distri-
bution, the investigator can use (10) to measure the strength
of compressive sensing fingerprints by calculating the ratio of
zero valued entries in xn to its total length.

Since in practice many of the techniques used to solve
(3) or (7) result in values of xn close to but not exactly equal
to zero, we measure the strength of the fingerprints as follows.
Let �ε(xn) denote the number of elements in xn which have
an absolute value no greater than ε. We calculate the zero ratio
fingerprints’ strength using the equation

ξz(x
n) = �ε(xn)

	(xn)
, (11)

where 	(xn) is the length of the vector xn. When calcu-
lating �ε, ε is chosen to be ε = || xn ||∞/α, where α is
a parameter that controls the range of values of xn that
are counted as zeros. Experimentally, we have observed that
choosing α = 100 yields desirable results. We then perform
compressive sensing detection using the following decision
rule

δz =
{

H0 if ξz(xn) < τz,
H1 if ξz(xn) ≥ τz .

(12)

where τz is a decision threshold.
In reality, the locations of the nonzero values of s may not

be known to a forensic investigator, thus making it difficult to
form xn from x. In this scenario, two approaches can be taken
to perform compressive sensing detection. Since s will contain
a small number of nonzero entries, entries in x corresponding

to these entries in s will have values significantly larger in
magnitude than the rest. In the first approach, if the entries
of x are sorted in descending order, a substantial drop in the
values of the entries of x will be observed when transitioning
between nonzero entries of s and xn. Using this information,
a threshold can be chosen to separate out xn for use in
detection. If a suitable threshold cannot be chosen to separate
out xn, a second approach can be used. In this approach, x can
be used instead of xn in the detection algorithm. Since s will
have few nonzero entries, the statistics of xn will dominate
and there will be little effect on the detection results.

Additionally, if x can be modeled as a nearly sparse
signal or a nearly sparse signal in the presence of noise, the
preceding detection technique can still be used, albeit with
slight modification. From Section III, we know that for nearly
sparse signals or nearly sparse signals in the presence of noise,
the reconstruction step in compressive sensing will result in
the presence of a large number of zero or near zero valued
entries in x. As a result, we can state

P(xi = 0|H0) � P(xi = 0|H1). (13)

for nearly sparse signals and nearly sparse signals in the
presence of noise. If we substitute x for xn in equations (11),
compressive sensing can be detected in nearly sparse signals
using the decision rule δz presented in (12).

B. Distribution-Based Detection Scheme

In some scenarios, the forensic investigator will have knowl-
edge about the distribution F of the noise present during sens-
ing, like the quantization noise [34], or about the distribution G
of the coefficients in a nearly sparse signal. This knowledge
can be used as side information to perform improved com-
pressive sensing detection. To develop a detection scheme that
makes use of this distribution information, let us examine the
case of nearly sparse signals.

Let us assume that a forensic examiner knows that the
coefficients of a nearly sparse signal are distributed according
to some parametric distribution G(θ), where the true value
of the parameter θ is unknown. Additionally, assume that the
forensic investigator knows an estimator θ̂ for the parameter θ
on the basis of i.i.d. realizations of G(θ). Under hypothesis H0,
each entry of x will be a direct observation of the nearly
sparse signal, therefore the entries of x will be distributed
according to G(θ). If θ̂ is calculated using the entries of x, an
appropriately chosen measure of the distance between G(θ̂ )
and the normalized histogram of x should be small. We know
from Section III, however, that under hypothesis H1 the entries
of x will no longer be distributed according to G(θ). This will
cause θ̂ to be an inaccurate estimate of θ if it is calculated
from x under hypothesis H1. Now, given an appropriately
chosen distance metric, the distance between G(θ̂ ) and the
normalized histogram of x will be large. This can be seen
in Fig. 5. As a result, we can measure the strength of com-
pressive sensing fingerprints in x by measuring the distance
between the normalized histogram of x and G(θ̂ ).

A problem arises when measuring the distance between
these two quantities: hk(x) is an estimate of the probability that
the value of xi falls within the kth histogram bin, while G(θ̂ , t)
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Fig. 5. Fitting the histogram of the observed signal to the estimated signal
distribution. The Laplace distribution was used to generate each sample of the
nearly sparse signal. The left figure shows the fitting result when this signal
was obtained by traditional sensing, while the right one shows the result for
a when the signal was compressively sensed.

is the probability that xi takes the value t . As a result, these
two quantities cannot be compared directly by any distance
measurement. To resolve this disparity, we integrate G(θ̂ , t)
over each histogram bin to obtain g(θ̂) where

gk(θ̂ ) =
∫ b(k+1/2)

b(k−1/2)
G(θ̂ , t)dt (14)

and b is the width of each histogram bin.
Let ξd (hk, gk) denote some distance measure between

hk and gk , such as mean square distance (MSD) or
Kullback-Leibler divergence (KL divergence), then, we
perform compressive sensing detection using the following
decision rule

δd =
{

H0 if ξd (hk, gk) < τd

H1 if ξd (hk, gk) ≥ τd .
(15)

where τd is a decision threshold. The choice of the distance
measure ξd (hk, gk) is made based on the performance of
this compressive sensing detector in different applications.
For example, when detecting compressively sensed images,
using mean square error as the distance measure yield the
best detection performance. We will discuss this case in the
next section.

Besides the conventional distance measures, such as MSD
and KL divergence, we also propose their modified versions as
the candidates of ξd (hk, gk). These modified distance measures
take into account the particular manner in which compressive
sensing changes the distribution of the entries in x. Take the
KL divergence measure as an example. Since compressive
sensing dramatically increases the kurtosis of the distribution
of the entries in x, the most forensically significant differences
between h and g should occur around k = 0. As a result,
we modify the KL divergence to measure the strength of
compressive sensing fingerprints as follows

ξd (hk, gk) =
∑

k

wk ln
hk

gk
, (16)

where wk is a normalized set of weights used to emphasize
differences in the forensically significant region around
k = 0. Since we wish to weight the regions around k = 0
more heavily, we construct the weighting function using a
Laplace distribution. Other distributions obeying power law
decay may also be good candidates. Given that the weights

are discrete, we integrate the Laplace distribution over each
histogram bin to obtain the weighting function as follows,

wk =
{

1 − e−νb/2 cosh(νk) if k = 0,

e−ν|k| sinh(νb/2) otherwise,
(17)

where the parameter ν is chosen to be

ν = βn∑n
i=1 |xi | , (18)

and where β is a user specified parameter that adjusts the size
of the forensically significant region. Experimentally, we have
found that β = 100 yields desirable results. Similar modifica-
tions can be applied on other conventional distance measures.

If the signal being examined can be modeled as a sparse
signal in the presence of noise and the forensic investigator
has a parametric model F(θ) of the noise distribution, the
detection technique presented above can be used, only with
slight modifications. Since the noise distribution rather than
the signal distribution is known, F should be substituted for G
in (14). Additionally, θ̂ should be calculated using xn and the
histogram of xn should be substituted for h(x) in (16). If the
signal is more appropriately modeled as a nearly sparse signal
in the presence of noise, the distribution of x is given by the
convolution of G and F . If the noise distribution is unknown
or if G ∗F is difficult or intractable, the noise distribution can
be ignored when performing compressive sensing detection as
long as the noise power is sufficiently low.

We note that, although only the original signal’s distribution
is explicitly used in this distribution-based detection scheme,
our model for compressively sensed signals has also been
implicitly applied when designing the detector. Specifically,
both detection schemes are designed based on the assumption
that the distribution of a compressively sensed signal has much
more kurtosis than that of a traditionally sensed signal. While
this is enough for identifying compressively sensed signals
from traditionally sensed signals, more explicit models for the
distribution of compressively sensed signals can be proposed
for particular applications where more complicated detection
scenarios exist. We will discuss this in detail for images in the
next section.

V. DETECTING COMPRESSIVE SENSING

IN DIGITAL IMAGES

While the compressive sensing detection techniques pro-
posed in Section IV can be used on a wide variety of signals,
in some scenarios it is desirable to create a compressive
sensing detection technique specifically tailored to a particular
class of signals. This is the case for digital images.

An image’s compression history can reveal important infor-
mation about how an image was captured and stored. It can
also reveal important information about the device used to
capture an image [3]. As a result, a variety of techniques have
been developed to determine if an image was previously com-
pressed. Fingerprints left by compressive sensing, however,
can be mistaken for traditional image compression fingerprints
by existing forensic techniques such as those proposed by
Lin et al. [22] and Luo et al. [23]. As a result, when we
are given a compressively sensed and reconstructed image,
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Fig. 6. Histograms of DWT coefficients taken from uncompressed Lena (left), the same image after JPEG 2000 compression (right), and the reconstructed
compressively sensed Lena (center).

it may be easily misidentified as a traditionally sensed and
compressed image. In this section, we propose a forensic
technique specifically designed to both detect evidence of
compressive sensing in digital images and to differentiate
compressive sensing fingerprints from those left by traditional
forms of image compression.

A. Compressive Sensing Fingerprints in Digital Images

Since the pixel values of an image do not form a sparse
signal, digital images may not initially seem well suited for
compressive sensing. It is well known, however, that within
each subband, the set of discrete wavelet transform (DWT)
coefficients of a natural image are sparse. As a result, com-
pressive sensing reconstruction is often performed on images
in the wavelet domain.

From our discussion of compressive sensing fingerprints in
Section III, we would naturally expect an impulsive peak to
occur at zero in the DWT coefficient distribution of a compres-
sively sensed image. While this is true after the compressively
sensed DWT coefficients are reconstructed, the inverse DWT
of the image must be performed and the resulting pixel values
must be projected back into the set {0, . . . , 255} of allowable
pixel values. This will introduce a small but nontrivial amount
of noise into the DWT coefficients when DWT is applied to
the image again to extract the coefficients. As a result, the
peak in the image’s DWT coefficient distribution at zero will
no longer correspond to an impulse. Though the peak will be
slightly smoothed by this noise source, the DWT coefficient
distribution of a compressively sensed image will still exhibit
a large degree of kurtosis, as can be seen in Fig. 6. We use
this characteristic feature of a compressively sensed image’s
DWT coefficient distribution as the fingerprints.

Wavelet-based image compression techniques such as
JPEG 2000 and SPIHT also introduce fingerprints in an
image’s DWT coefficient distribution. During compression,
these techniques use a bit-plane encoder to store the most
significant digits of each DWT coefficient in a subband. This
has the same effect as quantizing each DWT coefficient.
As a result, the DWT coefficients in an image compressed
using a wavelet-based technique will tightly cluster around
certain values, forming a series of peaks in the DWT coef-
ficient distribution that can be seen in the rightmost plot in
Fig. 6. These peaks are the fingerprints of wavelet based
image compression. Since the most prominent peak occurs

Fig. 7. ROC curves obtained by using the image compression detection
technique in [22] to identify JPEG 2000 compression in a set of unaltered and
JPEG 2000 compressed images (left) and a set of unaltered and compressively
sensed images (right). In the right figure “false alarms” correspond only to
unaltered images misclassified as JPEG 2000 compressed. Since there is no
JPEG 2000 compressed image in the seconde test set, the results in the right
figure demonstrate that compressive sensing can be easily misidentified as
JPEG 2000 compression.

at zero, compressive sensing fingerprints and wavelet-based
compression fingerprints can easily be confused by existing
detectors.

To demonstrate that compression history detection tech-
niques can mistake compressive sensing fingerprints for
JPEG 2000 compression fingerprints, we performed an exper-
iment using the compression history detection technique
proposed in [22]. When performing this experiment, we used
the Uncompressed Colour Image Database (UCID) [35] to cre-
ate a testing database of 300 unaltered images, 300 JPEG 2000
compressed images, and 300 compressively sensed images.
First, we evaluated the baseline performance of the wavelet-
based compression detection technique from [22] by using it
to distinguish between the set of unaltered and JPEG 2000
compressed images. An ROC curve showing the results of
this experiment is displayed in the left figure of Fig. 7, which
shows that this technique can reliably detect wavelet-based
compression. Next, we used this technique to identify evidence
of JPEG 2000 compression in the set of compressively sensed
and unaltered images. Since none of the images in this
second experiment were compressed using JPEG 2000, we
would expect the detector to find no evidence of JPEG 2000
compression. An ROC curve showing the results of this
experiment is displayed in the right figure of Fig. 7. “false
alarms” correspond only to unaltered images misclassified
as JPEG 2000 compressed, and “detections” correspond to
compressively sensed images been identified as JPEG 2000
compressed images. These results show that compressively
sensed images can be easily misidentified as images that have
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Fig. 8. ROC curves obtained by using the proposed scheme in
Section IV-B to identify compressively sensed images from traditionally
sensed images (left) and to identify compressively sensed images from
traditionally sensed but JPEG 2000 compressed images (right).

undergone JPEG 2000 compression by existing forensic tech-
niques. This reinforces the need for a technique to distinguish
between compressive sensing and traditional wavelet-based
compression.

Moreover, while the proposed universal detection schemes
in Section IV can be used on images to distinguish com-
pressively sensed images from traditionally sensed images,
their performance may be affected when traditionally sensed
but wavelet-based compressed images are involved in the
acquisition detection analysis. To demonstrate this, we
used the universal detector proposed in section IV-B to
differentiate between compressively sensed images and both
uncompressed traditionally sensed images as well as tra-
ditionally sensed images that have been compressed using
JPEG 2000. The results of this experiment are shown in Fig. 8.
The left figure demonstrates that our proposed general com-
pressive sensing detection scheme can be successfully used on
image signals. While the right figure shows the degradation
of this scheme’s performance when traditionally sensed but
JPEG 2000 compressed images are involved in the analysis.
Therefore, in order to determine the acquisition process of an
image signal and identify compressive sensing, we need more
specific models for compressively sensed images to distinguish
them from traditionally sensed but wavelet-based compressed
images.

B. DWT Coefficient Distribution Models

Because both compressive sensing fingerprints and wavelet-
based compression fingerprints present themselves in an
image’s DWT coefficient distribution, we must adopt a set of
models for an image’s DWT coefficient distribution in order to
develop our forensic technique. Let X be a random variable
representing the value of a DWT coefficient in a particular
subband of an image. For uncompressed images, we model
the distribution of X using the Laplace distribution [36]

fX (x) = λ0

2
e−λ0|x |. (19)

Since traditional DWT-based image compression is equivalent
to nonuniform quantization [36], we then model the DWT
coefficient distribution of an image that has undergone tradi-
tional wavelet-based compression as

P[X = q] =
∫ q+�q

q−�q

λ0

2
e−λ0|x |dx, (20)

Fig. 9. Fit the coefficient histogram of compressively sensed Lena with both
Laplace model and Laplace mixture model. Coefficients are taken from the
third subband after 6-level DWT decomposition with wavelet basis ‘bior4.4’.

where q ∈ Z and �q is half of the width of the quantization
interval that maps DWT coefficients to q .

When examining compressively sensed images, we must
account for the noise introduced into the image’s DWT coeffi-
cients described in Section V-A. Since this noise will slightly
smooth out the impulsive spike that we would expect to
occur in the distribution of X at zero, we instead model the
DWT coefficients of a compressively sensed image using a
Laplace mixture distribution [37]

fX (x) = ω1
λ1

2
e−λ1|x | + ω2

λ2

2
e−λ2|x | (21)

where ω1 + ω2 = 1 and 0 < λ1 < 1 < λ2. Fig. 9
shows an example of a compressively sensed image’s DWT
coefficient histogram fit to both a Laplace and a Laplace
mixture distribution. We can see from this figure that an appro-
priately chosen Laplace mixture distribution very accurately
models the compressively sensed image’s DWT coefficient
distribution.

C. Compressive Sensing Detection

Because the fingerprints left by traditional wavelet-based
compression techniques can be confused with the compressive
sensing fingerprints, we propose performing compressive sens-
ing detection on images in two steps [37]. In the first step, we
separate unaltered traditionally sensed images from those that
are either traditionally compressed or compressively sensed.
In the second step, we differentiate between compressively
sensed images and those that have traditionally undergone
wavelet-based compression.

Step 1 (Identify Uncompressed Traditionally Sensed
Images): The goal of the first step of our compressive sensing
detection scheme is to remove uncompressed traditionally
sensed images from further examination. This step is equiva-
lent to differentiating between the following two hypotheses

H0 : The image is uncompressed and traditionally sensed,
H1 : The image is traditionally compressed

or compressively sensed. (22)

where hypothesis H1 is a composite hypothesis. To accomplish
this, we exploit the fact that the DWT coefficient distribu-
tions of both compressively sensed images and traditionally
compressed images will significantly differ from the Laplace
distribution.
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We begin by assuming that hypothesis H0 is correct. Under
this assumption, the parameter λ0 in (19) can be estimated for
a particular subband of an image’s DWT coefficients using the
maximum likelihood estimator

λ̂0 = N∑N
i=1 |xi |

, (23)

where each xi represents a DWT coefficient in the subband
being examined and N is the number of DWT coefficients
in the subband. Once the estimate λ̂0 is obtained, we
use λ̂0 and (19) to calculate the expected histogram gunalt

k
according to (14). We then measure the mean squared
distance (MSD) between the observed histogram of
DWT coefficients hk and gunalt

k according to the formula

M SD1 = 1

B

∑
k

(
hk − gunalt

k

)2
, (24)

where B is the total number of histogram bins.
We note that this step is an application of our distribution-

based detection scheme proposed in section IV-B. MSD is
chosen instead of KL divergence to avoid the “divide by zero”
problem when calculating the KL divergence.

If the MSD between hk and gunalt
k is sufficiently large, we

conclude that an image’s DWT coefficient histogram cannot be
modeled using (19), therefore the image either has undergone
wavelet-based compression or has been compressively sensed.
As a result, we differentiate between the hypotheses in (22)
using the decision rule

δ1 =
{

H0 : If M SD1 < τ1
H1 : If M SD1 ≥ τ1,

(25)

where τ1 is the decision threshold. If δ1 returns a decision
of H1 for an image, then we proceed to step 2 of our detection
process.

Step 2 (Detect Compressive Sensing): Once we have decided
that an image has been either traditionally compressed or
compressively sensed, we must differentiate between these two
possibilities. In the second step of our detector, we frame this
problem as deciding between the hypotheses

H0 : The image has undergone wavelet-based compression,

H1 : The image was compressively sensed. (26)

We know that under hypothesis H1, an image’s DWT coef-
ficient distribution will be given by (21). As a result, we
can identify compressively sensed images by determining how
well the distribution of an image’s DWT coefficients within a
subband fits a Laplace mixture distribution.

To do this, we first estimate the parameters in the parameter
set θ = {ω1, ω2, λ1, λ2} using the expectation maximiza-
tion (EM) algorithm [38]. Let Zi be latent random variables
that denote which component of the Laplace mixture distrib-
ution each DWT coefficient xi originates. As a result, we can
write the following equations:

fXi (xi |Zi = 1) = λ1

2
e−λ1|xi |, (27)

fXi (xi |Zi = 2) = λ2

2
e−λ2|xi |, (28)

P[Zi = 1] = ω1 and P[Zi = 2] = ω2. (29)

At the t th iteration of the EM algorithm, the updated estimates
of the parameters in the parameter set are given by the
equations

w
(t+1)
j = 1

n

N∑
i=1

T (t)
j,i j = 1, 2 (30)

λ
(t+1)
j =

∑N
i=1 T (t)

j,i∑N
i=1 T (t)

j,i |xi |
j = 1, 2 (31)

where

T (t)
j,i = w

(t)
j λ

(t)
j e−λ

(t)
j |xi |

ω
(t)
1 λ

(t)
1 e−λ

(t)
1 |xi | + ω

(t)
2 λ

(t)
2 e−λ

(t)
2 |xi |

. (32)

The EM algorithm’s iterations are terminated after either the
maximized log-likelihood ratio

max
θ

Q(θ |θ(t))

=
N∑

i=1

2∑
j=1

T (t)
j,i

[
ln

(
ω

(t+1)
j λ

(t+1)
j /2

)
− λ

(t+1)
j |xi |

]
. (33)

converges or a fixed number of iterations have been reached.
After the values of ω1, ω2, λ1, and λ2 have been

estimated, we compute the expected DWT coefficient
histogram gcs

k under hypothesis H1 using (14). Next, we
calculate the MSD between the gcs

k and the observed histogram
of DWT coefficients hk

M SD2 = 1

B

∑
k

(
hk − gcs

k

)2
, (34)

where B is the total number of histogram bins. Finally,
we perform compressive sensing detection according to the
decision rule

δ2 =
{

H0 : If M SD2 > τ2
H1 : If M SD2 ≤ τ2,

(35)

where τ2 is a decision threshold.

VI. MEASUREMENT NUMBER ESTIMATION

Once a signal has been identified as compressively sensed,
a forensic investigator may wish to ascertain additional infor-
mation about how the signal was captured. One significant
piece of information is the number of compressive measure-
ments that were used to acquire the signal. In this section, we
propose a technique to estimate the number of compressive
measurements obtained when sensing a signal.

When a compressively sensed signal is reconstructed by
solving (3), the sparsest solution x such that � x = y is chosen.
Since the values of x can be thought of as weights for the
column vectors of �, and y is obtained also by weighted
sum of these vectors with non-sparse weighting values, it
seems natural that the sparsity of the reconstructed signal
will be closely related to dimension of the column vectors
of �, which is approximated to be the rank of �, i.e., the
number of compressive measurements. In fact, we are able to
prove that the relationship between the number of compressive
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measurements and the number of zeros in the reconstructed
signal is given by the relationship stated below in Theorem 1.

Theorem 1: Let y be a vector of m compressive measure-
ments obtained by compressively sensing a signal that fits
one of the three signal models proposed in Section II-B.
Assume that the noise, if applicable, is continuously distrib-
uted. Additionally, let the m by n sensing matrix � have
orthonormal row vectors selected uniformly at random from
an orthonormal vector set in R

n . If the reconstructed signal x
is obtained by solving the l1 minimization problem

min
x̃

||x̃ ||l1 s.t . �x̃ = y, (36)

then with probability close to one, x will have m non-zero
coefficients. As a result, the number of compressive measure-
ments is given by

m = n − �0(x), (37)

where �0(x) denotes the number of zero valued entries
in x.

Proof: We prove this theorem by deriving a lower and
upper bound on n −�0(x) respectively, then showing that the
only value of n − �0(x) that satisfies both bounds is m.

To derive the lower bound, we begin by defining
vector space V as the linear span of the column
vectors φ

1
, φ

2
, . . . , φ

n
of the sensing matrix �. Since � has

orthogonal row vectors, it is full rank. Thus, dim(V ) =
dim{φ

1
, φ

2
, . . . , φ

n
} = m. Next, we define the dimension of

an m length vector v on space V as the size of the smallest
subset of {φ

1
, φ

2
, . . . , φ

n
} whose linear span contains v .

The compressive measurements y can be expressed as
y = ∑n

i=1 φ
i
si , where s is the signal being acquired by

compressive sensing. If s fits any of the signal models in
Section II-B, then the dimension of y is equal to the dimension
of V with probability close to one. Specifically, in the case of
signals corrupted by environmental noise and nearly sparse
signals, either the noise or the nature of the signal itself will
cause each entry of s nonzero. Otherwise, if the signal is
corrupted by measurement noise, then the independent white
noise added to the compressive measurements will cause y to
lie in the span of any subset of V of size m − 1 or less with
probability nearly zero.

Because the reconstructed signal x is just another decom-
position of y on space V , the number of non-zero entries in x
can not be less than the dimension of y on this space. Thus,

n − �0(x) ≥ dim(y) = dim(V ) = m. (38)

To derive the upper bound, we reformulate (36) as the
following equivalent problem [25]

min
z̃

1T z̃, s.t . Az̃ = y, z̃ ≥ 0. (39)

where 1 denotes a column vector of length 2n of all ones
and A = (�,−�) is of size m × 2n. If the solution to (39)
is partitioned into two vectors of equal length such that
z = (uT , vT )T , then the solution to (36) can be expressed
as x = u − v .

By examining this intermediate problem, the
following lemma and corollary can be proved by using
Karush-Kuhn-Tucker conditions [39].

Lemma 1: Let z′ denote the sparsest solution of prob-
lem (39), i.e., the one with smallest number of non-zero
coefficients. Then

n − �0(z
′) ≤ m. (40)

Corollary 1: For any solution z of (39), the corresponding
solution x for (36) will have the same number of non-zero
coefficients with z.

Given these two results, we conclude our proof by recalling
that the solution to (36) is unique (see [8, Th. 1.1]), so that the
sparsest solution x ′ to (36) is the only solution, i.e., x = x ′.
Therefore, n−�0(x) = n−�0(z′) ≤ m. Combining this result
with (38), we conclude that n − �0(x) = m, thus Theorem 1
is proved.

In practice, a number of iterative techniques are often used
to solve (36). Since these techniques are typically terminated
after the difference between two iterations is sufficiently small
or a fixed number of iterations has been reached, the solution
yielded by these techniques will often differ slightly from
the optimal solution. As a result, several values of x that
would ideally be zero will instead take small nonzero values.
To compensate for this effect, we instead count the number of
entries �ζ (x) that fall within a ball of radius ζ around zero.
Our measurement number estimator for the observed signal x
is defined as follows:

m̂ = n − �ζ (x), (41)

where ζ = ||x̆ ||∞/ρ. If the signal x is modeled as a sparse
signal in noise, x̆ is taken as the noise component, otherwise
x̆ = x . The choice of ρ depends on how accurate the
reconstruction is. For example, in the ideal where the iteration
in simulation can go to infinity, then ρ → ∞ and ζ → 0.
In our simulations, we have experimentall observed that
ρ = 100 yields desirable performance.

VII. SIMULATIONS AND RESULTS

To verify the effectiveness of our proposed forensic tech-
niques, we have evaluated their performance through a series
of experiments. In this section, we present the results of
these experiments and show that our proposed techniques
can reliably detect the use of compressive sensing. We first
evaluate the ability of our forensic techniques to identify
compressive sensing in sparse signals in the presence of noise,
nearly sparse signals, and nearly sparse signals in the presence
of noise. We then evaluate the performance of our compressive
sensing detection technique for images and our technique to
estimate the number of compressive measurements used to
acquire a signal.

A. Sparse Signals in the Presence of Noise

To evaluate the ability of both the zero ratio detector
and the distribution-based detector to identify compressive
sensing in sparse signals in the presence of noise, we first
created a database of testing signals. This database consisted
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Fig. 10. ROC curves of zero ratio detector and distribution-based detector on signals modeled as sparse signals in the presence of noise for (a) M/N = 0.1,
(b) M/N = 0.4 and (c) M/N = 0.9. ‘Msure’ is short for measurement and ‘Envron’ is short for environment. ‘ZR’ denotes the zero ratio detector and
‘DB’ denotes the distribution-based detector.

of 200 compressively sensed sparse signals in the presence of
environmental noise, 200 compressively sensed sparse signals
in the presence of measurement noise, and 200 sparse signals
in the presence of additive noise which were not compressively
sensed. Each signal was created by first randomly generating
a sparse signal of length N = 1000 with 20 nonzero entries.
For each nonzero entry, its location was chosen uniformly
at random and its value was drawn from a Gaussian dis-
tribution with a mean of 10 and unit variance. We then
corrupted each signal with additive Gaussian noise distrib-
uted N (0, 0.1). For signals which were not compressively
sensed, we added the noise directly to the sparse signal to
obtain the observed signal. For compressively sensed signals
corrupted by environmental noise, we added the noise to the
sparse signal, then performed M compressive measurements.
For signals corrupted by measurement noise, we first obtained
M compressive measurements of the sparse signal, then added
the Gaussian noise to each compressive measurement. Each
compressively sensed signal was reconstructed using the basis
pursuit de-noising algorithm [25]. We obtain the noise com-
ponent of the observed signal by excluding the 20 entries that
have the largest magnitudes, since these likely correspond to
the nonzero components of the sparse signal. We then used
both detection techniques to determine if each signal was
compressively sensed.

In our first set of experiments, we evaluated the performance
of both detection techniques as the ratio of the number of com-
pressive measurements to the total signal length was varied
from M/N = 0.1 to 0.9 in increments of 0.1. For distribution-
based detector, the modified KL divergence was chosen as the
distance measure for it performs better than other distance
measures do. When performing these experiments, we varied
the decision thresholds of each detector over a range of
values. For each threshold value, we determined the associated
probabilities of detection Pd and false alarm Pf by calculating
the percentage of compressively sensed signals that were
correctly identified and the percentage of signals that were
incorrectly identified as compressively sensed respectively.
We then used these probabilities to construct a set of ROC
curves showing the performance of each detector. Selected
ROC curves showing the performance of both detectors for
M/N = 0.1, 0.4, and 0.9 are shown in Figs. 10(a) through (c).

From the full set of ROC curves, we found that both
detectors achieved perfect detection, i.e. Pd = 100% with
Pf = 0%, for M/N ≤ 0.8. When M/N reaches 0.9,

Fig. 11. ROC curves of zero ratio detector and distribution-based detector
on signals modeled as sparse signals in the presence of noise when different
reconstruction algorithms were used.

both detectors can still identify compressive sensing with
Pd = 99% at a Pf ≤ 5%. Since in most real world scenarios
compressive sensing will be applied with M/N less than 0.5,
these results show that both techniques perform strongly under
realistic conditions. Furthermore, we can see from Fig. 10(c)
that the distribution-based detector outperforms the zero ratio
detector because the forensic investigator is able to make
use of additional information about the noise’s distribution.
We also note that the performance of our detectors decrease
as M increases because with more compressive measurements,
the noise can be accurately reconstructed. Since compressive
sensing fingerprints manifest themselves as changes in the
noise distribution, this impedes compressive sensing detection.
Nevertheless, our results show that compressive sensing detec-
tion can be performed with a high degree of accuracy under
realistic values of M/N .

Next, we evaluated the robustness of both detectors to
different signal and noise powers, as well as different noise
distributions. To evaluate the performance with different sig-
nal and noise powers, we fixed the number of compressive
measurements so that M/N = 0.5. This was done because
M/N = 0.5 is typically an upper bound in real world
applications [9], therefore it provides a lower bound on the
performance of both detectors in realistic scenarios. We then
repeated the previous experiments using the same noise power
with signal powers of 10, 100, and 1000, and while using
the same signal power with noise powers of 0.1, 1, and 10.
For each of these experiments, both detectors achieved
Pd = 100% at a false alarm rate of Pf = 0%. These results
show that both detectors can perform strongly under a variety
of signal and noise powers. Next, we kept M/N = 0.5 and
performed compressive sensing detection when each signal
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Fig. 12. ROC curves of distribution-based detection on nearly sparse signals and nearly sparse signals in the presence of noise for (a) M/N=0.1, (b) M/N=0.4
and (c) M/N=0.9. ‘Msure’ is short for measurement and ‘Envron’ is short for environment.

corrupted by noise from the exponential, Laplace, Gaussian,
uniform and Rayleigh distributions. Again, under each sce-
nario both detectors were able to acheive Pd = 100% at a
false alarm rate of Pf = 0%. Taken together with our previous
results, these results show that both our zero ratio detector and
distribution-based detector can be used to identify compressive
sensing in sparse signals corrupted by noise under a wide range
of conditions.

In addition, since several different algorithms are available
to reconstruct a compressively sensed signal, we performed
a set of experiments to demonstrate the robustness of our
compressive sensing detection technique to different recon-
struction algorithms. In these experiments, we used used both
orthogonal matching pursuit (OMP) [30] and the LASSO
error variation minimization reconstruction algorithm [31] to
reconstruct the compressively sensed signals. We then repeated
our first set experiments, this time setting M/N = 0.5.
ROC curves obtained from the results of these experiments
are shown in Fig. 11. These results demonstrate that both of
our detectors can identify compressive sensing regardless of
the reconstruction algorithm.

B. Nearly Sparse Signals and Nearly Sparse Signals
in the Presence of Noise

For nearly sparse signals and nearly sparse signals in
the presence of noise, we evaluated our distribution-based
detector’s ability to identify compressive sensing. To do this
we created a testing database of 1000 signals consisting of 200
of each of the following types of signals; compressively sensed
nearly sparse signals, nearly sparse signals which were not
compressively sensed, compressively sensed nearly sparse sig-
nals corrupted by environmental noise, compressively sensed
nearly sparse signals corrupted by measurement noise, and
nearly sparse signals corrupted by additive noise which were
not compressively sensed.

Each signal was generated by first creating a nearly sparse
signal of length N = 1000 whose entries were drawn from
a Laplace distribution with variance 104. The Laplace dis-
tribution was chosen because it is commonly used to model
the coefficients of several nearly sparse signals [40], [41]. For
compressively sensed nearly sparse signals, we performed M
compressive measurements of the signal, then reconstructed it.
For compressively sensed nearly sparse signals in the presence
of noise, we applied zero mean additive Gaussian noise with

variance 10 to either the signal or the M compressive measure-
ments, then performed reconstruction using the basis pursuit
de-noising algorithm. To create nearly sparse signals in noise
which were not compressively sensed, we added zero mean
Gaussian noise with variance 10 to the nearly sparse signal.
We then used our distribution-based detector to determine if
each signal had been compressively sensed.

In our first set of experiments on these signals, we varied
the ratio of the number of compressive measurements to the
signal length from M/N = 0.1 to 0.9 in steps of 0.1 as was
done in Section VII-A. We evaluated our distribution-based
detector’s performance by varying its decision threshold over
a range of values, calculating the corresponding Pd and Pf

for each threshold value, then creating a set of ROC curves.
Selected ROC curves for M/N = 0.1, 0.4, and 0.9 are shown
in Fig. 12.

From the full set of ROC curves we found that when
M/N ≤ 0.8, our distribution-based detector could achieve a
probability of detection of Pd = 100% with Pf = 0% for
both nearly sparse signals and nearly sparse signals in the
presence of either type of noise. When M/N was increased
to 0.9, our detector was able to achieve a performance of
Pd = 99% with Pf ≤ 3% for all cases. These results show
that our distribution-based detector can accuratley identify
compressively sensed nearly sparse signals and nearly sparse
signals in noise for realistic values of M/N .

Next, we evaluated our distribution-based detector’s robust-
ness when performing compressive sensing detection on nearly
sparse signals and nearly sparse signals in noise. To do this,
we performed a series of experiments in which we fixed
M/N at 0.5 as was done in Section VII-A, then varied the
signal variance as well as the noise power and distribution
when appropriate. For nearly sparse signals, we allowed the
signal variance to take values of 10−4, 1 and 104. In each
case, the detector achieved Pd = 100% with Pf = 0%, i.e.
perfect detection. For nearly sparse signals in the presence
of noise, we repeated experiments using signal powers of
103, 104 and 105 and with noise powers of 0.1, 1 and 10.
Additionally, we performed experiments in which we fixed the
signal power at 10 and varied the noise distribution between
the Gaussian, Rayleigh, Laplace, exponential and uniform
distributions. In each of these experiments, our detector was
able to achieve Pd = 100% with Pf = 0%. These results
show that our detector can be used to reliably identfy com-
pressive sensing in both nearly sparse signals and nearly sparse



CHU et al.: COMPRESSIVE SENSING FORENSICS 1429

Fig. 13. ROC curves of the first (left) and second (right) step detections on each DWT sub-band coefficients. M/N = 0.25 is used in compressive sensing.

Fig. 14. ROC curves of the first (left) and second (right) step detections on coefficients of DWT sub-band 3 under different compression ratios of compressive
sensing.

signals in the presence of noise under a wide variety of
conditions.

C. Images

To evaluate the performance of our compressive sensing
detection technique for images, we first created a testing data-
base of images. For each experiment, we used 300 unaltered
images, 300 JPEG 2000 compressed images, and 300 com-
pressively sensed images from the UCID database [35]. Each
image in this database has size of 512 × 256 pixels. Dur-
ing JPEG 2000 compression and compressive sensing recon-
struction, the ‘bior4.4’ DWT basis was used to perform the
discrete wavelet transform of each image. To fairly evaluate
our detector, during each set of experiments the compression
quality factor for the JPEG 2000 images and the number
of compressive measurements for the compressively sensed
images were chosen so that both sets of images had the
same average PSNR. For example, the average PSNRs for
M/N = 0.67 and M/N = 0.25 are 36dB and 26dB,
respectively.

In our first experiment, when performing compressive
sensing we chose the compression ratio to be N/M = 4.
After creating an appropriately compressed set of JPEG 2000
images, we classified each image in the testing database using
our two-step image compressive sensing detection technique.
When doing this, we obtained classification results using
DWT subbands 2 through 6 for both detection steps. We used
these results to create the set of ROC curves for each step of
our detection scheme shown in Fig. 13.

The leftmost plot in Fig. 13 shows ROC curves for the
first step of our detection process in which unaltered images
are separated from both JPEG 2000 compressed and com-
pressively sensed images. From these results, we can see
that performing detection on subbands 3, 4, or 5 yields the
best performance. For each of these subbands, our detector

achieves a Pd of 100% at a Pf of 4% or less. The rightmost
plot in Fig. 13 shows ROC curves for the second step
of our detector. From these curves we can see that when
using subbands 2 or 3 to perform detection, our detector
achieves a Pd of approximately 90% at Pf = 10%. Taken
together, these results show that the detection scheme proposed
in Section V-C can be used to reliably discriminate between
unaltered, compressively sensed, and JPEG 2000 compressed
images. For both steps of the detection process, we note
that the performance decreases sharply when subband 6 or
higher is used to perform detection. This is because the
kurtosis of the distribution of DWT coefficients typically
increases as the subband increases. This, together with the
fact that the effective quantization interval used in JPEG 2000
is typically larger for higher DWT subbands, will result in
the DWT coefficient distributions of unaltered, compressively
sensed, and JPEG 2000 compressed images appearing very
similar.

Next, we repeated the previous experiment while varying the
number of compressive measurements so that the compression
ratio of the compressively sensed images ranged between
N/M = 1.5 and 4. In this set of experiments, we used
subband 3 to perform both steps of our detection process.
We used the results of this set of experiments to create the
ROC curves shown in Fig. 14. We can see from the leftmost
plot in Fig. 14 that the first step of our detector can achieve
Pd > 90% with Pf < 5% when N/M ≥ 2. Since in most
realistic scenarios N/M > 2, these ROC curves show that
the first step of our detector performs strongly. The rightmost
plot in Fig. 14 shows that the second step of our detector can
acheive a Pd of approximately 90% or higher at Pf = 10% for
each value of N/M . These results show that our dector can be
used to reliably discriminate between unaltered, compressively
sensed, and JPEG 2000 compressed images in a variety of
scenarios.
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Fig. 15. Estimated M̂ versus the real M for (a) sparse signals in the presence of noise, (b) nearly sparse signals, (c) nearly sparse signals in the presence
of noise.

D. Estimator of the Number of Compressive Measurements

We performed a final set of experiments to evaluate
the performance of our technique to estimate the number
of compressive measurements used to capture a signal.
In these experiments, we created a set of sparse and
nearly sparse signals of length N = 1000 as was done
in Sections VII-B and VII-A, then corrupted them using both
environmental and measurement noise to create a database of
100 of each of the following signals; sparse signals in the
presence of environmental noise, sparse signals in the presence
of measurement noise, nearly sparse signals, nearly sparse
signals in the presence of environmental noise, and nearly
sparse signals in the presence of measurement noise. When
creating signals corrupted by noise, we used Gaussian noise
whose variance corresponded to a signal to noise ratio (SNR)
of 103. This was done because the performance of our forensic
technique decreases as the SNR decreases, thus our results can
be interpreted as a conservative evaluation of our estimator’s
performance.

Once we created our testing database, we compressively
sensed each signal while varying the number of compressive
measurements from M = 100 to 900. We then used our
forensic technique to obtain an estimate M̂ of the number
of compressive measurements used to acquire each signal.
The results of this experiment are displayed in Fig. 15 which
shows a series of plots comparing the estimated number of
compressive measurements to the true number. We can see
from this figure that for each signal model, our estimate closely
matched the true number of measurements. Furthermore, we
can see that our estimate lies within ±25 measurements of the
true number of measurements.

Additionally, we also testified the effectiveness of our
proposed estimator of the number of compressive measure-
ments on images. In these experiments, we tested our estima-
tor on the database of compressively sensed images created
in section VII-C. We have found that higher frequency sub-
bands tend to have higher estimation accuracies due to their
sufficient numbers of coefficients. Thus, we used subband 6
to estimate the number of compressive measurements in this
subband, and then obtain the estimated ratio of M/N . The
relative square error of the estimated M/N ratio was calculated

as E

[ (
M̂
N − M

N

)2

( M
N )2

]
. Table I lists these relative estimation errors

for some typical choices of M/N ratios. The results show
that the relative square error of our estimator on images is no

TABLE I

RELATIVE ERROR OF ESTIMATING COMPRESSIVE

MEASUREMENTS FOR IMAGES

greater than 5.2% for typical choices of compression ratios in
compressive sensing.

VIII. CONCLUSION

In this paper, we have proposed a set of techniques to
identify the use of compressive sensing in a wide variety of
signals. To do this, we first identified the fingerprints left in a
compressively sensed signal. We then developed two general
techniques to identify compressively sensed signals; one that
operates by analyzing the ratio of zero valued entries in a
signal, and another that operates by identifying changes to a
signal’s coefficient distribution caused by compressive sensing.
Since evidence of compressive sensing in images can be
confused with fingerprints left by JPEG 2000 compression,
we designed a compressive sensing detection technique specif-
ically tailored to digital images. Additionally, we proposed a
technique to estimate the number of compressive measure-
ments used to acquire a compressively sensed signal.

Our experimental results have shown that both our zero ratio
and distribution-based detection schemes are able to reliably
detect compressive sensing in a wide variety of realistic
scenarios. Similarly, we hanve shown that our technique to
identify compressive sensing in images can reliably distin-
guish compressively sensed images from both uncompressed
and JPEG 2000 compressed images. Additionally, we have
provided both a theoretical proof and experimental results
verifying the effectiveness of our technique to estimate the
number of compressive measurements used to acquire a signal.
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