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ABSTRACT
Identifying a signal’s origin and how it was acquired is an impor-

tant problem for digital forensics. Recently, compressive sensing has
achieved substantial attention due to its ability to accurately acquire
sparse signals at rates below the Nyquist rate. The increased popularity
of this signal acquisition technique gives rise to a new forensic problem:
is it possible to distinguish signals that have been compressively sensed
from traditionally sampled ones? In our previous work, we addressed
this problem of differentiating between traditionally acquired and
compressively sensed images. In this paper, we examine the problem of
distinguishing traditionally sampled signals from compressively sensed
ones for a broader class of signals. We categorize those compressive
sensing applicable signals into two cases: sparse signals with noise and
nearly sparse signals. For each category, we discuss the traces left in a
signal by compressive sensing and propose a corresponding detection
scheme. Experimental results show that both of our proposed detection
schemes can be effectively used to distinguish compressively sensed
signals from traditionally sensed signals.

Index Terms— Compressive Sensing, Identification Forensics,
(Nearly) Sparse Signals.

I. INTRODUCTION
Determining a signal’s origin, how it was acquired, and how it was

stored is an important set of forensic problems. Most prior work on
signal acquisition forensics is targeted towards digital images. Forensic
techniques have been designed to determine an image’s source camera
using noise introduced by sensor imperfections [1] and unique traces
left by a camera’s internal processing [2]. Other forensic techniques are
able to identify the source coder used when compressing an image for
storage [3]. While these techniques have proven to be very successful,
they are only capable of operating on digital images. As a result, there is
a growing need for acquisition forensic techniques capable of operating
on a broader class of signals

Recently, a new signal acquisition technique known as compressive
sensing has been developed [4]. While traditional sensing techniques
employ uniform sampling and are thus limited by the Nyquist rate,
compressive sensing techniques enable sparse signals to be sampled at
a much lower rate. Rather than uniformly sampling the signal, compres-
sive techniques obtain a series of of measurements by projecting the
signal onto a special set of basis vectors. As long as enough number of
measurements are collected, the original signal can be reconstructedby
solving a linear minimization problem.

Because compressive sensing allows signals to be acquired with far
fewer measurements that uniform sampling, it has been adapted for use
in a variety of applications. One well known application of compressive
sensing is the single pixel camera [5]. This camera operates by using
an array of mirrors to perform a pseudorandom projection of the scene
onto a single pixel sensor several times. Compressive sensing has been
successfully applied to variety of other imaging applications such as
magnetic resonance imaging [6], photo-acoustics [7], and astronomic
images [8]. While imaging is an important application of compressive
sensing, it is certainly not the only one. Compressive sensing has also
been applied to sparse electronic and electromagnetic signals such as
electrocardiography [9] and radar [10] [11] [12]. Compressive sensing
has even seen applications in sparse network events such as the on and
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off status of a channel in cognitive radio [13] and the occurrence of
events in sensor networks [14].

In the face of such widespread use of compressive sensing, the
following question naturally arises: can a signal acquired using com-
pressive sensing be forensically distinguished from one that has been
traditionally sampled? In previous work, we addressed the problem
of identifying images that had been compressively sensed [15]. In
this paper, we propose techniques to forensically identify compressive
sensing that can be used on a broader class of signals.

The rest of the paper is organized as follows: In section II, system
models are presented, where we generalize those observed signals into
two basic and simple categories: sparse signals with noise and nearly
sparse signals. Section III and section IV analysis the fingerprint and
propose the detection scheme for each of the model, respectively.
Simulation results in section V show that both detection schemes
yield perfect detection - achieve probability of detection of 100% with
probability of false alarm of 0% - when the ratio of the number of
compressive measurements to the signal length is less than 0.92, which
is normally a reasonable choice for compressive sensing. Section VI
concludes our work.

II. SYSTEM MODEL

In order to reap the benefits of compressive sensing, a signal should
be sparse in some domain. Theory states that if enough compressive
measurements of the sparse signal are taken, the signal can be perfectly
reconstructed [4]. In reality, however, virtually no signal is truly sparse.
Instead, compressive sensing is applied to signals that can be well
approximated as sparse. In this paper, we model these signals as either
(1) a sparse signal in the presence of noise or (2) a signal that is not
truly spares but is ‘nearly sparse’.

There are many cases where the signals are modeled as sparse
signals corrupted with noise. For example, representations on the time-
frequency shift operator bases of radar signals are sparse [11]. Both [10]
and [12] modeled radar signals as sparse signals corrupted with noise.
For wireless sensing networks, the occurrence of events generated by
sources can be modeled as sparse signals that thermal noise is added to
when taking measurements in compressive sensing [14]. Additionally,
cognitive radio signals can be modeled as sparse signals in the presence
of noise [13].

In addition to sparse signals in noise, compressive sensing is often
applied to a class of nearly sparse signals known as compressible
signals [16]. Rather than consisting of a small number of impulses, the
coefficients of these nearly sparse signals decay rapidly when ordered
in descending order. A common example of a signal of this type is the
set of discrete wavelet coefficients corresponding to a photograph of
a natural scene. These have been shown to exhibit a 1/n decay [17].
Other signals, such as certain classes of oscillatory signals, also have
rapidly decaying Gabor coefficients [18].

In following subsections, we describe the sparse signal with noise
model and the nearly sparse signal model in detail.

II-A. Sparse Signals with Noise Model
Uniformly sampling a continuous-time sparse signal f(t), 0 ≤ t ≤ T

yields a discrete signal S which we write in vector form. This signal
S = [s1, s2, . . . , sN ]T , which we refer to as the true signal, is an
N by 1 vector where N is determined by Nyquist-Shannon sampling
theorem. Let K (� N ) denote the number of non-zero components in
S.
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Under many circumstances, the signal is corrupted by noise during
sensing. When this occurs, we write the signal as

xnq
i = si + nnq

i , i = 1, 2, . . . , N, (1)

where the superscript ‘nq’ denotes that the acquisition method is
uniform sampling at the Nyquist rate and nnq

i , i = 1, 2, . . . , N is
zero mean i.i.d. additive measurement noise, drawn from a certain
distribution F , which is unknown. Thus the observed sparse signal
with noise can be presented in matrix notation as

X
nq = S+ N

nq . (2)

When compressive sensing is used to acquire the signal S, however,
each measurement is obtained by

yi = φT
i S+ ncs

i , i = 1, 2, . . . ,M, (3)

where φi is a column vector from a sensing matrix [4] and ncs
i , i =

1, 2, . . . ,M is i.i.d. additive measurement noise drawn from the same
distribution F as the noise which occurs in traditional sampling. Here,
the superscript ‘cs’ denotes that the acquisition method is compressive
sensing. M is the total number of compressive measurements. If the
signal is sensed in a noiseless setting, it can be perfectly reconstructed
as long as M satisfies M = O(K logN). If it is corrupted by zero
mean Gaussian noise, however, this constraint on M also guarantees
reconstruction error within order of (M/ logN)−1.

The observed signal Xcs is reconstructed by solving the l1 mini-
mization problem

min |Xcs|l1 s.t. |φT
i X

cs − yi| ≤ ε, i = 1, 2, . . . ,M, (4)

where ε is determined by satisfying |ncs
i | ≤ ε.

II-B. Nearly Sparse Signals Model
In this model, let s(1) ≥ s(2) ≥ . . . ≥ s(N) denote the reordered

components of S = [s1, s2, . . . , sN ]T . Recall that N is the length of the
discrete signal acquired by Nyquist sampling. We say signal S obeys
a power law or 1/n decay if it belongs to the weak lp ball of radius
R for some 0 < p < ∞ [16]. That is, for each 1 ≤ n ≤ N , the signal
obeys

|s(n)| ≤ R · n−1/p. (5)

We assume that the values of the signal are drawn from a certain
distribution G, which is known. Typically, G may be the Laplacian
or Gaussian distribution. If the signal is traditionally sensed, then
Xnq ∈ GN . If it has been compressively sensed, each compressive
measurement is

yi = φT
i X

nq , i = 1, 2, . . . ,M. (6)

where M is the number of measurements. The signal is reconstructed
by solving the minimization problem

min |Xcs|l1 s.t. φT
i X

cs = yi, i = 1, 2, . . . ,M, (7)

where Xcs is the compressively sensed and reconstructed signal. The
number of measurements directly determines the accuracy of signal
reconstruction.

III. SPARSE SIGNALS WITH NOISE DETECTION SCHEME
In this section, the sparse signal with noise model is studied. We

begin by discussing the fingerprints left in a signal by compressive
sensing. Then we propose the detection scheme accordingly.

III-A. Fingerprint Analysis
The key point of the reconstruction algorithm is to find the sparsest

result that yields the same measurements when sensed. This tends to
maintain the most significant coefficients. Thus, for a sparse signals
in noise, the few non-noise coefficients are expected to be well
preserved, while the noise coefficients are mostly thrown away during
reconstruction. Because of this, there is little difference between a
traditionally sensed and compressively signal in the parts of the signal
corresponding to the true signal. Differences between the signals do
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Fig. 1. Histograms of the noise extracted from the observed sparse
signals with noise, acquired by traditional sensing(left), and by com-
pressive sensing (right).

occur, however in the non-significant parts of the signal corresponding
to noise.

Fig. 1 shows the noise histograms of a signal that has been tradition-
ally sensed and compressively sensed. In this example, the signal has
been corrupted by additive Gaussian noise with zero mean. We note that
the noise values in the compressively sensed signal are smaller than
those in traditionally sensed signals. This suggests that compressive
sensing has a ‘de-noising’ effect. Despite this, compressively sensed
signals can still be confused with traditionally sensed signals obtained
in the presence of low power noise. Given the assumption that we do
not know the power of the additive noise, we cannot simply differentiate
between the two sensing methods by measuring a signal’s noise power.
Instead, we exploit the fact that for most typically encountered noise
distribution models, the probability that a given noise value is zero is
typically zero, while the noise of compressively sensed signal has much
more zero components. Fig. 1 shows an example of such difference.

III-B. Forensic Detection Scheme
Based on the fingerprint we presented in previous subsection, where

compressive sensing gathers most of the non-significant coefficients to
zero, we first give the intuition of our detection scheme.

Let N be a random variable representing a component in the noise
part N of the observed signal X. Denote w1 and w2 as the set of
signals that have been traditionally sensed and compressively sensed,
respectively. Our problem can be formulated as determining which
class (w1 or w2) a signal X belongs to. Based on our observation
that compressive sensing sets many of the noise values to zero, we
assume

P[N = 0|X ∈ w1] � P[N = 0|X ∈ w2], (8)

and we can take advantage of this disparity to design our detection
scheme.

Given a sequence of observed sparse and noisy signal X, our
detection scheme is as follows:

1) Exact the noise part N from the observed signal X. We assume
the noise and true signal part can be well separated.

2) Obtain the histogram h(k) of the noise N. We gather the signal
values into 100 bins in our simulation.

3) Calculate the zero coefficient ratio P0 by normalizing h(k):

h(norm)(k) =
h(k)∑
k h(k)

(9)

and extracting the magnitude of the bin which contains the zero
value.

4) Classify the signal according to the decision rule:

If P0 < τ1, we decide X ∈ w1

Otherwise, we decide X ∈ w2,

where τ1 is some small positive constant.

IV. NEARLY SPARSE SIGNALS DETECTION SCHEME
In this section, we first discuss the fingerprint of compressive sensing

on nearly sparse signals. Then our detection scheme is proposed
accordingly.
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Fig. 2. Histograms of the nearly sparse signals acquired by traditional
sensing (left), and by compressive sensing (right). Together with the
estimated Laplacian distributions.

IV-A. Fingerprint Analysis
Since the reconstruction of compressive sensing tends to preserve

coefficients with large values and sets small values to zero in order to
obtain a sparse result, compressively sensed signals are likely to have
many more zero valued coefficients than traditionally sensed signals.
Fig. 2 shows an example of a nearly sparse signal whose coefficients are
distributed according to the Laplace distribution. From the right figure,
we can see that the signal that been compressively sensed deviates
from the original model in the sense of its histogram. Specifically, this
signal has much more kurtosis compared with the original model G. If
a model of the signal distribution is known, this fact makes it possible
to distinguish a compressively sensed signal form a uniformly sampled
one by measuring the distance between the signal’s actual distribution
and its model distribution.

Thus, in order to distinguish compressively sensed signals from
traditionally sensed ones, we measure the distance between the ob-
served the histogram of the signal and the known model distribution.
Since compressive sensing sets many non-significant components to
zero, we propose a modified KL-divergence in our detection scheme
to emphasize this difference at zero. Specifically, we weight the
distribution difference at zero the most and decrease the weight rapidly
as the absolute value increasing. Then those signals, whose histograms
differ the estimated distributions most at zero and the differences
become smaller when the absolute value increases, will yield the
highest modified KL-divergence among all signals having histograms
deviate from the known distribution model G.

IV-B. Forensic Detection Scheme
We first give the expression of the discrete form fG(k), k ∈ K of

a given distribution function G(x), x ∈ RG, where K is a uniform
separation of RG, and each element in K is the center of a certain
section. Let d denote the length of each separated section. Then

fG(k) = G(k + d/2)−G(k − d/2), k ∈ K. (10)

And our modified KL-divergence is defined in discrete form as fol-
lows: Given distribution function P (x) and Q(x), let fP (k), k ∈ K and
fQ(k), k ∈ K denote the discrete forms of P (x) and Q(x) respectively.
Note that the separations K are the same for both distributions. We
choose the weight distribution function as

W (x) =
1

2
e−|x| (11)

to emphasize the importance of the difference at zero point and reduce
the effect of large coefficient disparities. Let fW (k), k ∈ K denote its
discrete form, which is

fW (k) =

{
1− e−

d
2 cosh(k) when k + d

2
> 0 & k − d

2
< 0

e−|k| sinh( d
2
) otherwise.

(12)
Then the modified KL-divergence can be written as

DmKL(P ||Q) =
∑
k∈K

fW (k) ·
∣∣∣∣ ln fP (k)

fQ(k)

∣∣∣∣. (13)

We take the absolute value of the logarithmic term to maintain the
symmetry of the divergence between P (x) and Q(x).

Given a sequence of observed nearly sparse signal X, our detection
scheme is as follows:

1) Use maximum likelihood estimation to estimate the parameters
of the known distribution model G based on the statistics of the
signal, and obtain the estimated distribution function Q(x).

2) Obtain and normalize the histogram of the signal using equation
(9) to get fP (k), k ∈ K. Record the locations of the bins in vector
form K. d is also known by calculating the distance between two
adjacent bins.

3) Calculate the discrete forms of Q(x) and W (x) using equation
(10) and (12) respectively. Further normalize these two using
equation (9) to finally get fQ(k), k ∈ K and fW (k), k ∈ K.

4) Calculate the modified KL-divergence described in (13) where
the summation is taken over k ∈ K.

5) We also use w1 and w2 to denote whether this signal has been
traditionally sensed or compressively sensed respectively, the
decision rule is

If DmKLD(P ||Q) < τ2, we decide X ∈ w1

Otherwise, we decide X ∈ w2,

where τ2 is some positive constant determined according to the
signal model G we assumed.

V. SIMULATIONS AND RESULTS
To test the effectiveness of our detection scheme on signals that can

be modeled as sparse signals with noise, we first simulate a sparse
signal with length N = 1000 and K = 80 non-zero coefficients
drawn from N (10, 1). We use Basis Pursuit De-Noising [19] as our
reconstruction algorithm.

In our first set of simulations, we studied the detection scheme
performance under different M/N , which is the ratio between number
of measurements in compressive sensing M and the total length of the
signal N . Additive noise values are drawn from N (0, 3). We tested
variety of M/N , and for each value, we repeat the simulation 200
times to obtain the Receiver Operating Characteristic (ROC) curve.
Results show that our detection scheme yields perfect detection, i.e.,
has probability of detection of 100% with probability of false alarm of
0%, when M/N < 0.94.

The left figure in Fig. 3 plots some of the ROC curves with extreme
cases of M/N from our first set of simulations to show the trend of
the change. Specifically, it shows that the performance of our detection
scheme is better with lower M/N . This is because as M increases,
the reconstruction will yield sparser result, as it is in equation (4).
Thus, the lower M/N is, the sparser of the reconstructed signal.
Then we will have higher zero coefficient ratio in noise part of the
compressively sensed signal, which increases the difference between
these two schemes in terms of zero coefficient ratio in noise, and our
detection scheme gets better.

Then we further exploit the effect of the noise model and its power
on our detection scheme, the right and the center figures in Fig. 3
respectively. Since we have shown in the above paragraph that our
detection scheme gives perfect detection for commonly used M/N ’s.
In order to show the trend of the ROC curves changes with different
conditions, we use rather extreme cases on M/N for the following two
simulations. First, we still use zero-mean Gaussian as the noise model
but with different power, which is just its variance in this case. M/N =
0.99, and each ROC curve is obtained from 200 repeated simulations.
The center figure in Fig. 3 shows that our detection scheme performs
better with higher noise power. This is because the higher the noise
power is, the lower the zero coefficient ratio of the traditionally sensed
signal is, which enlarge the difference between these two schemes in
terms of zero coefficient ratio, and our detection scheme gets better.

For the test on different noise model, we also take an uncommon
M/N = 0.94 just to show the change of detection performance with
different noise models. We fix the noise power to be 3, and simulate
five noise models as in the right figure of Fig. 3. Again, each ROC
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Fig. 3. ROC curves of our detection scheme for sparse signals with noise model where different M/N (left), different noise powers (center) and
different noise models (right) are used

curve is acquired from 200 repeated simulations. This result shows
that Uniform and Rayleigh noise models yield comparable detection
performance with Gaussian model, while we encounter some difficulty
with Laplacian and Exponential models. This is because Laplacian and
Exponential distributions have more kurtosis than the other three do,
i.e., they have higher probability density values at zero point when
powers are the same, thus the noise drawn from these model will
yield higher zero coefficient ratio in traditionally sensed signals, and
then make them closer to compressively sensed signals in terms of
zero coefficient ratio, and consequently more difficult to distinguish.
In addition, we have also tested different M/N ’s for Laplacian and
Exponential models, and find out that our detection scheme only fails
to achieve perfect detection when M/N > 0.9 and M/N > 0.89 for
Laplacian and Exponential models respectively.

In order to test the effectiveness of our detection scheme for nearly
sparse signals model, we simulate the nearly sparse signal according
to a Laplace distribution, i.e., G is Laplacian. We test our detection
scheme’s performance for a variety of M/N , and use the results to
generate a series of ROC curves. We use the Laplace distribution as the
model of the nearly sparse signal because it is commonly used to model
the distribution of the discrete wavelet transform coefficients of natural
images [20]. We take the variance of the distribution as 2 ∗ 104 and
set the signal length as N = 5000. Different number of measurement
M is used and ROC curve is plotted for each M by repeating the
simulation 200 times. In all cases where M/N < 0.92, our compressive
sensing detection technique achieved perfect detection. Additionally,
we observed the performance of our detection technique gets better
with less measurements. This is because the reconstruction error of
compressive sensing increases with smaller M [16]. Thus, the less
the measurements, the larger the difference between the reconstructed
signal of compressive sensing and the original signal, which is the
same as the traditionally sensed signal. And then makes it easier to
distinguish these two by observing the divergence.

VI. CONCLUSIONS
In this paper we studied the acquisition forensics of compressively

sensed signals. We generalized the compressive sensing applicable
signals into two categories: sparse signals with noise and nearly sparse
signals. For the first model, we used the zero coefficient ratio of the
noise to distinguish compressively sensed signals from traditionally
sensed signals. Simulations show that our detection scheme yields
perfect detection when M/N < 0.94. And the performance gets better
with less measurements in compressive sensing and lower ratio of
zero coefficients in noise model. For the nearly sparse signals model,
we proposed a modified KL-divergence as a detection criterion, and
simulation shows that this modified one yields perfect detection when
M/N < 0.92.
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