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Two-Dimensional DCT Lattice
Structures with Application
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Abstract—The two-dimensional discrete cosine transform 2-D
DCT) has been widely recognized as the most effective technique
in image data compression, especially for high-speed video pro-
cessing applications, such as high-definition television (HDTYV).
In this paper, we propose a new fully pipelined architecture to
compute the 2-D DCT from a frame-recursive point of view.
Based on this approach, two real-time parallel lattice structures
for successive frame and block 2-D DCT are developed. These
structures are fully-pipelined with throughput rate N clock
cycles for an N X N successive input data frame. These are the
fastest pipelined structures known so far. Moreover, the result-
ing 2-D DCT architectures are modular, regular, and locally
connected and require only two 1-D DCT blocks that are ex-
tended directly from the 1-D DCT structure without transposi-
tion. It is therefore very suitable for VLSI implementation for
high-speed HDTV systems. We also propose a parallel 2-D DCT
architecture and a new scanning pattern for HDTV systems to
achieve higher performance. The VLSI implementation of the
2-D DCT using distributed arithmetic to increase computational
efficiency and reduce round-off error is also discussed.

1. INTRODUCTION

N recent years, a considerable amount of research has

been focused on image data compression, which plays a
significant role in image /signal processing and transmission,
especially for the next generation television—high-definition
television (HDTV). Image data compression can be classified
into three categories: the predictive coding, transform cod-
ing, and hybrid coding [8]. In high-speed image processing,
transform coding has gained the most attention due to a better
compressional capability to achieve bit-rate reduction. The
Karhunen-Loeve transform (KLT), which minimizes the
mean square error of the system, is the optimal transform
among various transform codings but is rarely employed
because of its computational complexity. A suboptimal trans-
form, the discrete cosine transform (DCT), which possesses
superior energy compaction property and near optimal per-
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formance with much simpler computations, is the most popu-
lar transform coding in image processing.

It is well known that block coding based on the two
dimensional (2-D) DCT produces highly compact 2-D trans-
formed coefficients on the spatial domain [3]. By applying
appropriate bit allocations and entropy coding schemes, i.e.,
variable length coding and run length coding [28], [34], the
bit rate of the HDTV systems can be greatly reduced [23],
[28]. Because of the hardware limitations in practical applica-
tions, only small transform block size (typically 8 x 8 or
16 x 16) is used.

Many 2-D DCT algorithms have been proposed to reduce
the computational complexity and to increase the operational
speed. These algorithms can be divided into two groups, the
row-column method and the direct 2-D method. The
row-column method computes the 2-D DCT by applying the
one-dimensional (1-D) DCT on the rows (or columns) of the
input data frames, storing the transformed results in an
intermediate matrix, transposing the matrix, and performing
the 1-D DCT again on the columns (or rows) of the trans-
posed matrix. The 2-D DCT, then, is decomposed into two
1-D DCT’s. Since there exist many 1-D DCT algorithms,
there are also many realizations for the row-column meth-
ods. The performance of a specific row-column method
depends on the realization of the 1-D DCT algorithm. The
classification of the 1-D DCT algorithms and their compar-
isons are given in [6]. The systolic array approaches, which
are assumed to be fully pipelined, also employ the row-col-
umn method in the 2-D DCT realization [5], [7]. Therefore,
the fully pipelined operation is impaired since the second
DCT cannot start until the transposition of the first transform
coefficients finishes.

The direct 2-D method, in contrast to the row-column
decomposition method, is a complete 2-D approach. Duhamel
and Guillemot [15] proposed two direct 2-D methods, the
indirect and direct polynomial transforms (PT) for the 2-D
DCT. Vetterli [14] used the indirect PT approach for 2-D
DCT to map the N X N DCT into a real N X N DFT
followed by a number of rotations, and the real N X N DFT
can be realized by using PT. The direct PT for the 2-D DCT
is shown to be more effective than the indirect approach [9],
but the procedure for a general implementation is compli-
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cated. It has also been shown [14] that these kinds of direct
2-D methods are more efficient than the row-column meth-
ods. However, due to their simplicity in hardware realiza-
tion, row-column decomposition methods are still widely
adopted in implementing the 2-D DCT chips [23], [36].

All the approaches mentioned above do have a common
requirement: the availability of all the data in the processing
2-D block. This may not be true for the real-time data
transmission systems such as HDTV systems. To eliminate
the waiting time for the data to arrive, a time-recursive
processing concept can be exploited, i.e., the result is adap-
tively updated when a new datum arrives. Once all the data
arrive, the result is completely available. One of the most
important issues here is to design a real-time VLSI system
that is compatible with the data transmission speed. In this
paper, we show that frame-recursive architecture is a feasible
solution. Liu and Chiu [6] proposed new unified parallel
lattice structures for time-recursive 1-D orthogonal sinusoidal
transforms. These transforms are decoupled into N indepen-
dent lattice modules, hence, there are no global communica-
tions in the structure. Moreover, every lattice module is
regular and modular and has the same architecture. The
number of multipliers of the lattice structure for the best case
in [6] is 4 N. Therefore, it is very suitable for VLSI imple-
mentation.

In this paper, we propose a new architecture for the 2-D
DCT by employing the frame-recursive concept on the suc-
cessive input frames. It is a direct 2-D method and the
transposition in the row-column method is eliminated. Be-
cause the system requires only two 1-D lattice DCT module
arrays, the hardware complexity of this system equals that of
the row-column method for series rows (or columns) input
frame. All the components needed in the architecture are
independent lattice modules and shift registers. The total
number of multipliers required for an N X N 2-D DCT is
8 N. There is no limitations on the transform size N and the
structure can be easily extended to any number N, including
the prime numbers. This is a rather promising architectures
either from speed or hardware point of view. Since the
system is modular, regular, and fully pipelined, it is very
suitable for high-speed video signal transmission. We show
that by employing distributed arithmetic technique in hard-
ware implementation, the system performance is further im-
proved. For the HDTV applications, very high operating
speed is achieved by using parallel processings and appropri-
ate scanning arrangements.

We organize the rest of the paper as follows. In Section II,
the algorithm to achieve the 2-D DCT using the frame-recur-
sive manner is proposed. It is shown that we can dually
generate a 2-D discrete sine-cosine transform (DSCT) simul-
taneously. The architectures for calculating moving frame
2-D DCT and block 2-D DCT are discussed in Section III.
Comparisons of different 2-D DCT algorithms are given in
Section IV. In Section V, the VLSI implementation of the
block 2-D DCT by employing the distributed arithmetic is
discussed. In Section VI we consider the application of our
2-D DCT block architecture to the high-speed HDTV sys-
tems. Finally, the conclusion is given in Section VII.

II. DuaL GENERATION OF 2-D DCT anp DSCT

In this section, we describe a new architecture for 2-D
DCT that requires only two 1-D DCT arrays. Focusing
directly on the 2-D transformed signal and applying the
frame recursive approach, we can derive not only the frame
recursive relation of two successive frames of the 2-D DCT
but also the dual generation properties between the 2-D DCT
and 2-D discrete sine-cosine transform (DSCT). Here the
DSCT serves as an auxiliary transform that supports the
time-recursive computations of the 2-D DCT.

A. Frame-Recursive 2-D Discrete Cosine Transform

The N X N 2-D DCT { Xk, t): k,1=0,1,...,N
— 1.} of an N x N 2-D data sequence { x(m, n): m = t,t

+1,...,t+ N—1;n=0,1,..., N — 1.} is defined as
4 t+n—1 N-1

X (k,1,t) = —C(k)C(I) S x(m,n)
N m=t n=0

* COS

w[2(m—t) + l]k] cos [ *(2n+ 1)1] W

2N 2N

where

1
— ifk=0
cky={vz '
1

otherwise.

Here the time index ¢ in X (k, I, t) denotes that the trans-
form starting from the 7th row of the 2-D data sequence
{x(m,n): m=0,1,2,...; n=0,1,...,N— 1.} as
shown in Fig. 1. In the following, we call X (k, [, t) the
2-D DCT of the tth frame of the 2-D data sequence x(m, n).
To derive the time-recursive relations between the successive
data frames, let us start by considering the 2-D DCT of the
tth frame data sequence:

X.(k,1,1) = %C(k)cu)“;nﬁ:::1 gx(m,n)

* COs

,r<z(m—t>+1)k]cos["(2”“”]. @)

2N 2N

Instead of focusing on X.(k, /, t) and utilizing various tech-
niques to reduce the computational complexity, we will con-
sider the 2-D DCT sequence of the (¢ + 1)th frame, which is

t+N N-1

> Y x(m,n)

m=t+1 n=0

4
X (k.11 +1) = —C(k)C(1)

3)

o w[2(m—-t-1) + I]k]cos[w(Zn + 1)1 .

2N 2N

By using trigonometric function expansions on cos { #[2(m
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Fig. 1. The 2-D successive data frame.

—t— 1) + 11k /2N}, (3) can be rewritten as

Xk, 1, t+l)
t+N N-1

= Cc) X X x(m,n)

m=t+1 n=0

'cos[wlz(m-t +1]k]cos(1r—;)

- cos [—1(2: ;211;

+—c (k)c(1) 'iN i x(m, n)
.Sin[w[z m;}:,) H]k]sin(lle)
. cos[w(2;; 1)1]

e wk 7 s wk
= X, COos -—]\7)+ scsm(w)

where

_ 4 t+N N-1

X, = X};C(k)C(I)mg+1 ngox(m, n)
[w[z m—t) +1]k] [w(2n+1)1]

and

%= 500 Y % x(m.n)

m=t+1 n=0

,[r[z —t)+l]k] [ 2n+1)l].

(6)
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We can view the term sin {x[2(m — 1) + 11k /2N}
cos[w(2n + 1)!/2N1] in (6) as a new transform kernel, and
define an N x N 2-D discrete sine-cosine transform (DSCT)
sequence { X (k,.,0): k=1,2,...,N; I=0,1,...,N
— 1} of the 2-D data sequence {x(m,n): m=1,1t+
N+t-1,n=01,..., N-1} as

N+t—1 N-1

X, (k, 1, 1) = —A%C(k)C(l) mZﬂ on(m, n)

w[2(m —t) + l]k] cos[-:r(Zn + 1)1]'
2N

2N

™

Here we extend the definition of C(k) to C(N) and define
C(N) = 1/VZ. Similarly, we are interested in the 2-D
DSCT of the (¢ + 1)’s frame. According to the definition, it
is
X“(k,l t+1)

t+N

N-
c(k)c(n) Z
m=t+1 n=0

~sin[”[2 m—t—1) l]k] [ (2n+1)I

2N

t+N N-1

CRC() S X x(m,n)

m=t+1 n=0
[x(2(m w(2n+ 1)/ 1rk)
sin 0S N COS( N

—t) + 1)k
2N

t+N N-1

- eWe) XX xm,n)

[w(z(m - t';i::l)kn];s[ m(2n+ I)I]Sin(Lk)

" cos 2N 2N N

Tk — Tk
= X,, cos ) —Xcsin(—) (8)

N N
where the terms X, and fsc used in (4) to generate
X(k,Il,t+ 1) appear again. This suggests that the 2-D
DCT and 2-D DSCT can be dually generated from each
other.

B. Lattice Structure Representations for Frame-Recursive
2-D DCT

We show in this section that 2-D DCT can be generated by
using two lattice arrays. From (4) and (8), it is noted that the
new 2-D DCT and DSCT transforms can be obtained from
the intermediate values X and X in a lattice form as
shown in Fig. 2. A similar relation also exists in the dual
generations of the 1-D DCT and 1-D DST [6]. The interme-
diate data X, and X, differ from the original signal

Xk, 1,0 and X, (k, l t) only in the fth row and the
(¢ + N)th row of the input data frames. So the intermediate
data X, and X, can be obtained from X,(k,!/, ¢) and
X, (k, 1, t) by removing the tth row of the transformed data
and updating the (¢ + N)th row of the transformed data.
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Fig. 2. The lattice module of lattice array II.
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These two equations can be further simplified as

X, = X,(k.1,1) +éc(k,1,t)%c(k)cos(%) (11)
and
X, =X, (k,1,t) +6.(k,1 t)£C(k)sin(7r—k) (12)
se = Xl ks 1, Ak, L) = N
where

2 N-1 i
sk, 1 1) = 5C() X [(=1)

©(2n + 1)/

-x(t + N, n) — x(t,n)] cos[ N

|- a9

By substituting X, and X, in (11) and (12) into the updated
transformed signal X.(k,/,t+ 1) and X (k,/,t+ 1) in
(4) and (8), the relation between the updated transform signal
and previous transformed signal for £k = 1,2,..., N -1,
are represented in a lattice form as shown in the upper part of
Fig. 2. Since the multiplications can be reduced to addition
and subtraction for k = 0 in the 2-D DCT and k = N in the
DSCT, respectively, these two cases can be simplified as
shown in the lower part of Fig. 2. What is worth noticing is
that &.(k, /, t) in (13) is the 1-D DCT of the data vector,
which is the difference between the parity of the (¢ + N)th
row and tth row of the 2-D input sequence. As described in
[6], 8.(k, I, t) can be generated in a lattice form as shown in
Fig. 3. We call this as lattice array I (LAI) and that in Fig. 2
as lattice array II (LAII). Comparing these two structures, we
observe that these two lattice modules have the same architec-
ture except that LAI feedbacks the outputs directly through a
delay stage to add with the inputs.

The 2-D DCT and DSCT are produced by applying input
data frames to LAI’s, which generate the 8.(k, [, t). After
obtaining the 8.(k, /, t), the updated transformed signal can
be obtained recursively by feeding 8.(k, /, ¢) into the lattice
array II. We observe that the 2-D DCT can be obtained by
using two 1-D DCT lattice arrays. It will be shown in the
next section that the 2-D DCT obtained by this time-recursive
approach is fully pipelined and no transposition is required.
This is because that by using the frame-recursive approach,
we start from the transformed 2-D DCT directly and avoid
calculating the 2-D DCT indirectly from the 1-D DCT. Our
architectures are efficient since it is a direct 2-D approach.
This method can also obtain the 2-D DCT and 2-D DSCT
simultaneously. In contrast to processing the input 2-D data
sequence by rows, the input data can be updated by columns.
In this case, 2-D DCT and 2-D discrete cosine-sine transform
(DCST) are dually generated, and all other results are similar
and can be easily derived.

ITII. ARCHITECTURES OF FRAME-RECURSIVE LATTICE
2D-DCT anp 2-D DSCT

The fully pipelined parallel lattice structures for successive
frame and block 2-D DCT and DSCT are described in this
section. As we know, most of the 2-D DCT architectures are
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Fig. 3. The lattice module of lattice array I.

implemented by the row-column decomposition method
[18]-[20]. This is due to the fact that the architectures of
most fast direct 2-D algorithms are usually irregular and
globally connected, therefore it is not practical for VLSI
implementation. Another reason is that it is beneficial to
generate a 2-D DCT system from existing 1-D DCT circuit
rather than to build a new multiplier-saved 2-D DCT archi-
tecture that may not be compatible with the 1-D DCT system.
By using the frame-recursive method, the 2-D DCT can be
implemented by 1-D DCT lattice arrays that are regular,
modular, and suitable for VLSI implementation. Thus the
difficulties mentioned above are avoided. We will discuss two
architectures, the moving frame 2-D DCT architecture and
the block 2-D DCT architecture. The moving frame 2-D
DCT architecture is used to calculate the 2-D DCT of
sequential frames. For example, the 2-D DCT’s of the Oth
frame, first frame, second frame, and so on. The block 2-D
DCT architecture computes the 2-D DCT of an N X N input
data matrix for every N frames, i.e., the Oth frame, the Nth
frame, the 2 Nth frame and so on.

A. The Moving Frame 2-D DCT Architecture

The moving frame 2-D DCT architectures generate the
2-D DCT of successive input frames. From the frame-recur-
sive concept derived in Section II, the 2-D DCT recursive
lattice structures can be constructed according to (4), (8), and
(13). Although the intermediate values 8.(k, /, £) in (13) are
functions of both k and /, it is noted that the effect due to the
index k is equivalent to sign changes in the input data
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sequences. Using this property, we will show two ap-
proaches, the prematrix method and the postmatrix method,
to implement the moving frame 2-D DCT architectures. The
prematrix method will be discussed first.

The Prematrix Method: In this method, the intermediate
values of 8.(k,, t) are realized directly from (13). As we
can see, the index k in (13) affects only the sign of the new
input data sequence. Thus, there are only two possible input
sequence combinations: {x(¢ + N, n) — x(¢, n)} and
{-x(t + N, n) — x(¢, n)}. The resulting prematrix mov-
ing-frame 2-D DCT architecture is shown in Fig. 4, which
includes a circular shift matrix I, two adders, two LAI’s,
one LAII, and two circular shift arrays and shift register
arrays. Except for the LAI, LAIl, and adders, all other
components are shift registers. We will describe the functions
of every blocks first, then demonstrate how the system
works.

The circular matrix I (CSMI is an (N + 1) X N shift
registers connected as shown in the upper part of Fig. 5.
When a new input datum x(m, n) arrives every clock cycle,
all the data are shifted in the way as indicated in Fig. 5. Both
of the first elements in the ¢th row and (¢ + N)th row are
sent to the adders for summation and subtraction as shown in
Fig. 4. The prematrix architecture contains two LAI’s, which
includes N lattice modules as shown in Fig. 3. The upper
and lower LAI’s execute the 1-D DCT on the rows of the
2-D input data for the even and odd transformed components
k, respectively. Because the length of the input vector is N
and only the discrete cosine transformed data are needed, the
1-D DCT transformed data .(k, /, t) generated by the LAI’s
are sent out every N clock cycles [6]. Due to the time-recur-
sive approach used, the initial values X.(/, £) and X (/, ¢) in
the LAI’s (see Fig. 3) are reset to zeros every N clock
cycles.

The circular shift array in the middle of the system is an
N x 1 shift register array as shown in Fig. 6. This special
shift register array loads an N X 1 data vector from the LAI
every N clock cycles, then it will shift the data circularly and
send the data to the LAII every clock cycle. There are three
inputs in LA, é.(k,/,t), Xk, 1), and X(k,I 1),
where the .(k, I, t) comes from the circular shift array and
X(k,1,t) and X(k,l, t) from the shift register arrays
located behind the LAIl. We divide the LAIl into two
groups: the LAII,,,, and LAII ,,. Each includes N/2 lattice
modules as shown in Fig. 2. LAII,  contains only those
lattice modules for even transformed components k, whereas
LAII_,, contains only the odd lattice modules. It should be
noticed that this system contains two LAI and only one LAIL.
The shift register array contains 2N X N registers. Their
operations are shown in Fig. 7.

The following illustrates how this parallel lattice structure
works to obtain the 2-D DCT and DSCT of 2-D input
successive frames. All the initial values of the circular shift
matrix I (CSMI), circular shift array, and shift register array
are set to zeros. The input data sequence x(m, n) sequen-
tially shifts row by row into the (N + 1) X N CSMI. First
we calculate the difference between the fth row and the
(¢ + N)th row data vector of the CSMI. The two resulting
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combinations of the input sequences, x(f + N, n) — x(¢, n)
and —x(t+ N,n) —x(t,n) for n=0,1,2,...,N—-1,
are used as the input sequences for the lattice array I's, which
consist of 2N lattice modules to calculate the 1 — D DCT
for {x(¢ + N, n) — x(¢t, n)} and {-x(¢t + N, n) —
x(2, n)}. The upper LAI is for the even transformed compo-
nents k and the lower one for odd k. Suppose the data of the
input vectors arrive serially per clock cycle, it takes N clock
cycles to obtain the 6.k, /, t) for both of the input se-
quences. At the Nth cycle, the N transformed data 6.(k, /, )
are loaded into the circular shift arrays (CSA), which will
shift circularly and send the data out of the register into the
LAII for different k& components every clock cycle. In LAII,
X(k,I,t+ 1)and X, (k,!, t + 1) are evaluated according
to (4) and (8). Because LAl and LAII ,, have only N/2
modules, every 8.(k, I, t) is floating for N/2 clock cycles. It
is noted that a specific 2-D transform data X (k,/, ¢ + 1)
and X,.(k, [, t + 1) are updated recursively every N clock
cycles from X (k, !, t) and X (k, [, t). Therefore the out-
puts of the LAII are sent into the shift register array (SRA)
where data are delayed by N clock cycles. Each SRA
contains N /2 shift registers each with length N. The data in
the rightest registers are sent back as the X.(k,/, ¢) and
X, (k, 1, t) of LAIL. Atthe N2 + 2N clock cycle, the 2-D
DCT and DSCT of the Oth frame are available. After this,
the 2-D transformed data of successive frames can be ob-
tained every N clock cycles.

We observe two interesting results in the prematrix method.
First, both LAI and LAII can be viewed as filter banks. This
is because every lattice module itself is an independent digital
filter with different frequency components £,/ = 0,1,

.,IN — 1. Moreover, all the lattice modules in this archi-
tecture have the same structure. Second, the system requires
3 1-D DCT array and is fully pipelined with throughput rate
N clock cycles. From the above discussion, transposition for
the row-column decomposition method is unnecessary in this
realization. According to the 1-D DCT architecture proposed
in [6] (Liu-Chiu2 architecture), the total multiplier required
in the 2-D DCT is 12N and the total number of adders is
15N. Due to the goal of piping out the results every N clock
cycles, it requires three 1-D DCT structures in the system.
We will show how to use only two 1-D DCT lattice arrays to
attain the results at the same throughput rate in the postmatrix
method.

The Postmatrix Method: The
8.(k, 1, t) in (13) can be rewritten as

intermediate value

5.(k, 1, 1)
2 N x(2n + 1)1
K
=(-1)"= N i bt
(-1) NC(I):L;:OX(I+ , n) cos N
x(2n + 1)1

- %C(I) :]z:(:x(t, n) cos[

2N
= (=1 Xt + N, 1) - x(1,1).

(14)

That is, we can calculate the 1-D DCT of the #th row and the
(¢ + N)th row of the input frame individually, then perform
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the summation later on. Our approach is to send the input
sequence x(m, n) row by row directly into the LAIL It takes
N clock cycles for the LAI to complete the 1-D DCT of one
row input vector, then the array sends the 1-D DCT data in
parallel to the CSMII as shown in Fig. 8. The operations of
CSMII are shown in the lower part of Fig. 5. At the output of
the CSMII, the 1-D transformed data of the (¢ + N)th row
and tth row are added together according to (14) depending
on the sign of the k components (see Fig. 8). Then the
results are sent to CSA’s, LAII, and SRA’s, whose opera-
tions remain intact as in the prematrix method. The whole
structure is demonstrated in Fig. 8. Therefore, by transform-
ing the input data first, we can implement the 2-D DCT by
using only two 1-D DCT lattice arrays and retain the same
pipeline rate. The total numbers of multipliers and adders
needed for the postmatrix method are 8 N and 10N, respec-
tively.

B. The Block 2-D DCT Architecture

In most image processing applications, the 2-D DCT are
executed block by block instead of in successive frames [27],
[29]. We will show how to apply the frame-recursive concept
to obtain the block 2-D DCT. It will be easier to understand
if we use an example to show how to obtain the Oth frame
2-D DCT in the postmatrix moving frame 2-D DCT architec-
ture. Recall that the CSMII in Fig. 8 is used to store the
transformed data X (7, /) of the previous input row vectors.
Since the Oth frame is the first input data frame, all the values
in the CSMII are set to zeros. Corresponding to (14), this
means that the second terms X/(¢, /) are zeros. When the
(N — I)th row data vector (the last row of the Oth frame)
arrive, the 2-D DCT of the Oth input data frame is obtained.
During this initial stage, the 2-D DCT of the Oth frame
obtained by the moving frame approach is equal to the block
2-D DCT of the Oth frame. Therefore, if we want to compute
the 2-D DCT of the Nth frame, then all the values in the
CSMII are resetting to zeros when the first datum in the Nth
data frame (i.e., x(N, 0)) arrives. That is, we can obtain the
block 2-D DCT by reset the values of the CSMII every N2
cycles. This means that the CSMII in Fig. 8 is redundant and
the second terms X.(¢,/) in (14) are zeros. Thus, the
intermediate value of 6.(k, /, t) can be rewritten as

d.(k,1,t) = (—l)k%C(l)NZ::lx(t +N,n)

'cos{%]. (15)

The block 2-D DCT architecture is shown in Fig. 9. Corre-
sponding to our frame-recursive algorithm, we obtain another
block of input data every N? clock cycles. Note that this is
also the total time required for all the N? data to arrive in a
transmission system.

The following is an example to calculate block 2-D DCT
for the Oth frame. When row data vectors arrive, LAI
performs the 1-D DCT on them. Every N clock cycles, after
the last datum of each row x(m, N — 1) is available, LAI
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completes the 1-D DCT for every row and sends the N 1-D
DCT transformed data to the two length-N CSA’s. The upper
CSA translates the intermediate value 6.(k, /, t) to the lattice
array I, as do the lower CSA except that the signs of the
output of the CSA are changed before being sent to the lattice
array II 4,. The operations of the lattice array II and SRA are
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the same as those in the previous methods. As we can see,
the hardware complexity of our block 2-D DCT architecture
is as simple as the row-column methods. Moreover, our
system can be operated in a fully pipelined manner.

IV. CoMPARISONS

Since most of the 2-D DCT algorithms proposed are based
on manipulating N X N block signals, we compare only the
2-D block architecture as described in Section III-B with
other algorithms. The block 2-D DCT architecture is a
fully-pipelined serial input parallel output (SIPO) system with
throughput rate every N clock cycles and in terms of hard-
ware complexity, it requires only two 1-D DCT architectures
without transpositions. It is attractive, therefore, not only for
its efficiency in term of system throughput but also for its
hardware simplicity and regularity.

In the following section, the comparisons between our 2-D
DCT block structure and those of others are based on the
number of multipliers, adders, and speed. For the sake of
clarity, we divide the algorithms into two groups: parallel
input parallel output (PIPO) and serial input parallel output
(SIPO). The fast algorithms presented by Vetterli and Nuss-
baumer [13], [14], Duhamel and Guillemot [15], and Cho
and Lee [10] belong to the former class. Vetterli’s algorithm
[14] mapped the 2-D DCT into a 2-D cosine DFT and sine
DFT through a number of rotations, and the 2-D DFT are
computed by polynomial transform (PT) methods [14]. Vet-
terli’s method can reduce the number of multipliers more
than 50% in comparison to the row—column method based on
Chen et al.’s algorithms [2] and has a comparable amount of
additions. Duhamel and Guillemot [15] present a PT-based
algorithm that uses the direct DCT approach. This direct PT
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TABLE 1
CompARISONS OF DIFFERENT 2-D DCT ALGORITHMS
Row-Column Method Duhamel [15] Cho-Lee
Based on Chen in [2] et al. [10} Ma [7] Liu-Chiu2D
No. of multipliers IN?In(N) - 6N%/2+8N N2+2N+2 N2+2N+2 4NN+ 8N
Throughput N+ 2N N 2N+ 1 N
transposition
Limitation on Power Power Power No No
transform size N of 2 of 2 of 2
Communication Global Global Global Local Local
1/0 operation PIPO PIPO PIPO SIPO . SIPO
Approach of algorithm Indirect Direct Direct Indirect Direct
2-D DCT method provides a 10% improvement in both the TABLE I
numbers of additions and multiplications compared to Vet- Comparisons oF THE NUMBER OF MULTIPLIERS
terli’s result [14], but it requires complex computations. Cho Row-Column
s : : : _ Method Based Duhamel Cho-Lee Liu-
and Lee’s algorithm is a direct 2-D method that employs the o~ S’ i) (isjeral. (0] Ma[  ChiwD
properties of trigonometric functions. The number of multi-
pliers are the same as that of Duhamel and Guillemot’s, but 12 13(5)2 s?g 5?2 lggg 1;";
the structure is more regular, and only real arithmetic is 32 7424 2560 2560 4224 256
involved. Up to now, the best results for the first PIPO 64 37376 12288 12288 16 640 512
systems in terms of the number of multipliers are (N2 + 2N
+ 2), which were obtained by Duhamel and Guillemot, as TABLE @I
well as by Cho and Lee.-But assuming that all the N 2 input COMPARISONS OF THE NUMBER OF ADDERS
data arrive at the same time is not practical in communication Row—Column
systems. The data waiting time is NZ?, which is always Method Based  Duhamel  Cho-Lee Liu-
neglected in these approaches. No. onChenin[2] [15] etal [10] Ma[7]  Chiu2D
The systolic array approaches proposed by Lee and Yasuda 8 416 484 466 432 78
[5], Ma [7], and Liu and Chiu belong to the SIPO method. ;g 1%3?2 é §3§ l%ggg éggg ;?g
Lee and Yasuda presented a 2-D systolic DCT/DST array o 61696 60578 2461 24960 638

algorithm based on an IDFT version of the Goertzel algo-
rithm via Horner’s rule in [S]. The latest systolic array
algorithm for 2-D DCT was proposed by Ma [7], where he
showed two systolic architectures of 1-D DCT arrays based
on the indirect approach proposed by Vetterli and Nuss-
baumer [13], then he exploited the 2-D DCT systolic array
by using the features of the two 1-D DCT systolic arrays.
This method requires (N + 1) 1-D DCT structures and the
total number of time steps is (N2 + 2N + 2) [7]. We call
the block 2-D DCT structure shown in Fig. 9, based on the
Liu-Chiu2 module [6], Liu-Chiu2. This needs only two 1-D
DCT, and the total time steps are N2. The comparisons
regarding their inherent characteristics are given in Table I.
In addition, the quantities comparisons in terms of the num-
ber of multipliers and adders are given in Tables II and III. In
general, the SIPO method is more workable in hardware
implementations. Our structure requires fewer multipliers
than Ma’s structure and is highly regular, systematic, and
uses only local communications. In addition, this lattice 2-D
DCT architecture can be generated from the 1-D DCT lattice
array without modifications.

V. VLSI IMPLEMENTATION UsING HIGH-SPEED
DISTRIBUTED ARITHMETIC

In this section, we discuss the VLSI architecture of our
block 2-D DCT structure shown in Fig. 9. Since this struc-
ture contains only shift registers and 2N lattice modules,
which are exactly the same except for the multipliers’ coef-
ficients, we can foresee that the VLSI implementation of this

system is labor saving. Every lattice module is a modified
normal form digital filter [21], which has the least roundoff
noise and is more insensitive to the coefficient inaccuracy.
Due to the fact that the block operation will reset all the
outputs of the LAI and LAII every N and N clock cycles,
respectively, the round-off errors will be further minimized.
In the following we focus our discussion on the 8 X 8 block
DCT with 12 b 2’s complement implementation. Suppose the
lattice module is based on the Liu-Chiu2 module with four
multipliers [6], then the total number of multipliers needed
for the 2-D DCT is 64, which requires an enormous area
under 2 or 1.2 um CMOS technology. Moreover, the system
throughput is also limited by the operational speed of multi-
pliers.

Sun et al. [19] proposed the first working 16 X 16 DCT
chip that incorporates distributed arithmetics methods. Based
on this memory-oriented structure, high-speed, high-accu-
racy, and efficient hardware implementation of the 2-D DCT
can be achieved. Here we adopt the distributed arithmetic in
our implementations. By employing this scheme, the system
will have higher accuracy because given the same word
length, the result will undergo less round-off operations than
direct implementation using multipliers. The lattice module
in Figs. 2 and 3 can be redrawn in Fig. 10. The dashed box
in Fig. 10 can be implemented by using a single ROM with
three inputs and four outputs. Under this realization, the
round-off errors due to the multiplication are minimized since
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the distributed arithmetic convert the explicit muitiplication
into the implicit multiplication. Therefore, the errors of the
systems are all due to the quantization errors under finite
precision implementations and adder operations. Under the
12 b 2’s complement realization, the rms error values are
approximately 40 dB [19], which is satisfactory for most
applications. Assuming that every input of the ROM is 2-b
long, then the lattice module can be implemented by six
ROM’s and 22 adders as shown in Fig. 10. The ROM size
for each lattice array is 18432 b. By reducing the number of
bits of every input of the ROM to one, the ROM size
becomes 4608 b, which is one-fourth of the previous case,
but the number of adders is doubled.

The other way to implement the lattice module by ROM is
shown in Fig: 11. Every dashed box is realized by a ROM
with one input and two outputs. Fig. 11 illustrates the
realization of each ROM when the number of bits of the input
signal is 4 b. Using this method, the ROM size of each lattice
array is 3456 b and the number of adders needed is 16. When
the number of bits of the input signal is reduced, the ROM
size is reduced, but the number of adders is increased. We
will implement the system based on the schematic diagram
for each lattice module as shown in Fig. 11. The adder is a
12-b carry-look-ahead full adder/subtracter that is combined
from three 4-b carry-look-ahead adders. Since the area of
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Fig. 11.

ROM is much less than that of the multipliers and the speed
is higher, circuit implementations under this approach can be
fabricated for very-high-speed video signal processing. The
design of the VLSI circuit of the 2-D DCT system is in
progress and will be reported in the future.

VI. AppLicaTiONS TO HDTV SysTEMs

In recent years, the focus of video signal processing re-
search has been concentrated on high-definition television
(HDTV), which will become future standard for the next
generation television [32]. According to CCIR Recommenda-
tion 601, the bit rate for transmitting an uncompressed digital
HDTV is about 1 Gbps. This bit rate is too high even for
broadband ISDN (BISDN) [32]. Furthermore, video signals
contain a great deal of redundancy when psychological
and visual effects are considered. To make HDTV systems
practical, bit rate reduction and data compression are in-
dispensable. In the past decades, many studies have been
conducted on differential pulse code modulation (DPCM),
subband coding, and- transform coding (especially DCT) to
achieve bit rate reduction [30], [35], [36]. DCT has ob-
tained most attention due to its diverse attractive features.
DCT approaches the statistical optimal transform, the
Karhunen-Loeve transform (KLT), which minimizes the
mean square errors, for highly correlated signals [1]. Addi-
tionally, DCT has superior energy compaction properties for
transform coding. Many HDTV systems based on DCT
coding schemes show satisfactory speed and promising per-
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formance [23], [26]-[28], {33]-[35]. A commonly used en-
coder configuration of the DCT based source coding is shown
in Fig. 12 [26], [34]. The DCT is performed on the 2-D
video signals with block size 8 x 8, which is widely used
due to its acceptable SNR and implementation complexity
[34].

Although there is no uniform standard for HDTV, the
interlaced mode with 1080 active lines per frame, 30 Hz
frame frequency, and 2:1 interlaced ratio is presently under
wide investigation due to its reasonable data rate [24]. With
an assumption coding each pel (luminance and chrominance)
with 2 b, the bit rate required for transmission of the video
signal under interlaced modes is 119.232 Mb/s which satis-
fies the requirement of the 140 Mb/s H4 hierarchy level [23]
and allows sufficient margin for error protection and auxil-
iary data. The 4:2:2 YUV signals are obtained from RGB
signal by A/D converters and coordinate rearrangements.
The intrafield 2-D DCT is used for data compression. The
transformed signal is processed by an entropy encoder, which
is usually combined with the run-length coder and variable
length encoder. The run-length coder can reduce the bit rate
by coding every sequence of zeros with a single codeword.
The variable length coder encodes the DCT coefficients with
a variable length code adapted to their probability density
function (pdf) distribution.

Most of the 2-D DCT implementations are based on the
row-column decomposition methods. Although fast algo-
rithms exist for the 1-D DCT, the second 1-D DCT cannot
start until all the first 1-D DCTs are completed. To speed up
the operations, one method is to execute the first 1-D DCT in
parallel. For the 8 X 8 case, there are 8 1-D DCT blocks to
perform the first transform simultaneously. Assuming that
each signal is 10-b long, in order to satisfy the precision,
then the total number of bits required in the input is 640 b,
which is not practical in the circuit realizations. From this
point of view, our serial input 2-D DCT system is more
practical in hardware implementations. Moreover, if the speed
of the circuit components, such as the ROM and adder, is
high enough, our 2-D DCT system can be executed as fast as
the sample clocking rate.

Although our 2-D DCT implementations are effective,
transforming a video frame of 1080 x 1920 still requires
intensive computations. Therefore, we designed a 2-D DCT
architecture suitable for the HDTV system to achieve higher
performance. The block diagram of the 2-D DCT encoder is
shown in Fig. 13, where five 2-D DCT chips are included.
Five chips were used because the ratio of pixel numbers per
line for luminance signal Y and color difference signals U
and V is 4:2:2. As the sampling frequency of HDTV is very
high, the pixels of Y are divided into four groups, in order to
carry out DCT in parallel. Additionally, the color difference
signals U and V are switched alternatively to another DCT
coder. The scanning processor shown in Fig. 13 is used to
divide the signal into four luminance components and one
color difference component. The outputs of the 2-D DCT
transformed data are sent to the entropy encoder in parallel
or through multiplexers. Since the transform block size is
8 x 8, we divided the frame into 135 X 240 blocks and 240
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channels as shown in Fig. 14. The 2-D DCT are executed on
each channel whose scanning pattern is shown in Fig. 14.
This scanning pattern reflects the fact that our system is based
on row by row scanning order and is fully pipelined. Thus,
such a scanning method would maximize the system through-
put.

VII. CONCLUSIONS

In this paper, we propose a new 2-D DCT algorithm based
on a frame-recursive approach. The resulting 2-D DCT
architectures can be obtained by using only two 1-D DCT
arrays, at the same time, the transposition procedure is
eliminated. It, therefore, does not have the drawback of the
row-column decomposition method in which a transposition
is needed between the first and the second 1-D DCT. In
addition, this algorithm generates the 2-D DCT and the 2-D
DSCT or the 2-D DCST simultaneously. There are two
methods, the prematrix method and the postmatrix method,
to realize the moving frame 2-D DCT architecture. From the
postmatrix method, the block 2-D DCT architecture is devel-
oped. These architectures are fully pipelined with throughput
rate N clock cycles for an N x N input frame. As to the
hardware complexity, the structures contain two 1-D DCT
arrays, each with N lattice modules that are modified normal
form digital filters with different multiplying coefficients. The
total number of multipliers required in the system is 8N.
Because of the regularity and efficiency of the systems, they
are very suitable for VLSI implementation for the high-speed
HDTYV systems.

Many HDTV systems based on the DCT coding shows
satisfactory speed and promising performance since the DCT
has superior energy compaction property. However, most of
the 2-D DCT portion of the HDTV systems are still imple-
mented by row-column decomposition methods. To speed
up the throughput, the first DCT operation in the row-
column method has to be performed in parallel, although it is
not practical in circuit realizations because of the hardware
complexity. In view of these facts, our serial input 2-D DCT
system is more feasible in HDTV applications. The parallel
2-D DCT architecture and the scanning pattern proposed in
Section VI can process the video data in real time and
climinate the waiting time in the DCT codings so that the
system performance can be maximized. Consequently, our
real-time parallel and fully pipelined 2D-DCT structure is
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very attractive in high-speed transmission systems where
every arrived data can be processed immediately.

(1]

2]

[3]
[4]
15]
[6]

7]
(8]
9]

[10]

[t1]
[12]

[13]

REFERENCES

N. Ahmed, T. Natarajan, and K. R. Rao, ‘‘Discrete cosine
transform,”” IEEE Trans. Comput., vol. C-23, pp. 90-93, Jan.
1974.

W. H. Chen, C. H. Smith, and S. C. Fralick, ‘‘A fast computational
algorithm for the discrete cosine transform,”” IEEE Trans. Com-
mun., vol. COM-25, pp. 1004-1009, Sept. 1977.

N. S. Jayant and P. Noll, Digital Coding of Waveform. Englewood
Cliffs, NJ: Prentice Hall, 1984.

D. E. Dudgeon and R. M. Mersereau, Multidimensional Digital
Signal Processing. Englewood Cliffs, NJ: Prentice Hall, 1984.

N. H. Lee and Y. Yasuda, ‘“New 2-D systolic array algorithm for
DCT/DST,”” Electron. Lett., vol. 25, pp. 1702-1704, 1989.

K. J. R. Liu and C.-T. Chiu, ‘‘Unified Parallel Lattice Structures for
Time-Recursive Discrete Cosine/Sine/Hartley Transforms,’’ submit-
ted to IEEE Trans. Signal Processing.

W. Ma, “2-D DCT systolic array implementation,”” Electron. Lett.,
vol. 27, no. 3, pp. 201-202, Jan. 1991.

H. G. Musmann, P. Pirsch, and H. G. Grallert, ‘‘Advances in picture
coding,” Proc. IEEE, vol. 73, pp. 523-548, April 1985.

H. J. Nussbaumer and P. Quandale, ‘‘Fast polynomial transform
computation of 2-D DCT,” in Proc. Int. Conf. Digital Signal
Processing ,Florence, Italy, 1981, pp. 276-283.

N. L. Cho and S. U. Lee, ‘‘Fast algorithm and implementation of 2-D
Discrete Cosine Transform,”’” IEEE Trans. Circuits Syst., vol. 38,
no. 3, pp. 297-305, March 1991.

A. Rosenfeld and A. C. Kak, Digital Picture Processing, 2nd
edition. New York: Academic Press, 1982.

Z. Wang, ‘‘Fast algorithms for the discrete W transform and for the
discrete Fourier transform,’’ IEEE Trans. Acoust., Speech, Signal
Processing, vol. ASSP-32, pp. 803-816, Aug. 1984.

M. Vetterli and H. Nussbaumer, ‘*Simple FFT and DCT algorithm
with reduced number of operations,”” IEEE Trans. Acoust., Speech,
Signal Processing, vol. 6, no. 4, pp. 267-278, Aug. 1984.

(14]
[15]

(16]

{17

[18]

191

[20]

[21]

[22]

[23]

[24]

[25]

126]
[27]
[28]

{29

(30

[31]

[32]
[33]

(34]

35]

[36]

M. Vetterli, ‘‘Fast 2-D discrete cosine transtorm,”” IEEE ICASSP
Proc., pp. 1538-1541, March 198S.

P. Duhamel and C. Guillemot, ‘‘Polynomial transform computation of
the 2-D DCT,”’ IEEE ICASSP Proc., pp. 1515-1518, March 1990.
G. Peceli, ‘A common structure for recursive discrete transforms,”’
IEEE Trans. Circuits Syst., vol. 33, no. 10, pp. 1035-10386, Oct.
1986.

K. Rose, A. Heiman, and 1. Dinstein, ‘‘DCT/DST alternate-trans-
form image coding,”” IEEE Trans. Commun., vol. 38, no. 1, pp.
94-101, Jan. 1990.

B. Silkstrom et al., ‘‘A high speed 2-D discrete cosine-transform,”
Integration, VLSI J., vol. 5, pp. 159-163, 1987.

M. T. Sun, T. C. Chen, and A. M. Gottlieb, ‘‘VLSI implementation
of a 16 x 16 discrete cosine transform,”” IEEE Trans. Circuits
Syst., vol. 36, no. 4, pp. 610-617, Apr. 1989.

U. Totzek, F. Matthiesen, S. Wohlleben, and T. G. Noll, **CMOS
VLSI implementation of the 2D-DCT with linear processor array,’”
IEEE ICASSP Proc., pp. 937-940, May 1990.

S. A. White, ‘“High-speed distributed-arithmetic realization of a
second-order normal-form digital filter,”” IEEE Trans. Circuits Syst.,
vol. 33, no. 10, pp. 1036-1038, Oct. 1986.

S. A. White, ‘‘Applications of distributed-arithmetic to digital signal
processing: A tutorial review,”” IEEE ASSP Mag., pp. 4-19, July
1989.

M. Barbero, S. Cucchi, and H. Bailon, ‘‘A flexible architecture for a
HDTV codec based on DCT,”’ Signal Processing of HDTV, II, L.
Chiariglione, ed. City: Elsevier, 1990, pp. 587-594.

M. Barbero, S. Cucchi, and M. Stroppiana, ‘‘Coding strategies based
on DCT for the transmission of HDTV,” Signal Processing of
HDTV, L. Chiariglione, ed. City: Elsevier, 1988, pp. 503-508.

J. A. Bellisio and S. Chu, ‘‘Television coding for broadband ISDN,””
IEEE Globecom’86, Houston, TX, vol. 2, Dec. 1-4, 1986, pp.
894-890.

W. H. Chen and W. K. Pratt, ‘‘Scene adaptive coder,”” IEEE Trans.
Commun., vol. Com-32, no. 3, pp. 225-232, March 1984.

S. Cucchi and F. Molo, ‘‘DCT-based television codec for DS3 digital
transmission,”’ SMPTE J., pp. 640-646, Sept. 1989.

S. S. Dixit and J. B. Nardone, ‘‘A variable bit rate layered DCT
video coder for packet switched (ATM) networks,”” IEEE ICASSP
Proc.. pp. 2253-2256, May 1990.

D. LeGall, H. Gaggioni, and C. T. Chen, ‘*Transmission of HDTV
signals under 140 Mbits /s using a subband decomposition and discrete
cosine transform coding,” in Proc. 2nd Int. Workshop on Signal
Processing on HDTV, Feb. 29-Mar. 2, 1988, L’Aquilla Italy.

R. K. Jurgen, ‘‘The challenges of digital HDTV,”” IEEE Spectrum,
pp. 28-30, 71-73, April 1991.

K. Kinoshita, T. Nakahashi, and Eto, ‘130 M bit/s (H4 rate) HDTV
Codec based on the DCT algorithms,”” Electron. Lett., vol. 26, no.
16, pp. 1245-1246, Aug. 1990.

R. L. Nickelson, ‘“The evolution of HDTV in the work of CCIR,”
IEEE Trans. Broadcast., vol. 35, no. 3, pp. 250-258, Sept. 1989.
W. Paik, ‘‘Digicipher-all digital, channel, compatible, HDTV broad-
cast system,”’ IEEE Trans. Broadcast., vol. 36, no. 4, pp. 245-254,
Dec. 1990.

1. Suzuki, M. Nomura, and S. Ono, ‘‘Comparative study of transform
coding for super high definition images,”” IEEE ICASSP Proc., pp.
2257-2260, May 1990.

K. H. Tzou, T. C. Chen, P. E. Fleischer, and M. L. Liou, ‘‘Compat-
ible HDTV coding for broadband ISDN,’” in Proc. Globecom 88,
Nov. 1988, pp. 743-749.

Y. Yashima, and K. Sawada, ‘100 Mbit/s HDTV transmission using
a high efficiency codec,” Signal Processing of HDTV, II, L.
Chiariglione, ed. City: Elsevier, 1990, pp. 587-5%4.

Ching-Te Chiu (5°90) received the B.S. and M.S.
degree in electrical engineering from National Tai-
wan University, Taiwan, in 1986 and 1988, respec-
tively. She is currently pursuing the Ph.D. degree
in electrical engineering at the University of Mary-
land, College Park.

Her research experience includes as a summer
research student at Electronics Research Service
Organization (ERSO), National Taiwan Institute of
Technology in 1987. Since 1989, she has been a
research assistant in electrical engineering at the

University of Maryland, College Park. Her current research interests include



CHIU AND LIU: TWO-DIMENSIONAL DCT LATTICE STRUCTURES

signal processing, VLSI architectures and algorithms, image processing, and
HDTV systems.

K. J. Ray Liu (S$’86-M’90) received the B.S.
degree in electrical engineering from National Tai-
wan University in 1983, the M.S.E. degree in
electrical engineering and computer science from
the University of Michigan, Ann Arbor in 1987,
and the Ph.D. degree in electrical engineering
from the University of California, Los Angeles, in
1990.

During 1983-1985, he served in the Signal
Corps, Taiwan, as a Communications Officer. He
then became a Teaching and Research Assistant at

37

the University of Michigan and the University of California, Los Angeles.
He is currently an Assistant Professor of the Electrical Engineering Depart-
ment and Systems Research Center, University of Maryland, College Park.
His research interest include parallel processing algorithms and architectures
for signal/image processing and communications, adaptive signal process-
ing, spectral estimation, video signal processing, fault-tolerant computing in
VLSI systems, design automation for DSP VLSI systems, and fast algo-
rithms.

Dr. Liu was awarded the President Research Partnership from the Univer-
sity of Michigan in 1987, and the University Fellowship and the Hortense
Fishbaugh Memorial Scholarship from UCLA in 1987-88 and 1989 respec-
tively. He was also awarded the Outstanding Graduate Student Award in
Science and Engineering from the Taiwanese-American Foundation. He is a
member of the Association of Computing Machinery and Society for Indus-
trial and Applied Mathematics.




