GlobalSIP 2014: Game Theory for Signal Processing and Communications

Game Theoretic Markov Decision Processes for
Optimal Decision Making in Social Systems

Yan Chen, Yang Gao, Chunxiao Jiang, and K. J. Ray Liu
Department of Electrical and Computer Engineering,
University of Maryland, College Park, MD 20742, USA.
E-mail:{yan, yanggao, jcx, and kjrliu} @umd.edu

Abstract—One key problem in social systems is to under-
stand how users learn and make decision. Since the values of
social systems are created by user participation while the user-
generated data is the outcome of users’ decisions, actions and
their social-economic interactions, it is very important to take
into account users’ local behaviors and interests when analyzing a
social system. In this paper, we propose a game-theoretic Markov
decision process (GTMDP) framework to study how users make
optimal decisions in a social system. By explicitly considering
users’ local interactions and interests, we show that the proposed
GTMDP can correctly derive the optimal decision and thus
achieve much better expected long-term utility compared with
the traditional MDP. We also discuss how to design mechanism
to steer users’ behavior under the proposed GTMDP framework.

Index Terms—Game theory, Markov decision process, Sym-
metric Nash equilibrium

I. INTRODUCTION

The rapid development of social media has greatly reduced
the barrier for people to participate in online activities and
create online content, which consequently leads to a prolifera-
tion of social systems. Typical examples include online social
networks like Facebook [1] or Twitter [2], crowdsourcing sites
like Amazon Mechanical Turk [3], and online question and
answering (Q&A) sites like Quora [4] or Stack Overflow [5].
These social systems have enabled and provided easy access
to large-scale user generated content. Such abundant and still
growing real life data, known as “big data”, open a tremendous
research opportunity in many fields, and in this paper we
focus on the problem of utilizing the large-scale user generated
content for better decision making.

Regarding analyzing and learning from big data, machine
learning has been an important tool and various machine
learning algorithms have been developed [6], [7]. However,
since the user-generated big data is the outcome of users’ de-
cisions, actions and their social-economic interactions, which
are highly dynamic, without considering users’ local behaviors
and interests, existing learning approaches tend to focus on
optimizing a global objective function at the macroeconomic
level, while totally ignore users’ local decisions at the microe-
conomic level [8]-[10]. As such there is a need in bridging
learning with strategic decision making to be more effective in
mining, reasoning and extracting knowledge and information
from the user-generated big data.

In this paper, we conduct a case study of the Markov
decision process (MDP) modeling [11]. Specifically, we find

978-1-4799-7088-9/14/$31.00 ©2014 |[EEE

that the traditional MDP cannot be directly used to model user
behavior in social system since it implicitly assumes that the
decisions made by the decision maker in an MDP have no
influence on the observed information and thus the underlying
model, i.e., the stationary transition probability table and
reward function is independent with the actions of the decision
maker. By explicitly involving users’ decisions on the model,
we propose a game-theoretic MDP to analyze users’ optimal
decisions in social systems. We show that compared with the
traditional MDP, the proposed game-theoretic MDP can better
predict the optimal decision and thus greatly improve users’
expected long-term utility.

The rest of the paper is organized as follows. In section
II, we briefly review the traditional MDP. Then, the proposed
game-theoretic MDP is introduced in details in section III
Finally, simulation results are discussed in section IV and
conclusions are drawn in section V.

II. MARKOV DECISION PROCESSES

A Markov decision process (MDP) models how a decision
maker makes a sequence of decisions in a stochastic environ-
ment to maximize its long-term reward, as shown in Fig. 1.
More precisely, an MDP is a discrete time stochastic control
process. At each time step, the process is in some state and the
decision maker may choose any action available at that state.
Then, the process responds at the next time step by moving
into a new state according a stationary transition probability
and giving the decision maker a corresponding reward. Given
current state and the action, the stationary transition probability
is conditionally independent of all previous states and actions
as well as the time step.

Formally, an MDP is a 4-tuple (S,A,P,R) [11], where S
is the state space, A is the action space, P is the table of
transition probabilities with P(s|s,a) being the probability
that action a € A in state s € S will lead to state s’ € S, and
R is the reward function with R(s,a) being the immediate
expected reward received by taking action a at state s.

The goal of the decision maker is to choose a sequence
of actions, i.e., the optimal policy, to influence the system to
perform optimally to maximize its long-term reward. There are
several different ways to define the long-term reward such as
total rewards over finite horizon and total discounted rewards
over infinite horizon. In this paper, we consider the latter case,
i.e., the decision maker should maximize the long-term reward
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Yoo R(st, at), where  is the discount factor and satisfies
0 <~ < 1, and R(s%,a?) is the expected reward received
at time step ¢ R(s?,a) = > o1 P(s™|st, a®) R(s'T|s?, a?)
with R(s'*1|s?,a’) being the immediate reward the decision
maker can receive when transiting from state s’ to state s'*!
by taking action a'.

Note that the decision maker can also take randomized
actions. However, according to Theorem 1 shown as follows,
in case of finite state and action space, there is an optimal
deterministic stationary policy, i.e., the reward that the optimal
deterministic policy will achieve is at least as high as that of
the optimal randomized policy and such optimal deterministic
policy is stationary and thus independent of time step.

Theorem 1: When both the state space S and action space
A are finite, there exists an optimal deterministic stationary
policy [11, Theorem 6.2.10 on p. 154].

With Theorem 1, it suffices to focus only on the determinis-
tic stationary policy. Let V (s) be the optimal long-term reward
the decision maker can obtain when the current state is s, then
we have the following Bellman equation

V(s) = R(s,a*(s)) +7 ) P(sls,a*(s))V(s), (D
where a*(s) is the optimal action that maximizes V' (s).

By solving (1), we can obtain optimal long-term reward
V(s) and optimal stationary deterministic policy a*(s). Value
iteration is the most widely used and best understood algorithm
for solving the Bellman equation. It starts with any initial-
ization of V?(s) and iteratively updates V1 (s) using V*(s)
with the corresponding optimal action. The iteration terminates
when the sum of the difference between V¢ *1(s) and V(s)
is smaller than a pre-defined tolerance. For the discounted
MDP problem, the value iteration algorithm is guaranteed to
converge and will lead to the optimal deterministic stationary
policy with a sufficiently small tolerance [11].

III. GAME THEORETIC MARKOV DECISION PROCESSES

In an MDP, the whole process is controlled by a single
decision maker as shown in Fig. 1. Specifically, the decision
maker builds an MDP by determining the state and action
space and training the transition probability table as well as
the reward function based on the observed information. Then,
with the value iteration algorithm, the optimal policy can be
derived, according to which the decision maker can make
a sequence of decisions at different time steps to maximize

System model of Markov decision process.

its long-term reward. Note that the sequential decisions made
by the decision maker in an MDP have no influence on the
observed information and thus the underlying model, i.e., the
stationary transition probability table and reward function is
independent with the actions of the decision maker. Therefore,
the MDP formulation is only suitable to the scenario where
there is a centralized controller that can control the whole pro-
cess. To tackle the distributed decision-making scenario, which
is generally the case in social systems with user-generated
content, in this section, we extend the MDP formulation and
propose a game theoretic Markov decision process (GTMDP).

A. Problem Formulation

As shown in Fig. 2, we consider a system with a homoge-
neous population, where the population can be finite, infinite
or even dynamic. Every player in the population can observe
the same information and build an MDP. Since players interact
with each other, e.g., competing with each other for a certain
resource or cooperating with each other to achieve a certain
objective, the reward function and transition probability in the
MDP are jointly determined by all players’ decisions. Due to
the homogeneous population assumption, here we focus on
the symmetric scenarios. Therefore, the long-term reward of
a player is evaluated under the assumption that other players
choose a unified action which may be different from the action
of the player under consideration.

Let a = {a(s),Vs € S} be an action rule of the player
under consideration, and —a denotes that all other players in
the population choose action rule a. Let R(s, a(s), —a) be the
immediate expected reward received by the player at state s
with action a(s) while other players use the action rule a. Let
P(s'|s,a(s), —a) be the stationary transition probability that
the system will transit from state s to state s’ when the player
takes an action da(s) while other players use the action rule
a. Let V(s) be the optimal long-term reward the player under
consideration can obtain when the current state is s and all
other players use the optimal action rule a*, then we have the
following Bellman equation

V(s) = R(s,a"(s), —a") + 7y _ P(s/|s,a"(s), —a")V(s'), (2)
where the optimal policy a*(s) can be found as follows

a*(s)=arg max {R(s, a, —a*)+y Z P(s'|s,a, —a*)V(s’)} E))
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Definition 1 (Symmetric Nash Equilibrium): an action rule
a* is a symmetric Nash equilibrium in GTMDP if a* is the
best response of a player when all other players are using
action rule a*.

Theorem 2: An action rule a* is a symmetric Nash equi-
librium if and only if a* is a solution to (2) and (3).

Proof: To prove that a* is a symmetric Nash equilibrium,

we first assume that all other players adopt action rule a*
except one player under consideration. Then, according to
Definition 1, we need to show that a* is the best response
of the player under consideration. Given that all other players
adopt action rule a*, the problem of finding the optimal
action for a certain player can be modeled as an MDP with
the immediate reward function R(s,a,—a*) and stationary
transition probability P(s’|s,a, —a*). According to the one
shot deviation principle for MDP [12], the sufficient and
necessary condition for a* to be the best response of the player
under consideration is

R(s,a*(s),—a") + f)/z P(s|s,a*(s), —a*)V(s)

)+ P(sls,a,—a"

where V (s) is the long-term reward the player under consid-
eration can obtain at state s when all players in the population
use the action rule a*, i.e., V(s) can be obtained with (2).
Comparing (3) with (4), we can see that the sufficient and
necessary condition for an action rule a* to be a symmetric
Nash equilibrium is that a* satisfies (2) and (3). This completes
the proof. [ ]

*

> R(s,a, )V(S/)v Va, (4)

System model of game theoretic Markov decision process.

From Theorem 2, we can see that the solution to (2) and
(3) is the sufficient and necessary condition for an action rule
to be a symmetric Nash equilibrium. Therefore, to find the
symmetric Nash equilibrium, we need to solve (2) and (3).
The major difference between GTMDP and MDP is that the
immediate reward function R(s,a,—a*) and stationary tran-
sition probability P(s’|s,a, —a*) in GTMDP are dependent
with the optimal action rule a*. In such a case, the value
iteration algorithm cannot be directly applied here. To solve
(2) and (3), we propose a modified value iteration algorithm.
The algorithm is motivated by the fact that the problem of
finding the optimal action for a certain player can be modeled
as an MDP when the common action rule adopted by all other
players is given. It starts with any initialization of the common
action rule a® for all other players and iteratively finds the
optimal action rule a‘*! using value iteration algorithm. The
iteration terminates when the optimal action rule a’** is equal
to the common action rule adopted by all other players a’.
Moreover, to avoid the algorithm being trapped into local
oscillation, we record the history of common action rule and
do not allow any common action rule being re-used. Since the
action space is finite, the modified value iteration algorithm
is guaranteed to converge to a symmetric Nash equilibrium
if symmetric Nash equilibrium exists. If there are multiple
symmetric Nash equilibria, the converged symmetric Nash
equilibrium depends on the initial common action rule.

B. Mechanism Design

As we discussed above, if there exists multiple symmet-
ric Nash equilibria, the proposed modified value iteration
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Fig. 3. Performance comparison between MDP and GTDMP.

algorithm will converge to a symmetric Nash equilibrium.
Nevertheless, the existence of the symmetric Nash equilibria
has not been discussed, which is typically very difficult [13].
Moreover, such action rules are generally not deterministic
but randomized and their performance cannot be guaranteed.
Therefore, in this paper, instead of focusing on the existence
of the symmetric Nash equilibrium, we adopt the philosophy
of mechanism design by first choosing a desired action rule
and then finding the sufficient and necessary condition for the
action rule to be a symmetric Nash equilibrium.

Specifically, let a? be the desired action rule. Then, accord-
ing to Theorem 2, the sufficient and necessary condition for
a? to be a symmetric Nash equilibrium is

R(s,a%(s), —a?) + 72 P(s'|s,a’(s), —at)V(s')
> R(s,a(s)—a%)+y Z P(s'|s,a(s)—at)V(s'),Ya(s)&s.(5)

By solving (5), we can find the constraints on the system
parameters for the desired action rule a to be a symmetric
Nash equilibrium.

IV. SIMULATIONS

To evaluate the performance of the proposed GTMDP
algorithm, we consider a scenario with a sufficient large
population where players interact with each other and pro-
duce user-generated data. Each player in the population is
labeled with “+” or “-”. At each time instant, a fraction of
players is chosen from the population to form pairs to play
a packet forwarding game. Within each pair, one player acts
as a transmitter and the other player acts as a receiver. The
transmitter can choose to either forward a packet or deny
forwarding, i.e., the action of the transmitter is {0, 1} where
“1” stands for forwarding a packet and “0” stands for not
forwarding. With such a setting, we can use the labels of a
pair of players to represent the system state. Since there is
only two possible label for each player, “+” or “-”, the state
Space is S = {811 = ++,819 = +—, 821 = —+, 822 = ——}.

Note that the transmitter may take different action at different
system state. Therefore, an action rule can be defined as
a = {a(s11),a(s12),a(s21),a(s22)} where a(s;;) € {0,1}
is the action taken at state s;;.

Assuming that the receiver can obtain a gain g at a cost
c to the transmitter. In such a case, the immediate payoff
that a player can receive when taking action a(s;;) while
all other players use action rule a is R(s;j,a(s;;), —a) =
—2a(sij)c+1a(sj;)g where the factor 2 comes from the equal
probability of a player acting as a transmitter or a receiver. We
further assume that there is a social norm, Q, for updating
players’ label, which specifies what new label players will
have according to their actions and current system state

S11 S12 S21 522
_ | A 1 0 1—=X| a(s)=0 6
Q 1 A 1= 0 a(s) =1 ©)

where each element Q(a(s;;), s;;) stands for the probability of
the transmitter being labelled as “+” after taking action a(s;;),
and the parameter A € [0, 1] is used to control the weight of
current label in determining the new label.

We compare the proposed GTMDP with the traditional
MDP algorithm. The desired action rule of the proposed
GTMDRP is set to be ad = {ad(sn) = 1,ad(812) = O,ad(521) =
1,a%(s92) =0}. The MDP algorithm directly learns the model
from the observation where we assume that 80% of players
are with label “+”, and half population uses the desired action
rule while the rest adopts other action rules randomly and
uniformly. Other parameters are set as follows: ¢ = 1, A = 0.5,
v =10.9, and € = 0.01.

The expected long-term utility versus the cost-to-gain ratio
under different schemes is shown in Fig. 3. We can see that
the MDP achieves the same performance with the GTMDP
at small cost-to-gain ratios. This is because when the cost-to-
gain ratio is small, users tend to play cooperatively and the
optimal action derived by MDP is the desired action rule a?.
However, when cost-to-gain ratio increases, i.e., the cost of
cooperation increases, users tend to take advantage of others
and the action derived by MDP is to play non-cooperatively
while the optimal action should be the desired action a?.
By explicitly involving other users’ decision, the proposed
GTMDP can correctly derive the true optimal decision and
thus achieves much better expected long-term utility.

V. CONCLUSIONS

In this paper, we proposed a general game-theoretic Markov
decision process (GTMDP) framework to analyze and study
users’ decision making in social systems. Moreover, we devel-
oped a modified value iteration algorithm to compute optimal
actions for users. Such an algorithm is guaranteed to converge
to the optimal action when the optimal actions exist. We then
used mechanism design to derive the sufficient and necessary
conditions for a desired action rule to be optimal. Simulations
show that compared with the traditional MDP, the proposed
GTMDP can achieve much better expected long-term utility
for users.
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