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Abstract—Copyright protection is a key issue for video sharing
over public networks. To protect the video content from unautho-
rized redistribution, digital fingerprinting is commonly used. To
develop an efficient collusion-resistant fingerprinting scheme, it is
very important for the system designer to understand how the be-
havior dynamics of colluders affect the performance of collusion
attack. In the literature, little effort has been made to explicitly
study the relationship between risk, e.g., the probability of the col-
luders to be detected, and the distortion of the colluded signal. In
this paper, we investigate the risk-distortion relationship for the
linear video collusion attack with Gaussian fingerprint. We formu-
late the optimal linear collusion attack as an optimization problem
of finding the optimal collusion parameters to minimize the dis-
tortion subject to a risk constraint. By varying the risk constraint
and solving the corresponding optimization problem, we can de-
rive the optimal risk-distortion curve. Moreover, based upon the
observation that the detector/attacker can each improve the detec-
tion/attack performance with the knowledge of his/her opponent’s
strategy, we formulate the attack and detection problem as a dy-
namic mouse and cat game and study the optimal strategies for
both the attacker and detector. We show that if the detector uses
a fixed detection strategy, the attacker can estimate the detector’s
strategy and choose the corresponding optimal strategy to attack
the fingerprinted video with a small distortion. However, if the de-
tector is powerful, i.e., the detector can always estimate the at-
tacker’s strategy, the best strategy for the attacker is the min-max
strategy. Finally, we conduct several experiments to verify the pro-
posed risk-distortion model using real video data.

Index Terms—Game theory, fingerprint, risk distortion, video
collusion.

I. INTRODUCTION

W ITH the explosive growth of the Internet and the ad-
vance of the compression technologies, video sharing

over public networks becomes more and more popular. This
phenomenon causes a critical problem to digital content
providers since their materials can be easily duplicated and
distributed without authorization. Digital fingerprinting is one
of the most important techniques for tracing the distribution
of video contents and protecting them from illegal usage [1].
It embeds a unique identification information, which serves
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as a digital fingerprint, into each distributed copy of video.
When a copy is redistributed without authorization, the content
providers can extract the embedded fingerprint to trace back
the source of the leak.

To reduce the probability of being detected, attackers may
apply various attacks to remove the fingerprints before redistri-
bution. One common and effective attack against digital finger-
printing is collusion attack [2]–[4], where a group of attackers
combine information from their copies to generate a new col-
luded copy in which the original fingerprints are removed or at-
tenuated. In [5], several types of collusion attacks, including a
few nonlinear collusion attacks, have been studied. The simula-
tion results in [5] show that nonlinear attacks are more effective
than average attack for uniformly distributed fingerprints, and
normally distributed fingerprints are more robust against non-
linear collusion attacks than uniformly distributed fingerprints.
Later in [6], the analytical study on the performance of Gaussian
fingerprints was provided. The study shows that for Gaussian
fingerprints with spread spectrum embedding, a number of non-
linear collusion attacks based upon order statistics, such as min-
imum and min-max attacks, can be well approximated by aver-
aging collusion plus additive white Gaussian noise. Similar con-
clusions can be also found in [7]–[9].

Most of the existing studies of collusion attack focus on
image collusion attack, where the host (source) signals are
the same. In this case, if no postprocessing techniques such as
blurring and sharpening are performed, the difference between
the colluded copy and the original copy is usually smaller than
the difference between the distributed copy and the original
copy since the fingerprint is removed or attenuated during
the collusion process. However, this conclusion is not true if
the host signals are video sequences [10]. Video data have a
unique characteristic that the temporally adjacent frames are
similar but usually not identical. Therefore, for video collusion
attacks, not only the intercopy attack which combines the
frames among different copies, but also the intracopy attack
which combines temporally adjacent frames within the same
copy, can be conducted.

Due to the dissimilarity of the temporally adjacent frames,
distortion would be introduced during intracopy attack. There-
fore, for video collusion attack, there exists a tradeoff between
the fingerprint remained in the colluded copy, which corre-
sponds to the probability of being detected, i.e., the risk for
the colluders, and the quality of the colluded copy, i.e., the
distortion. It is extremely important for the colluders to learn
the risk-distortion tradeoff since knowing this tradeoff would
help them choose the best strategy when generating colluded
copy. It is also essential for the detectors to understand the
risk-distortion tradeoff since it would help them predict the
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behavior of the colluders and, hence, help them design an
anti-collusion strategy.

In [10], the authors investigate some possible strategies of
selfish colluders and show that a selfish colluder can deviate
from agreement to further reduce his/her risk by choosing the
optimal temporal filtering. Nevertheless, the optimal risk-distor-
tion tradeoff has not been fully studied yet. Motivated by [10],
in this paper, we explicitly explore the relationship between risk
and distortion by conducting a theoretical analysis for the linear
video collusion attack with Gaussian fingerprinting. We formu-
late the risk and distortion as functions of the temporal filter
coefficients, and model the collusion attack as an optimization
problem of finding the optimal coefficients to minimize the dis-
tortion subject to a given risk constraint. By varying the risk
constraint and solving the corresponding optimization problem,
we can derive the optimal risk-distortion curve.

Moreover, we show that the detector can improve his/her de-
tection performance given the optimal coefficients the attacker
uses, and similarly the attacker can improve his/her attack per-
formance given the optimal coefficients the detector uses. Ac-
cording to this observation, we formulate the attack and detec-
tion problem as a dynamic mouse and cat game and study the
optimal strategy for the attacker/detector given the knowledge
of his/her opponent’s strategy. In practice, since the attacker
needs to choose his/her strategy first, a powerful detector will
always be able to estimate the attacker’s strategy. In such a case,
we show that the best strategy for the attacker is the min-max
strategy, i.e., to minimize the risk by assuming the detector has
the perfect knowledge of the attacker’s strategy. We also discuss
the min-max strategy of the attackers when the attackers con-
sider the additive white Gaussian noise (AWGN) to further re-
duce their risk. Finally, we conduct several experiments to verify
the proposed risk-distortion model using real video data.

The rest of this paper is organized as follows. Section II de-
scribes the system models. In Section III, we conduct a the-
oretical analysis for the linear collusion attack and derive the
risk-distortion relationship. Section IV discusses the optimal
strategy for the attacker and detector when knowing his/her op-
ponent’s strategy. In Section V, we discuss the min-max strategy
for the attacker in the worst-case scenario. The parameter esti-
mation and experimental results are shown in Sections VI and
VII. Finally, the conclusion is drawn in Section VIII.

II. SYSTEM MODELS

In this section, we will introduce the system model, including
video fingerprint embedding, detection, and collusion attack
model.

A. Fingerprint Embedding

Let be the frame of the host video sequence, which
can be the pixel values or the DCT coefficients. Let and

be the frame of fingerprinted video and fingerprint
signal for user , respectively. Then, the fingerprint embedding
process of the frame for the user can be written as

(1)

Note that the fingerprint signal should be scaled according to
some parameters to achieve the imperceptibility. In such a case,
we can define , where is the orig-
inal fingerprint signal, is the parameter used to control the
energy of the embedded fingerprint to achieve the impercepti-
bility, and represents the Hadamard product.

To simplify the analysis, the orthogonal fingerprint modula-
tion is used [10], [11], i.e., , where

if and if . Moreover, to resist in-
tracopy collusion attack [12], [13], the fingerprint between
neighboring frames for the same user are correlated with each
other, while the correlation is determined by the similarity of
the host frames and the temporal distance of the indices [12] as
given by

(2)

where is the statistical
correlation coefficient between random variables and , and

is a scaling parameter that controls the tradeoff
between the visual quality and the degree of the resistance. If

is large, then the degree of the resistance against the intra-
copy attack is high. However, the visual quality of the finger-
printed video becomes poor due to the veiling artifacts. On the
contrary, if is small, then the veiling artifacts are less signif-
icant, while the fingerprinted video becomes vulnerable to the
intracopy attack.

B. Fingerprint Detection

Once the content owners find a suspicious copy, he/she
can use correlation-based fingerprint detection to identify
the attackers [1]. Without loss of generality, we analyze the
frame-based detection. Similar analysis can be easily extended
to Group-Of-Picture (GOP) based or sequence-based detection
[6]. For each frame , the detector extracts the fingerprint
using

(3)

Then, for each user who receives frame , compute the de-
tection statistics using

(4)

Finally, given a threshold that is determined by false alarm
probability (see Section III.), the estimated attacker set for frame

is . Note that the detectors can use
any “postprocessing” method such as majority rule to combine
the results of the frame-based detection. However, this is not the
goal of this paper. In this paper, to focus on the risk-distortion
relationship, we only consider the frame-based detection.

C. Video Collusion Attack Model

Without loss of generality, we focus on the case of linear col-
lusion attacks in this paper [11]. Let be the total number of
the attackers. As shown in Fig. 1, each attacker first performs
intracopy attack by applying temporal filtering on the tempo-
rally adjacent video frames. Then, all attackers would collude
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Fig. 1. Collusion attack model.

together to perform intercopy attack. Since the fingerprint in
every frame for each attacker is independent and identi-
cally distributed (i.i.d), if we assume that all attackers share the
same risk, then the weights allocated to the intracopy and inter-
copy attacks would be the same for all attackers. Therefore, the
attack model can be formulated as that a colluded frame is given
by

(5)

where . The attackers are to choose ’s to min-
imize the collusion distortion under a certain risk constraint,
while the detector is to estimate the ’s that attackers choose
and use them as side information to improve the detection
performance.

III. RISK-DISTORTION ANALYSIS FRAMEWORK

A. Risk of the Colluders

Given the colluded frame , the detector extracts the fin-
gerprint by

(6)

where ,
, and .

According to (4), the detection statistics can be
written as

(7)

In this paper, we assume that the residues are independent and
identically distributed (i.i.d.) Laplace variables [14], [15], i.e.,

, where
stands for the pixel in . Note that in each frame
of a video sequence with QCIF format, there are 174 144
such i.i.d. Laplace variables. Therefore, we can apply the cen-
tral limit theorem to approximate the weighted sum of these

174 144 i.i.d. Laplace variables as a Gaussian random vari-

able, i.e.,

with . Moreover, since the linear combination of
the Gaussian distribution is also a Gaussian distribution, we
have , where

and is -norm of . Then, we
know from (7) that the detection statistics of attacker , ,
satisfies Gaussian distribution [16], where the
mean is given by

(8)

with

(9)
Let , the risk of the colluder, be the probability of being

detected. Given a detection threshold , according to (7) and
(8), the risk can be computed by

(10)

where is the Gaussian tail function

Similarly, the detection statistics of an innocent user satisfies
Gaussian distribution [16]. Therefore, the proba-
bility of an innocent user to be falsely detected as an attacker,
i.e., , is given by

(11)

From (10) and (11), we can see that the threshold controls
the tradeoff between the positive detection probability and
the false alarm probability . If the desired false alarm prob-
ability is , then and the risk
becomes

(12)

B. Distortion of the Colluded Frame

From (6), we can see that the difference between the attacked
frame and the original frame is . Therefore, the
distortion of the colluded copy, which is defined as the mean
square of the difference, can be computed by

(13)

where and the second
equality follows from the independence between and and

, for all .
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Fig. 2. Risk distortion curve.

C. Risk-Distortion Relationship

From (12) and (13), we can see that both the distortion and
risk are determined by the coefficients of the temporal filter .
In Fig. 2, we show the risk distortion plot using different coef-
ficients. We can see that, for a fixed risk , there are several
different coefficients, , , and , which would lead to dif-
ferent amounts of distortions, , , and . A rational at-
tacker will choose the optimal coefficient that minimizes the
distortion to generate the colluded copy, which leads to the risk
distortion curve. Therefore, the attacker’s problem can be
formulated as

(14)

where the scale factor in the objective function is only for
computation convenience.

Obviously, the previously shown optimization problem is
nonconvex since the quadratic term is in the denomi-
nator, which makes the first constraint nonconvex. However,
since the Gaussian tail function is a monotonically de-
creasing function, we can rewrite the optimization problem as

(15)

The optimization problem shown previously is a quadrati-
cally constrained quadratic program (QCQP) problem [17]. If

, i.e., , the problem is a convex
optimization problem. We can find the optimal solution using
numerical methods, e.g., the interior point methods [17].

If , which means , the problem
is nonconvex. In general, a nonconvex QCQP problem is a
NP-hard problem [17] and it is very difficult to find the global

optimal solution. However, by approximating the concave term
with its first-order Taylor expansion, a locally optimal solution
can be solved using constrained concave-convex crocedure
(CCCP) [18]. And the relaxed optimization problem becomes

(16)

Given an initial , CCCP computes from it-
eratively using (16). It can be shown that CCCP converges to
a locally optimal solution of the original optimization problem
(14) [19].

According to (15) and (16), the optimal coefficients that
minimizes the distortion subject to a predefined risk constraint

can be found using numerical optimization methods. Then,
the minimal distortion given risk can be computed using
(12). In this way, the optimal risk-distortion relationship for the
colluders can be obtained. Now the only question is how to find
a good initial for the CCCP process to converge to a good
local optimum.

D. Initialization for CCCP

According to (15), the reason that we need to use CCCP to
find the locally optimal solution is the quadratic term
in the constraint. In the case that is around a constant ,
we can relax the optimization problem by approximating
with . Then, the relaxed optimization problem becomes

(17)

where .
From (17), we can see that the objective function is quadratic

and the constraints are linear. The optimization problem is a
quadratic problem, which is convex. The optimal solution for
the relaxed problem can be found by solving the KKT
conditions [17] and

(18)
Remark:
• From (18), we can see that is determined by

, which means that the initialization
of reduces to finding a good value for .

• Since (18) is derived based upon the assumption that
is around a constant , is a good initial point

if is around , where is the optimal .

IV. OPTIMAL STRATEGIES FOR THE

DETECTOR AND ATTACKER

From the previous section, we can see that attackers can ob-
tain the risk distortion curve based upon the assumption that the
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detector uses the fingerprint of the current frame to compute
the detection statistics. However, if knowing that attackers use a
linear filter to attack the fingerprint, the detector will modify the
detection statistics to improve the detection performance. On the
other hand, if attackers know that the detector changes his/her
detection statistics, they will change their strategy accordingly.
Therefore, there exists a dynamic between attackers and de-
tector and the problem can be formulated as a mouse and cat
game, where the optimal strategy for the attacker (detector) lies
on his/her opponent’s strategy. Since the risk distortion curve is
determined by the optimal coefficient , we regard the optimal
coefficient as side information to be estimated or guessed
by both parties. In this section, we will discuss how the detector
and attackers choose their optimal strategies based upon the side
information.

A. Optimal Strategy for the Detector With Side Information

If the detector knows (estimates) that the attacker uses the
linear filter with optimal coefficients to attack the finger-
print, the detector will modify the detection statistics to improve
the detection performance. Suppose that the detector use linear
combination of the fingerprint, i.e., , to compute the detec-
tion statistics, then the detection statistics become

(19)

From (19), we know that satisfies Gaussian dis-
tribution .
Therefore, given the false alarm probability , the risk
of the attacker is

(20)

Obviously, a rational detector will choose the optimal coef-
ficient to maximize the probability of catching the attackers,
which is the risk of the attackers. According to (20), maximizing

is equivalent to maximizing ,
which results in new optimal coefficient as

(21)

Therefore, if the detector knows that the attacker uses the
linear filter with optimal coefficients to attack the fingerprint,
he/she will also use to compute the detection statistics
since it can give the best detection performance.

B. Optimal Strategy for the Attackers With Side Information

On the other hand, if knowing that the detector will use the
linear filter with coefficient to compute the detection statis-
tics, obviously the attackers will try to reduce their risk by using

another linear filter to attack the fingerprint. Let be the new co-
efficients the attackers use, then the detection statistics become

(22)

Similar to , satisfies Gaussian distribution

. Therefore,
given the false alarm probability , the risk of the
attacker to be detected becomes

(23)

Surely, a rational attacker will choose the optimal coefficient
to minimize the risk defined in (23). And the problem can be

formulated as

(24)

where is the distortion when is used for collusion.
Since the Gaussian tail function is a monotonically de-

creasing function, we can rewrite the optimization problem as

(25)

which is equivalent to

(26)

Thus, we can find the solution iteratively by solving the fol-
lowing optimization problem:

(27)

with , and is
the iteration index. Notice that at each iteration, if , the
optimization problem in (27) is convex, the global optimal solu-
tion can be found using numerical method. However, if ,
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the optimization problem in (27) is nonconvex. Then, we need
to use CCCP to find the locally optimal solution.

V. MIN-MAX STRATEGY FOR THE ATTACKER: THE

WORST-CASE SCENARIO

In the previous section, we discuss the optimal strategy of
the detector and attacker with side information, i.e., how the
detector and attacker should react based upon the knowledge
of his/her opponent’s strategy. However, in reality, the attacker
needs to choose his/her strategy first. Then, the detector will
choose his/her strategy to detect the attacker. In this sense, the
best-case scenario for the attacker is that the detector uses a
fixed strategy which is known by the attacker. In such a best-
case scenario, the attacker’s optimal strategy can be found by
solving (27). On the other hand, the worst-case scenario for the
attacker is that the detector has the full knowledge of the at-
tacker’s strategy and choose his/her optimal strategy based upon
the attacker’s strategy. In such a worst-case scenario, the at-
tacker’s optimal strategy is the min-max strategy, i.e., to min-
imize the worst-case risk.

A. Min-Max Strategy for the Attacker

If the attackers use a linear filter with coefficients to attack
the fingerprint and the detector uses to compute the de-
tection statistics, then the detection statistics become

(28)

Similar to (20) and (23), the risk of the attackers to be detected
becomes

(29)

Obviously, a rational detector will always choose the optimal
coefficients to maximize the risk. In the worst-case scenario
for the attackers, the detector has the full knowledge of the at-
tacker’s strategy . Therefore, when the detector use his/her
optimal strategy, the risk of the attackers to be detected becomes

(30)

Knowing that the detector uses the optimal strategy based
upon his/her strategy, a rational attacker will choose the op-
timal coefficients to minimize the risk shown in (30). There-
fore, the problem of finding the optimal can be formulated
as (31), shown at the bottom of the page. Therefore, the optimal
strategy of the attacker in the worst-case scenario is the min-max
strategy.

According to (21), we know that the optimal is equal to
. Let , then the optimization problem in (31)

becomes

(32)

Similar to (27), we can find the solution iteratively by solving
the following optimization problem

(33)

with . Notice that since
, the optimization problem in (33) is nonconvex. Therefore, we

need to use CCCP to find the locally optimal solution.

B. Risk Reduction Using Additive White Gaussian Noise
(AWGN)

In the previous subsection, we discuss the min-max strategy
for the attacker in the worst-case scenario. In this subsection, we
will discuss how the attacker can further reduce the risk using
additive white Gaussian noise (AWGN).

Suppose that after performing intracopy and intercopy attack,
the attacker introduces AWGN to the colluded copy to further
reduce the risk of being detected. Then, the attack problem can
be formulated as

(34)

where is AWGN with zero mean and variance, i.e.,
.

(31)
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Fig. 3. Risk-distortion model for Akiyo and Foreman sequences: (a) Akiyo and (b) Foreman.

In the worst case scenario, similar to (28), the detection
statistics can be computed by

(35)

Similar to the analysis in the previous subsection, we can find
the min-max strategy iteratively by solving the following
optimization problem:

(36)

with . Note that since
, we need to use CCCP to find the locally optimal

solution.

VI. PARAMETER ESTIMATION

From Sections IV and V, we can see that the risk-distor-
tion relationship is determined by three parameters , ,
and . Now, we introduce in details how to estimate these
three parameters. Since the attackers do not know the infor-
mation about the original source signal and the fingerprint
signal . Instead, what they have is the fingerprinted signal

. In order to obtain the risk-distortion re-
lationship, we need to first estimate the parameters , ,
and based upon .

Let . From (1), we can see
that the fingerprinted signal is the sum of the original signal and

the fingerprint, base on which the difference between and its
smooth version among all the colluders can be expressed as

(37)

which means that we can use the fingerprinted signal to com-
pute the correlation matrix of the fingerprint signal by

(38)

The parameter can be estimated using

(39)

where is the row and column element of
.

In order to estimate the parameter , we need to first estimate
using as shown in (40) at the bottom of the next

page.

VII. EXPERIMENTAL RESULTS

To evaluate the proposed risk-distortion model, we conduct
the experiments on real video data. Two video sequences
(Akiyo, Foreman) in QCIF format are tested. We use the
human visual model based spread spectrum embedding [1],
and embed the fingerprint in the DCT domain. We generate
independent vectors (length- , with ) from
Gaussian distribution , and then apply Gram-Schmidt
orthogonalization to produce fingerprint strictly satisfying

. Then, we scale the fingerprint to let
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Fig. 4. Convergence performance of CCCP: (a) � � � and (b) � � �.

the variance be , followed by the inverse Gram-Schmidt
orthogonalization to ensure the fingerprint of each user satisfy
(2) strictly with . We assume that the collusion attacks
are also in the DCT domain. At the detector’s side, a nonblind
detection is performed where the host signal is first removed
from the colluded copy. And the detector uses the correla-
tion-based detection statistics to identify the attackers. In all
the following experiments, the parameter is set to be 5, which
means that the 10 temporally adjacent frames are involved in
the intracopy attack process for each attacker. The false alarm
probability is set to be .

We first evaluate the accuracy of the proposed risk distortion
model by comparing with the baseline curve, which is the ex-
perimental risk-distortion curve. Here, the experimental risk is
defined as the average positive detection probability by aver-
aging over 400 runs of simulation. For each video sequence,
the number of attackers and are tested. As
shown in Fig. 3, the risk-distortion curve derived by the pro-
posed model coincides with the baseline curve with small mis-
match for both sequences, which demonstrates the effectiveness
of the proposed risk-distortion model. Note that the mismatch
mainly comes from the model error for the residue and the pa-
rameter estimation error. In the rest of this paper, we denote the
risk-distortion curve obtained by our model as “Absolute Risk
Distortion Curve.”

The convergence performances of the CCCP process are
shown in Fig. 4. From Fig. 4, we can see that with CCCP,
for any fixed risk constraint, the distortion converges in a

few iterations (less than 8 in the examples). Note that due to
page limitation, we only show the cases when risk is fixed at
0.05 and 0.2. Similar behaviors are observed for different risk
constraints.

We then study the risk distortion curve when the side informa-
tion is available, which we denote as “Relative Risk Distortion
Curve.” In such a case, the optimal strategy for the attacker or
detector lies on his/her opponent’s strategy. Based upon the ac-
tion that the opponent took, the attackers or detector can choose
the best response using (21) or (27). In Fig. 5, we show the re-
sult of the “Absolute Risk Distortion Curve” and “Relative Risk
Distortion Curve.” We start with the “Absolute Risk Distor-
tion Curve,” which is obtained using (14). Then, if the detector
has the perfect knowledge of the attackers’ strategy and choose
his/her optimal strategy based upon the side information. The
resulting risk distortion curve is denoted as “Relative Risk Dis-
tortion Curve Stage 1.” On the other hand, if the attackers know
that the detector uses the side information of the attacker in pre-
vious stage, they will change their optimal strategy accordingly.
The resulting risk distortion curve is denoted as “Relative Risk
Distortion Curve Stage 2.” We repeat these detection and attack
process until stage 5. As shown in Fig. 5, when the detector has
the perfect side information of the attackers’ strategy, the risk
of the attackers to be detected increases and the risk distortion
curve moves up in the red arrow direction. On the other hand, if
the attackers have the perfect side information of the detector’s
strategy, the risk of the attackers to be detected decreases and
the risk distortion curve moves down in the blue arrow direc-

(40)
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Fig. 5. “Absolute Risk Distortion Curve” and “Relative Risk Distortion Curve.”

Fig. 6. Risk distortion curve with min-max strategy.

tion. This phenomenon shows the importance of the side infor-
mation. The one who has the perfect side information of his/her
opponent will lead the game and pull the risk distortion curve
along the direction that benefits him/her.

Moreover, from Fig. 5, we can see that when the distortion
is larger than 2.5, the “Relative Risk Distortion Curve Stage
3” curve and “Relative Risk Distortion Curve Stage 5” curve
increase as the distortion increases. This phenomenon is partly
because only the locally optimal solution is found using CCCP
when the optimization problem in (27) is nonconvex.

In reality, the attackers need to choose his/her strategy first. In
case of “naive” detector with fixed strategy, if the attackers know
the perfect side information of the detector, they can choose
their optimal strategy based upon the side information. On the
other hand, if the detector is a powerful detector who can al-
ways estimate the attackers’ strategy, the best strategy for the
attackers is to minimize the risk of the worst case scenario, i.e.,
the min-max strategy. In Fig. 6, we show the risk distortion
curve with min-max strategy. We can see that although the risk
distortion curve with min-max strategy achieves the lowest risk

Fig. 7. Risk distortion curve with min-max strategy and AWGN.

among all the cases that the detector has the perfect side infor-
mation, there is a big risk gap compared with the “Absolute Risk
Distortion Curve.”

In Fig. 7, we show the risk distortion curves with min-max
strategy and AWGN. We can see that as the noise variance in-
creases, the risk distortion curve moves along the red arrow
direction. This is because when the noise variance increases,
the distortion increases but the risk decreases. We can also see
that when the noise variance is equal to 1.5, the risk distortion
curve with min-max strategy meets the “Absolute Risk Distor-
tion Curve” for all distortions larger than 3. Therefore, with a
proper noise variance, we can reach the “Absolute Risk Distor-
tion Curve” even with the min-max strategy.

VIII. CONCLUSION

In this paper, we provided a theoretical analysis on the risk-
distortion relationship for the linear video collusion attack with
Gaussian fingerprint, and conducted several experiments on real
video sequences to verify the proposed risk-distortion model.
From the experimental results, we could see that if the attackers
have the perfect knowledge of the detector’s strategy, they can
choose the corresponding optimal strategy to destroy the finger-
print with a small distortion. However, if the detector is so pow-
erful that can always estimate the attackers’ strategy, the best
strategy for the attacker is the min-max strategy. Moreover, we
show that the attackers can further reduce the risk of being de-
tected by introducing AWGN with a cost of larger distortion.
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