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Image Denoising Games
Yan Chen, Member, IEEE, and K. J. Ray Liu, Fellow, IEEE

Abstract—Based on the observation that every small window
in a natural image has many similar windows in the same
image, the nonlocal denoising methods perform denoising by
weighted averaging all the pixels in a nonlocal window and
have achieved very promising denoising results. However, the
use of fixed parameters greatly limits the denoising performance.
Therefore, an important issue in pixel-domain image denoising
algorithms is how to adaptively choose optimal parameters. While
the Stein’s principle is shown to be able to estimate the true mean
square error (MSE) for determining the optimal parameters,
there exists a tradeoff between the accuracy of the estimate and
the minimum of the true MSE. In this paper, we study the impact
of such a tradeoff and formulate the image denoising problem
as a coalition formation game. In this game, every pixel/block is
treated as a player, who tries to seek partners to form a coalition
to achieve better denoising results. By forming a coalition, every
player in the coalition can obtain certain gains by improving the
accuracy of the Stein’s estimate, while incurring some costs by
increasing the minimum of the true MSE. Moreover, we show that
the traditional approaches using same parameters for the whole
image are special cases of the proposed game theoretic framework
by choosing the utility function without a cost term. Finally,
experimental results demonstrate the efficiency and effectiveness
of the proposed game theoretic method.

Index Terms—Coalition formation, game theory, image denois-
ing, Stein’s principle.

I. Introduction

DURING THE processes of being captured, digitized,
recorded, and transmitted, an image is usually distorted

and noisy. Such a noisy image is visually annoying and often
not suited to further perform tasks such as segmentation,
recognition and compression. Therefore, image denoising is
a very important issue to reconstruct a good estimate of the
original image from the noisy observations.

Many approaches have been proposed in the literature to
reconstruct the original image by exploiting the inherently
spatial correlation. By assuming that the image locally sat-
isfies a stationary Gaussian process, Woods and Radewan
[1] propose to estimate the original image from the noisy
image using Kalman filter while Jin et al. [2] propose to
use adaptive Wiener filter. In both approaches, the first-
order and second-order statistics used in the filters are cal-
culated based on the noisy samples within a local window. In
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[3]–[5], the authors propose to use bilateral filtering over the
local neighborhood samples, where the weights of the bilateral
filters are computed based on the intensity and radiometric
distances between the center sample and the neighboring
samples. Another class of locally adaptive image denoising
approaches are derived by considering image processing as
a variational problem where the restored image is computed
by minimizing a carefully designed energy function [6]–[8].
Typically, such energy functions consist of a fidelity term
that is determined by the difference between the reconstructed
image and the noisy image, and a regularization penalty term
that is determined by the image prior.

To further exploit the spatial correlation, Buades et al. [9]
proposed to average, in a weighted manner, all the pixels
in a nonlocal window instead of only involving the locally
neighboring pixels, where the weights are determined by the
differences between the region centered by the target pixel and
the regions centered by the candidate pixels. Since the weights
are not determined by the radiometric (physical) distance,
similar pixels that are far away from the target pixel can
still be awarded large weights. In such a way, the denoising
performance is greatly improved. Several extensions of the
nonlocal approach are also proposed [10]–[12].

Besides the pixel-domain approaches, transform-domain
approaches are also investigated [13]–[16]. The transform-
domain approaches are mainly based on the assumption that
the original signal can be well-approximated by a linear
combination of few basis, i.e., the original signal is sparse
in the transform-domain. In such a case, the original signal
can be well estimated by preserving the few high-magnitude
transform coefficients that convey mostly the energy of the
original signal and discarding the rest which are mainly
introduced by the noise. Therefore, one important issue in the
transform-domain approaches is how to threshold the trans-
form coefficients. Many threshold rules have been proposed
from different speculations [13], [17], and [18]. A combination
of the nonlocal and transform-domain thresholding ideas is
proposed in [19]. The basic idea is to first group similar 2-D
image blocks into 3-D data arrays, then perform 3-D wavelet
transform, and finally shrinkage the transform spectrum. A
similar idea is proposed to combine non-local with sparse
coding as well as dictionary learning [20], [21] .

Most of the existing schemes focus on how to choose
good weights to achieve better reconstructions by using the
same parameters for the whole image. However, how to
adaptively choose optimal parameters can be very important
since using the same parameters for the whole image may
cause severe artifacts such as fake edge artifacts and over-
smooth artifacts. The theoretical and empirical study in [22],
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[23] reveals that existing denoising algorithms are close to the
optimal performance with fixed patch size, and suggests to
use novel adaptive variable-sized patch schemes to improve
the denoising performance of existing algorithms. Due to the
absence of the original image, the Stein’s principle [24] is
used to estimate the true MSE for determining the optimal
parameters. With such a principle, the parameters can be
adjusted to achieve better denoising performance, such as
the nonlocal based methods [25], [26], wavelet thresholding
based methods [27]–[29], and general numerical procedure
for denoising [30]. Nevertheless, we find that there exists
a tradeoff between the accuracy of the estimate and the
minimum of the true MSE. In this paper, we study the impact
of this tradeoff and formulate the image denoising problem as
a coalition formation game.1 In this game, every pixel/block
is treated as a player, who tries to seek partners to form
a coalition to improve the accuracy of the Stein’s estimate
while incurring a cost of increasing the minimum of the
true MSE. Since finding the optimal coalition structures is
NP-hard, we propose a heuristically distributed algorithm in
solving the coalition formation game. We also show that the
traditional approaches that use the same parameters for the
whole image are special cases of the proposed game theoretic
framework by choosing the utility function without a cost
term. Finally, experimental results are shown to demonstrate
the efficiency and effectiveness of the proposed method. Note
that the proposed game is also applicable to other scenarios
besides the pixel-domain denoising method as long as: 1) there
exists some locally adaptive parameters to be estimated and; 2)
the estimation accuracy will be improved when more samples
are involved in the estimate process.

The rest of this paper is organized as follows. In Section II,
we give a brief description of the system model and the
coalition formation game. Then, we discuss in details the
proposed game theoretic denoising framework in Section III,
including the confidence and distortion tradeoff of the Stein’s
unbiased risk estimate, the game theoretic formulation and the
corresponding solution. In Section IV, we show the relation-
ship between the proposed game-theoretic framework and the
traditional approaches that use the same parameters for the
whole image. Finally, we illustrate the experimental results on
real images in Section V and draw conclusions in Section VI.

II. System Model and Coalition

Formation Game

A. System Model

In this paper, we consider the problem of restoring images
degraded by additive white Gaussian noise. The degraded
process can be modelled as

In(k) = I(k) + n(k) (1)

where I is the original image, In is the noisy observation of
the image, and n is the additive Gaussian noise with zero mean
and σ2 noise variance. The k = (k1, k2) is the coordinate of
a pixel. The problem is to find an estimate Î of the original
image based on the noisy observation In.

1Part of this paper has been presented in [31].

It is well known that the image denoising problem is
ill posed. To reconstruct the original image from the noisy
observation, we need to use some prior information such as the
correlations among spatial neighboring pixels. In this paper,
we focus on the spatially adaptive linear filtering approach.
For the pixel located at k, we find the estimate Î(k) using the
weighted average of the spatially neighboring pixels, that is

Î(k) =

∑
l∈S(k) wk,lI

n(l)∑
l∈S(k) wk,l

(2)

where S(k) is the candidate set that contains the spatially
neighboring pixels for k, and wk,l is the weight for pixel
In(l).

B. The Coalition Formation Game

Game theory is a mathematical tool that analyzes the
strategic interactions among multiple decision makers. A game
is mainly composed by three components:

1) a finite set of players, denoted by u1, u2, ..., uN ;
2) a set of actions, denoted by Ai, for each player ui;
3) payoff/utility function, denoted by Ui, which measures

the outcome for player ui determined by the actions of
all players.

A coalition formation game is a game where the players
seek to form cooperative groups, i.e., coalitions, to strengthen
their positions in the game. The players’ actions in the coali-
tion formation game are whom to cooperate with, i.e., which
players to form coalitions with. The payoff/utility function in
the coalition formation game is defined over coalitions, called
coalition value. The coalition value, which quantifies the worth
of a coalition, is mainly determined by two terms: the gain and
the cost. By forming a coalition, every player in the coalition
can obtain a gain through cooperation within the coalition.
However, the gain is limited by a cooperation cost for forming
the coalition, e.g., the negotiation cost or information exchange
cost.

Given the player set and the coalition value, the coalition
formation game is uniquely defined, and the outcome of the
game is a set of coalitions, which is the optimal partitions
of the player set. To obtain the optimal partitions, there are
two possible approaches: centralized approach and distributed
approach. For the centralized approach, the centralized con-
troller needs to search over all the partitions of the player
set to find the optimal partitions, which is NP-complete and
impractical when the size of the player set is large [32]. For
the distributed approach, the players will make their own
decisions as to whether or not they join a coalition. One
typical approach is to use the merge and split rules proposed in
[33]. This approach starts with an initial partition and repeats
alternatively the merge and split rule: 1) merge rule: merge any
set of coalitions into a single coalition if the new coalition
can provide larger total coalition values; and 2) split rule:
split a coalition into smaller coalitions if the resulting smaller
coalitions can provide larger total coalition values.

In Section IV, we will discuss in details how to use the
coalition formation game to formulate the image denoising
problem, where each pixel/block will be treated as a player
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Fig. 1. Example of optimal candidate set with an edge region: (a) original image, (b) noisy image with σ = 15, (c) noisy image with σ = 25, (d) noisy image
with σ = 35, (e) candidate set used by nonlocal, (f) ideally optimal candidate set of (b) when the original signal is available, (g) ideally optimal candidate set
of (c) when the original signal is available, and (h) ideally optimal candidate set of (d) when the original signal is available.

Fig. 2. Example of optimal candidate set with a smooth region: (a) original image, (b) noisy image with σ = 15, (c) noisy image with σ = 25, (d) noisy
image with σ = 35, (e) candidate set used by nonlocal, (f) ideally optimal candidate set of (b) when the original signal is available, (g) ideally optimal
candidate set of (c) when the original signal is available, and (h) ideally optimal candidate set of (d) when the original signal is available.

seeking to form coalitions to achieve optimal denoising per-
formance.

III. Game Theoretical Problem Formulation

A. Parameter Selection

From (2), we can see that the reconstruction performance
are determined by the selection of the weights wk,l and the
candidate set S(k). For any given S(k), the optimal weights
w�

k,l(S(k)) are determined by the correlation between pixels
I(k) and I(l), and should be chosen to minimize the difference
between the estimation Î(k) and the original pixel I(k) as

follows:

w�

k,l(S(k)) = arg min
wk,l

(∑
l∈S(k) wk,lI

n(l)∑
l∈S(k) wk,l

− I(k)

)2

. (3)

Note that when the optimal weights in (3) are used, the
selection of the candidate set S(k) is trivial since the accuracy
of the reconstruction improves as the candidate set S(k)
becomes larger. However, due to the absence of the original
pixel I(k), it is impossible for us to find the optimal weights
using (3). One possible approximation is to use the similarity
between the neighborhoods around k and l [26], which is
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defined as follows:

wk,l = exp

{ ||P(Bk) − P(Bl)||2
h2

}
(4)

where Bk and Bl are the predefined neighborhoods around
k and l, respectively, P(.) is a projection function such as
principal component analysis (PCA), and h is the parameter
related to the noise’s variance.

Nevertheless, since the weights in (4) are not optimal,
the selection of the candidate set S(k) for the reconstruction
becomes critically important. On one hand, if the size of the
candidate set is too small, then the noise may not be effectively
removed. On the other hand, if the size of the candidate set
is too large, then the reconstruction may be overly-smooth.
Moreover, according to (2) and (4), we can see that the
reconstruction are also determined by the neighborhoods Bk
and Bl, the projection function P(.), and the parameter h.
Obviously, all these parameters should be chosen in such a
way that the difference between Î(k) and I(k) is minimized,
i.e., the optimal parameters can be found by

{S�(k),B�,P�(.), h�} = arg min
S(k),B,P(.),h

|Î(k) − I(k)|2. (5)

In general, the optimal parameters are content dependent,
i.e., they may be different for different k and/or different
noise variances. In Figs. 1 and 2, we show the structure of
the optimal candidate set for two different scenarios: 1) the
target pixel is centered within an edge region, and 2) the
target pixel is centered within a smooth region. In these two
figures, we fix B�, P�(.), h�, and assume that the candidate
set contains the pixels with the first m largest weights. For
illustration purpose, we further assume that the original image
is available for finding the optimal m� in these two examples.
In the following subsections, we will discuss how to find
the optimal parameters using game theory under the scenario
that the original image is not available. As shown in Figs.
1 and 2, (a) is the original image centered by the target
pixel, which is denoted by red “x,” (b)–(d) are the noisy
images with σ being 15, 25, and 35, respectively. (e) is the
candidate set using in [9], which is a pre-defined square
window. (f)–(h) are the optimal candidate sets with optimal
m� for (b)–(d) respectively. Note that the black pixels in (f)–
(h) stand for the pixels in the candidate set. From Figs. 1
and 2, we can see that for the scenario where the target pixel
is centered within an edge region, the candidate set has an
edge structure, while for the scenario where the target pixel is
centered within a smooth region, the structure of the candidate
set is unpredictable. Moreover, we can also see that with
different noise variance, the candidate sets are quite different.
Therefore, all the parameters in (2) including the candidate
set S(k) should not be predefined in a fixed way. Instead,
the parameters should be chosen adaptively to minimize the
difference between the estimate and the original signal.

B. Stein’s Unbiased Risk Estimate (SURE)

Since I(k) is unknown, the optimal parameters can not be
explicitly computed using (5). Fortunately, we can first use
the Stein’s unbiased risk estimate (SURE) [24] to estimate the

Fig. 3. Optimal size of the candidate set for Lena image when σ = 10.

true mean squared error (MSE) from the noisy observation and
then use the estimated MSE to find the optimal parameters.

In Fig. 3, by fixing other parameters, we show the optimal
size of the candidate set for Lena image when the standard
deviation of the noise is σ = 10, where the intensity stands for
the optimal size value. From Fig. 3, we can see that there are
many pixels that have the similar optimal size value, which can
be grouped together for finding the optimal size. For example,
the pixels in the red circles have the optimal size value near
60 can be grouped together.

Suppose that the whole image is partitioned into M subsets
� = {�1, �2, ..., �M}, where each subset �i contains a set of
pixels that may not be physical neighboring but have the same
optimal parameters, that is

{S�(k),B�,P�(.), h�} = arg min
S(k),B,P(.),h

∑
k∈�i

|Î(k) − I(k)|2. (7)

With the optimal parameters, the mean square error (MSE)
for the subset �i can be computed by

msei =
1

|�i|
∑
k∈�i

|Î(k|S�(k),B�,P�(.), h�) − I(k)|2 (8)

and such a MSE can be approximated using SURE, according
to Theorem 1, as follows:

SUREi =
1

|�i|
∑
k∈�i

|Î(k|S�(k),B�,P�(.), h�) − In(k)|2

+σ2

⎛
⎝ 2

|�i|
∑
k∈�i

∂Î(k|S�(k),B�,P�(.), h�)

∂In(k)
− 1

⎞
⎠ (9)

where ∂Î(k|S�(k),B�,P�(.),h�)
∂In(k)

can be found by (6) (shown at the

top of page 5) with
∂wk,l
∂In(k)

being determined by the projection
function P�(.).

Theorem 1: The SUREi in (9) is an unbiased estimator of
the true MSE msei in (8), that is

E[SUREi] = E[msei]. (10)

Proof: By substituting I(k) with In(k) − n(k), we can
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∂Î(k|S�(k),B�,P�(.), h�)

∂In(k)
=

1∑
l∈S�(k) wk,l

⎛
⎝ ∑

l∈S�(k)

∂wk,l
∂In(k)

In(l)+1 −Î(k|S�(k),B�,P�(.), h�)
∑

l∈S�(k)

∂wk,l
∂In(k)

⎞
⎠ (6)

re-write E[msei] as follows:

E[msei]= E

[
1

|�i|
∑
k∈�i

|Î(k|S�(k),B�,P�(.), h�) − I(k)|2
]

= E

[
1

|�i|
∑
k∈�i

(
|Î(k|S�(k),B�,P�(.), h�) − In(k)|2

+2n(k)Î(k|S�(k),B�,P�(.), h�) − n(k)2

)]

=
1

|�i|
∑
k∈�i

E

[
|Î(k|S�(k),B�,P�(.), h�) − In(k)|2

]

+2
1

|�i|
∑
k∈�i

E

[
n(k)Î(k|S�(k),B�,P�(.), h�)

]
− σ2.

(11)

According to Stein’s Lemma [24], we have

E
[
n(k)Î(k|S�(k),B�,P�(.), h�)

]
= σ2E

[
∂Î(k|S�(k),B�,P�(.), h�)

∂In(k)

]
. (12)

Then, by substituting (12) back to (11), we have

E[msei] = E

[
1

|�i|
∑
k∈�i

|Î(k|S�(k),B�,P�(.), h�) − In(k)|2

+σ2

(
2

|�i|
∑
k∈�i

∂Î(k|S�(k),B�,P�(.), h�)

∂In(k)
− 1

)]

= E[SUREi].

C. Confidence and Distortion Tradeoff

1) Confidence: From Theorem 1, we can see that SUREi

is an unbiased estimator of msei. However, there can be some
mismatch between SUREi and msei for each realization (noise
observation), i.e., SUREi is just an approximation of msei. To
measure the accuracy of the approximation, let us define the
confidence term, C, as the average difference between SUREi

and msei over the whole image

C =
1

|�|
M∑
i=1

|�i| × |msei − SUREi|. (13)

According to [24], the estimator SUREi becomes closer to
msei as |�i| increases, which means that the confidence term
C in (13) decreases as |�i| increases.

2) Distortion: With the partition � = {�1, �2, ..., �M}
and the correspondingly optimal parameters, we can compute
the mean square error for the whole image, D, as follows

D =
1

|�|
M∑
i=1

|�i| × msei. (14)

Fig. 4. Tradeoff between the confidence term C and the distortion term D.
(a) Performance of C with different N. (b) Performance of D with different
N.

According to the analysis in Section III-A, we group the
pixels with similar optimal parameters together and assign a
common group of optimal parameters to all pixels in subset
�i. In such a case, as |�i| increases, the probability that the
pixels in �i have different true optimal parameters increases,
which leads to the increase of msei. Therefore, the distortion
term D in (14) increases as |�i| increases.

3) Confidence and Distortion Tradeoff: From the above
discussion, we can see that as |�i| increases, the confidence
term C decreases but the distortion term D increases. There-
fore, there exists a tradeoff between C and D. To verify
such a tradeoff, we conduct a simple experiment by setting
|�i| = N, ∀i. As shown in Fig. 4, the confidence term C

decrease as N increases while the distortion term D increases
as N increases, which are consistent with our analysis.

D. Utility Function and Solution to the Game

From the previous subsections, we can see that given the
partition � = {�1, �2, ..., �M}, SURE can be used to approx-
imate the true MSE to find the optimal parameters. However,
how to find a good partition is not trivial since the number
of the partition is not fixed and the size of each partition can
vary. Due to the uncertainty of the number of the partition, the
traditional segmentation and clustering methods may not work.
To study the complex interactions among different pixels and
the dynamic partition formation process, we propose to use
the coalition formation game.

In this game theoretical formulation, every pixel is treated
as a player, who tries to seek partners to form coalitions to
achieve better reconstruction. By forming a coalition, every
player in the coalition can obtain a gain of reducing the
difference between the SURE and the true estimate, i.e., the
confidence term in (13), while incurring a cost of increasing
the minimum of the MSE. With this idea in mind, we define
the utility for a coalition as

U(�i) = −|�i| × SUREi + g(|�i|, σ2) (15)

where the first term of the right hand side is the cost and the
second term g(|�i|, σ2) is the gain.
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Fig. 5. Some possible gain functions.

The function g(|�i|, σ2) in (15) characterizes the gain of
forming a coalition, which is the reduction of the difference
between the SURE and the true estimate due to the increase
of the coalition size. Therefore, g(|�i|, σ2) should satisfy the
following properties.

1) g(|�i|, σ2) should be an increasing function in terms of
|�i| since the gain increases as the coalition size |�i|
increases, i.e., ∂g(|�i|,σ2)

∂|�i| > 0.
2) g(|�i|, σ2) should be a concave function in terms of |�i|

since a certain increase of the coalition size in the low
|�i| region should lead to a more significant gain than
that in the high |�i| region, i.e., ∂2g(|�i|,σ2)

∂|�i|2 < 0.
3) g(|�i|, σ2) should be a superadditive function since the

gain of a large coalition should be no smaller than that of
two sub coalitions, i.e., g(|�i + �j|, σ2) ≥ g(|�i|, σ2) +
g(|�j|, σ2).

4) g(|�i|, σ2) should be a decreasing function in terms
of σ2 since the gain decreases as noise variance σ2

increases, i.e., ∂g(|�i|,σ2)
∂σ2 < 0.

There are many functions that can satisfy the above prop-
erty. In the following, we list three possible functions:

g1(|�i|, σ2) = λ1σ
2

( −1

|�i|
)

(16)

g2(|�i|, σ2) = λ2σ
2

[
− exp

(−|�i|
4

)]
(17)

g3(|�i|, σ2) = λ3σ
2

[
ln

( |�i|
|�i| + 1

)]
(18)

where λ1, λ2, and λ3 are fixed parameters.
In Fig. 5, we plot the three possible gain functions versus

|�i| by setting σ2 = 1. We can see that all the three
functions meet our requirements and are therefore valid gain
functions. Moreover, we can see that all three functions behave
similarly. Therefore, in this paper, we only evaluate the first
gain function, i.e., g(|�i|, σ2) in (15) is set to be g1(|�i|, σ2).
Nevertheless, similar results can be obtained with the other
two functions (g2(|�i|, σ2) and g3(|�i|, σ2)) and any other
functions with similar properties.

With the utility function in (15), we can see that as the size
of the coalition increases, the members in the coalition can
obtain gains from g(|�i|, σ2). However, the gains are limited
by the a cost of forming the coalition, which is −|�i|×SUREi.
The problem now is to find the optimal coalition structures
based on the utility function in (15). One possible approach is
to use the merge and split rules proposed in [33], where the
authors prove that their algorithm will converge to a unique
solution with arbitrary merge and split iterations. However,
the computation complexity is still very large since all possible
sub-partitions need to be evaluated during the split process. To
make the problem traceable, in this paper, we propose a heuris-
tic algorithm in solving the coalition formation game. The
proposed heuristic algorithm starts with partitioning the image
into blocks. Then, for each block, the proposed algorithm finds
the coalition by selecting the neighborhoods that can give
best average utility and derives the optimal parameters for
the coalition. Finally, all the pixels in the block are denoised
with the corresponding optimal parameters. The above proce-
dures are repeated until all pixels are denoised. The proposed
heuristic algorithm is distributive, and only locally neighboring
information is required for finding the coalition. Moreover,
since it is not an iterative algorithm, there is no convergence
issue. Compared with the merge and split rules [33], the com-
putation complexity is greatly reduced since the split process
is avoided. From the experimental results shown in Section VI,
we can see that the proposed heuristic algorithm performs
quite well.

IV. Relation to the Traditional Approaches

In the traditional pixel-domain image denoising approaches,
every pixel is denoised using (2) with the same parameters for
the whole image. For example, a fixed-size square window
centered by the target pixel k is chosen as the candidate
set for the whole image in the nonlocal image denoising
method [9]. Such kinds of approaches have a performance
limitation due to the self-constrained use of same parameters
for the whole image. As shown in Figs. 1 and 2, we can
see that the parameters including the candidate set should
be adaptively chosen for different pixels/blocks and/or noise
variances. Moreover, we will show in the following analysis
that the traditional methods such as the nonlocal method [9]
and SURE-Nonlocal method [26] are actually special cases of
the proposed game theoretic framework by choosing a utility
function without a cost term

U(�i) = g(|�i|, σ2). (19)

According to the discussion in Section III-C, we know
that a valid gain function g(|�i|, σ2) should be monotonically
increasing, concave, and superadditive in terms of |�i|. In such
a case, if the utility function only involves the gain function
as in (19), then all pixels will form a grand coalition and
use the same parameters. In such a case, it returns to the
traditional approaches where the same parameters are used
for all pixels. In this sense, we can say that the traditional
approaches are special cases of the proposed game theoretic
framework.
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Fig. 6. Six 512x512 tested images: (a) image1. (b) image2. (c) image3. (d) image4. (e) barbara. (f) lena.

Fig. 7. PSNR comparison for different images: (a) image1. (b) image2. (c) image3. (d) image4. (e) barbara. (f) lena.

V. Experimental Results

We evaluate the proposed game theoretic image denoising
approach by comparing it with the SURE-Nonlocal method
[26] and BM3D method [19]. Six 512 × 512 images shown in
Fig. 6: image1, image2, image3, image4, Barbara and Lena,
are tested. The neighborhood B set is {3 × 3, 5 × 5, 7 × 7, 9 ×
9} and the candidate set is {5 × 5, 7 × 7, ..., 33 × 33}. The
dimensionality of projection P is set to be 6 and the parameter
h2 ranges from 0.7|B|σ2 to 2|B|σ2 with |B| being the size of
the neighborhood.

We first evaluate the PSNR comparison versus the stan-
dard derivation of the noise. We compare the PSNR per-
formance among four different approaches: SURE-Nonlocal
[26], BM3D [19], the proposed game theoretic method de-
noted as “Proposed,” and the “Proposed with Perfect Pa-
rameters” method where a genius is assumed to choose the
optimal parameters. The results for different tested images
at different noise levels are shown in Fig. 7. From Fig.
7, we can see that the proposed method always performs
better than the SURE-Nonlocal method for all tested im-
ages at all different noise variances. The average gain of
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Fig. 8. SSIM comparison for different images: (a) image1. (b) image2. (c) image3. (d) image4. (e) barbara. (f) lena.

Fig. 9. Visual quality comparison for image1 with σ = 15. (a) Original image. (b) Noisy image. (c) Result generated by BM3D [19] (PSNR=33.05dB,
SSIM=0.916). (d) Result generated by the SURE-Nonlocal [26] (PSNR=32.54dB, SSIM=0.9061). (e) Result generated by the proposed approach
(PSNR=32.77dB, SSIM=0.9137). (f) Result generated by the proposed approach with perfect parameters (PSNR=33.34dB, SSIM=0.9299).

the proposed method over SURE-Nonlocal is 0.22dB with
the maximal gain up to 0.43dB. While BM3D performs
better than the proposed method, the proposed method with
perfect parameters can achieve comparable or even better
performance than BM3D, which shows the great potential
of the proposed method, i.e., with a better heuristic coali-
tion formation method, the proposed method may achieve
comparable performance with BM3D. Moreover, we would
like to emphasize that the proposed method is a pixel-
domain method while BM3D is a transform-domain approach
with multiple model aggregation. Furthermore, although the

proposed method achieve worse performance than BM3D
in terms of PSNR performance, it can achieve compara-
ble performance in terms of visual quality, which will be
shown later. We also evaluate the structural similarity (SSIM)
[34] comparison and the results are shown in Fig. 8. We
can see clearly that the proposed method outperforms the
SURE-Nonlocal method and performs slightly worse than
BM3D. However, with the perfect parameters, the proposed
method can achieve much better SSIM performance than
BM3D, which again shows the great potential of the proposed
method.
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Fig. 10. Visual quality comparison for image2 with σ = 25. (a) Original image. (b) Noisy image. (c) Result generated by BM3D [19] (PSNR=28.21dB,
SSIM=0.9213). (d) Result generated by the SURE-Nonlocal [26] (PSNR=28.02dB, SSIM=0.9038). (e) Result generated by the proposed approach
(PSNR=28.13dB, SSIM=0.9153). (f) Result generated by the proposed approach with perfect parameters (PSNR=28.64dB, SSIM=0.9302).

Fig. 11. Visual quality comparison for barbara with σ = 30. (a) Original image. (b) Noisy image. (c) Result generated by BM3D [19] (PSNR=29.80dB,
SSIM=0.9274). (d) Result generated by the SURE-Nonlocal [26] (PSNR=27.43dB, SSIM=0.8805). (e) Result generated by the proposed approach
(PSNR=27.86dB, SSIM=0.8923). (f) Result generated by the proposed approach with perfect parameters (PSNR=28.76dB, SSIM=0.9194).
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Fig. 12. Visual quality comparison for lena with σ = 35. (a) Original image. (b) Noisy image. (c) Result generated by BM3D [19] (PSNR=30.58dB,
SSIM=0.8971). (d) Result generated by the SURE-Nonlocal [26] (PSNR=29.89dB, SSIM=0.8847). (e) Result generated by the proposed approach
(PSNR=30.01dB, SSIM=0.8886). (f) Result generated by the proposed approach with perfect parameters (PSNR=30.79dB, SSIM=0.9131).

Fig. 13. Visual quality comparison for image3 with σ = 20. (a) Original image. (b) Noisy image. (c) Result generated by BM3D [19] (PSNR=32.64dB,
SSIM=0.9320). (d) Result generated by the SURE-Nonlocal [26] (PSNR=31.73dB, SSIM=0.9198). (e) Result generated by the proposed approach
(PSNR=32.10dB, SSIM=0.9269). (f) Result generated by the proposed approach with perfect parameters (PSNR=32.84dB, SSIM=0.9431).
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Fig. 14. Visual quality comparison for image4 with σ = 10. (a) Original image. (b) Noisy image. (c) Result generated by BM3D [19] (PSNR=38.00dB,
SSIM=0.9827). (d) Result generated by the SURE-Nonlocal [26] (PSNR=37.01dB, SSIM=0.9769). (e) Result generated by the proposed approach
(PSNR=37.35dB, SSIM=0.9788). (f) Result generated by the proposed approach with perfect parameters (PSNR=38.04dB, SSIM=0.9838).

Fig. 15. Visual quality comparison for color version of image1. (a) Result generated by the SURE-Nonlocal with σ = 20[26] (PSNR=31.97 dB, SSIM=0.8946).
(b) Result generated by the proposed approach with σ = 20(PSNR=32.20 dB, SSIM=0.8997). (c) Result generated by the SURE-Nonlocal with σ = 80[26]
(PSNR=24.20 dB, SSIM=0.6731). (d) Result generated by the proposed approach with σ = 80(PSNR=24.20 dB, SSIM=0.6673).

Then, we evaluate the visual quality of the reconstructions.2

In Fig. 9, we show the visual quality comparison for the image
“image1.” As shown in Fig. 9, (a) is the original image and
(b) is the noisy image with σ = 15. The results generated
by BM3D, SURE-Nonlocal, the proposed method and the
proposed method with perfect parameters are shown in (c),
(d), (e) and (f), respectively. The corresponding PSNR of the
reconstructions are 33.05dB, 32.54dB, 32.77dB and 33.34dB,
respectively. From Fig. 9, we can see that the result generated
by the SURE-Nonlocal has a lot of visual artifacts such as
the fake edge artifacts on the face region. This phenomenon
is because the SURE-Nonlocal method chooses a common set
of parameters for all pixels, i.e., a grand coalition is used.
In such a case, a lot of pixels use non-optimal parameters
for the reconstruction, which leads to the visual artifacts.
With the proposed approach, every pixel/block (player) seeks

2All the experimental results shown in the paper can be downloaded on
http://www.ece.umd.edu/∼yan/imagedenoisinggames.zip

parters to form coalition to determine the best parameters to
perform denoising, which can adaptively choose the optimal
parameters and avoid the visual artifacts. Moreover, although
the proposed method achieves lower PSNR performance than
BM3D, the visual quality performance of the proposed method
is better than that of BM3D. From 9 (c), we can see that the
result generated by BM3D has the contour artifact on the face
region and over-smooth artifact on the left brim of the hat.
Furthermore, when the perfect parameters are used, the visual
quality performance of the proposed method can be further
improved.

Fig. 10 shows the reconstructed results of “image2” at noise
level σ = 25, while (a)–(e) are the original image, noisy image,
the image reconstructed by BM3D, the image reconstructed
by SURE-Nonlocal, the image reconstructed by the proposed
method and the image reconstructed by the proposed method
with perfect parameters, respectively. The PSNR of the recon-
structed images are 28.21, 28.02, 28.13 and 28.64 dB, respec-
tively. From Fig. 10, we can see that the visual quality of the
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result generated by the proposed method is better than that of
SURE-Nonlocal and BM3D, especially in the sky region above
the house and the grass region below the house. The SURE-
Nonlocal tends to produce fake edge artifact in the sky region
while the BM3D tends to over-smooth the reconstruction in the
grass region.

We also show the visual quality of the reconstructions of
barbara, lena, “image3” and “image4” at different noise levels
in Figs. 11, 12, 13, and 14, respectively. Similar to previous
experiments, the proposed method can greatly reduce the noise
and restore the image with better visual quality than SURE-
Nonlocal and comparable (if not better than) visual quality
with the BM3D. Due to the page limitation, we only show the
results of one σ for each image in this paper. Similar results
are observed for different σ ′s.

The proposed method can be also applied to the color
images by performing denoising on RGB or YUV compo-
nents. In Fig. 15, we show the visual quality comparison for
color version of “image1.” We can see that when the noise
variance is not high, e.g. σ = 20, the proposed method can
achieve better PSNR performance as well as better visual
quality compared with SURE-Nonlocal. However, when the
noise variance is high, e.g., σ = 80, our approach has
little improvement. This is mainly because when the noise
variance is high, more pixels are needed to have a reliable
estimate of the true MSE. In such a case, pixels/blocks tend
to form a big coalition, which leads to the performance
similar to the SURE-Nonlocal method where a grand coalition
is used.

VI. Conclusion

In this paper, we studied the tradeoff between the accuracy
of the Stein’s estimate and the minimum of the true MSE and
formulated the image denoising problem as a coalition forma-
tion game. With the proposed game, every player (pixel/block)
sought partners to form coalitions to obtain better decision for
the optimal parameters selection and thus led to better denois-
ing results. The experimental results showed that compared
to SURE-Nonlocal, the proposed game theoretic approach
achieved not only better PSNR performance but also better
visual quality, while compared to BM3D, the proposed method
had lower PSNR performance but comparable or even better
visual quality. Moreover, the proposed method with perfect
parameters further improved the performance significantly,
which showed the great potential of the proposed method. Note
that the proposed game is also applicable to other scenarios
besides the pixel-domain approach as long as: 1) there exist
some locally adaptive parameters to be estimated and 2) the
estimation accuracy improves when more samples are involved
in the estimate process. Furthermore, we showed that the
traditional approaches using same parameters for the whole
image were special cases of the game theoretic framework by
choosing the utility function without a cost term.
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