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Abstract—While peer-to-peer (P2P) video streaming systems
have achieved promising results, they introduce a large num-
ber of unnecessary traverse links, which consequently leads to
substantial network inefficiency. To address this problem and
achieve better streaming performance, we propose to enable
cooperation among “group peers,” which are geographically
neighboring peers with large intra-group upload and download
bandwidths. Considering the peers’ selfish nature, we formulate
the cooperative streaming problem as an evolutionary game and
derive, for every peer, the evolutionarily stable strategy (ESS),
which is the stable Nash equilibrium and no one will deviate
from. Moreover, we propose a simple and distributed learning
algorithm for the peers to converge to the ESSs. With the
proposed algorithm, each peer decides whether to be an agent
who downloads data from the peers outside the group or a free-
rider who downloads data from the agents by simply tossing a
coin, where the probability of being a head for the coin is learned
from the peer’s own past payoff history. Simulation results show
that the strategy of a peer converges to the ESS. Compared
to the traditional non-cooperative P2P schemes, the proposed
cooperative scheme achieves much better performance in terms
of social welfare, probability of real-time streaming, and video
quality (source rate).

Index Terms—Cooperative streaming, distributed learning,
evolutionary, game theory, peer-to-peer (P2P), replicator dynam-
ics.

I. Introduction

W ITH THE RAPID development of signal processing,
communication, and networking technologies, video-

over-IP applications become more and more popular and have
attracted millions of users over the Internet [1], [2]. One
simple solution to video streaming over Internet is the client-
server service model [3], [4], where the video is streamed
directly from a server to clients. However, with the client-
server service model, the upload bandwidth of the server grows
proportionally with the number of clients [5], which makes the
large-scale video streaming impractical.

To reduce the workload of the server, peer-to-peer (P2P)
service model is proposed [6], [7], where a peer not only acts
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as a client to download data from the network, but also acts as
a server to upload data for the other peers in the network. The
upload bandwidth of the peers reduces the workload placed
on the server dramatically, which makes large-scale video
streaming possible. Recently, several industrial large-scale
P2P video streaming systems have been developed, including
Coolstreaming [7], PPLive [8], PPStream [9], UUSee [10],
and Sopcast [11]. Studies show that these systems can support
hundreds of thousands of users simultaneously [12].

While P2P video streaming systems have achieved promis-
ing results, they have several drawbacks. First, there are a
large number of unnecessary traverse links within a provider’s
network. As observed in [13], each P2P bit on the Verizon
network traverses 1000 miles and takes 5.5 metro-hops on
average. Second, there is a huge number of cross Internet
service provider traffic. The studies in [14] and [15] showed
that 50%–90% of the existing local pieces in active peers are
downloaded externally. Third, the differences in playback time
among peers can be as high as 140 s [12], and the lag can be
greater if the source rate is higher. Fourth, most of the current
P2P systems assume that all peers are willing to contribute
their resources. However, this assumption may not be true
since the P2P systems are self-organizing networks and the
peers are selfish by nature [16], [17]. Note that the selfish
peers will act as free-riders if being free-riders can improve
their utilities.

In the literature, many approaches have been proposed
to overcome these drawbacks. Karagiannis et al. [14] and
Madhyastha et al. [18] proposed to use locality-aware P2P
schemes to reduce the unnecessary traverse links within and
cross ISPs and thus reduce the download time. Purandare and
Guha [19] proposed an alliance based peering scheme to re-
duce the playback time lag and improve the quality of service.
Xie et al. [13] proposed a P4P architecture that allows coopera-
tive traffic control between applications and network providers.
To stimulate selfish peers to contribute their resources, pay-
ment mechanisms [20], [21] and reputation schemes [22], [23]
are proposed, where peers pay points to receive data and earn
points by forwarding data to others. However, such payment
or reputation based mechanisms often demand a centralized
architecture and thus hinder their scalability.

Game theory is a mathematical tool that analyzes the
strategic interactions among multiple decision makers. Re-
cently, it draws great attention in cognitive networking [24],
multimedia social networking [25], and is being applied to
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many multimedia signal processing problems such as video
coding [26] and multimedia communications [27]. In P2P
networks, peers make intelligent decisions on their strategies
of requesting and forwarding packets based on their needs
and other peers’ actions. Moreover, since peers are rational
and thus naturally selfish, they have no incentive to contribute
their resources for other peers. Therefore, it is natural to study
the intelligent behaviors and interactions of selfish peers in
P2P networks from a game-theoretic perspective [16], [28].
Using a mental cost to describe the level of the peer’s altru-
ism, the authors in [16] presented a game-theoretical model
to analyze nodes’ behaviors and the influence of incentive
mechanism. In [28], a game-theoretic framework is proposed
for designing distributed, cheat-proof, and attack-resistant co-
operation stimulation strategies for P2P live streaming social
networks.

Most of the existing schemes treat every peer as an inde-
pendent individual. However, in reality, every peer can have a
large number of geographically neighboring peers with large
intra-group upload and download bandwidths, e.g., the peers
in the same lab, building, or campus. In this paper, we name
those geographically neighboring peers with large intra-group
upload and download bandwidths as group peers. To reduce
the unnecessary traverse links and improve network efficiency,
instead of considering each peer’s strategy independently,
we investigate possible cooperation among the group peers.
Moreover, since peers are naturally selfish, they will act as
free-riders if doing so can improve their utilities. In such
a case, full cooperation cannot be guaranteed. Instead, to
achieve better payoff, rational peers will adjust their degree of
cooperation by learning from their payoff history. Therefore,
a key question to answer is how a group of selfish peers
should cooperate with each other to achieve better streaming
performance.

The main contributions of this paper are summarized as
follows.

1) We propose a cooperative streaming scheme to enable
cooperation among group peers to achieve better stream-
ing performance.

2) In the proposed scheme, we define the utility function of
a peer by taking into account the possibility of real-time
streaming and the cost of acting as a server to upload
data for the other peers.

3) Due to their selfish nature, peers tend to act as free riders
to improve their own utilities. Moreover, the peers may
take out-of-equilibrium strategies due to the uncertainty
of the strategies of the other peers. Therefore, a robust
Nash equilibrium (NE) solution is desired for every peer.
In this paper, we formulate the cooperative streaming
problem as an evolutionary game and derive the evolu-
tionarily stable strategy (ESS) for every peer, which is
the desired stable NE.

4) To stimulate cooperation, the cooperative streaming
scheme should be simple since peers may not be willing
to join the cooperative streaming if the protocol is com-
plicated. The proposed cooperative streaming scheme is
very simple. Each peer tosses a coin to decide whether
to be an agent or a free rider. If the outcome is head, the

Fig. 1. Cooperative streaming example.

peer acts as an agent to download data from the peers
outside the group. Otherwise, the peer acts as a free-rider
to download data from the agents. And the probability
of being a head for the coin is learned from the peer’s
own past payoff history.

5) Due to the highly dynamic behaviors of the peers, i.e.,
the peers may join or leave the P2P network at any time,
the cooperative streaming scheme should be distributed.
We propose a distributed algorithm for every peer to
approach the ESS by learning from the peer’s own past
payoff history.

The rest of this paper is organized as follows. In Section II,
we describe the system model and the utility function. Then,
we show in details how to select agents in a homogeneous
group in Section III. We extend the analysis to the het-
erogeneous case in Section IV. In Section V, we propose
a distributed learning algorithm for ESS. Finally, we show
the simulation results in Section VI and draw conclusions in
Section VII.

II. System Model and Utility Function

A. System Model

As shown in Fig. 1, there is a set of group peers1 (three in
this example) who want to view a real-time video streaming
simultaneously. Within a group, every peer can choose either
to be an agent or a normal peer. If the peer serves as an
agent, he/she not only needs to act as a client to download
video data from the agents in other groups, but also needs to
act as a server to upload video streams for both the agents
in other groups and the peers in the same group. However,
if the peer chooses not to be an agent, he/she only needs to
download/upload data from/to the peers in the same group.
We assume that the upload and download bandwidth within
the group is larger than those cross groups. In such a case,

1How to group the peers itself is an interesting problem. However, in this
paper, we assume that the peers have already been grouped and mainly focus
on how the group peers cooperate with each other to achieve better streaming
performance.
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peers tend to be a normal peer due to the selfish nature.
Nevertheless, the normal peers, on the other hand, take a risk
of receiving degraded streaming performance since there may
not be sufficient agents to download data from other groups.
In order to achieve good streaming performance through
cooperation, a question need to be addressed: given a group
of peers, which peers should serve as agents?

B. Utility Functions

In a P2P network, a peer not only acts as a client to
download video data from the other peers but also acts as
a server to upload video data for the other peers. Therefore,
while a peer can benefit from downloading data from the other
peers, he/she also incurs a cost in uploading data for the other
peers, where the cost can be resource spending on uploading
data, e.g., bandwidth, buffer size.

Given the group peers, u1, u2, ..., uN , we assume that k

peers are willing to serve as agents to download multimedia
data from the peers outside the group. Let the download rate be
the transmission speed between an agent and a corresponding
peer outside the group. If we denote that the download rates
of the k agents are r1, r2, ..., rk, then the total download rate
of the group peers is given by

yk =
k∑

i=1

ri. (1)

Since the agents randomly and independently select peers
outside the group for downloading data, the download rate
ris are random variables. According to [29], the cumulative
distribution function of a peer’s download bandwidth can be
modelled as a linear function, which means that the PDF of
a peer’s download bandwidth can be modelled as a uniform
distribution, i.e., ris are uniformly distributed.

To provide more insight into the cooperative streaming
problem, we first consider a simple scenario without buffering.
Then, we extend our discussion to the case when there
is buffering effect in Section VI. For the scenario without
buffering, if the total download rate yk is not smaller than
the source rate r, then the group peers can have a real-time
streaming, and all the group peers can obtain a certain gain
G. Otherwise, there will be some delay, and in this case we
assume the gain is zero. Therefore, given the total download
rate yk and the source rate r, if peer ui chooses to be an agent,
then the utility function of ui is given by

UA,i(k) = Pr(yk ≥ r)G − Ci ∀k ∈ [1, N] (2)

where Ci is the cost of ui when he/she serves as an agent,
and Pr(yk ≥ r) is the probability of achieving a real-time
streaming which can be computed according to Theorem 1.

Since the upload and download bandwidths within the group
are large, the cost of uploading data to the other peers within
the group can be negligible. In such a case, if peer ui chooses
not to be an agent, then there is no cost for ui and the utility
function becomes

UN,i(k) =

{
Pr(yk ≥ r)G if k ∈ [1, N − 1];
0 if k = 0.

(3)

Theorem 1: If r1, r2,..., rk are i.i.d. uniformly distributed
within [rL, rU], then Pr(yk ≥ r) is given by

Pr(yk ≥ r)

=
1

2k!

k∑
l=0

(−1)l
(
k

l

)[
(k − l)k−sgn(r̂ − l)(r̂ − l)k

]
(4)

and when k is sufficiently large, Pr(yk ≥ r) can be approxi-
mated as

Pr(yk ≥ r) ≈ Q

⎛
⎝ r̂ − k

2√
k

12

⎞
⎠ (5)

where r̂ = r−krL

rU−rL and Q(x) is the Gaussian tail function∫∞
x

1√
2π

exp− x2

2 dx.
Proof: See Appendix A.

III. Agents Selection Within A Homogeneous

Group

In the previous section, we have discussed the system model
and the peer’s utility function. To optimize the streaming
performance, proper peers should serve as agents to download
data from the peers outside the group. In this section, we will
discuss how to select agents within a homogeneous group
where the cost of all peers serving as an agent is assumed
to be the same.

A. Centralized Agent Selection

If there is a central controller who can choose which
peers should act as agents, then a straightforward criterion
of selecting proper agents is to maximize the social welfare,
which is the sum of all peers’ utilities.

Let Ci = C be the cost of a peer serving as an agent in
a homogeneous group. Then the social welfare of an N-peer
group with k agents can be calculated by

SW(k) = Pr(yk ≥ r)GN − kC. (6)

Based on (6), the agent selection problem to maximize the
social welfare can be formulated as

max
k

SW(k) = max
k

[
Pr(yk ≥ r)GN − kC

]
(7)

where k ∈ {1, 2, ..., N}.
By solving (7), we can find the optimal k� that maximizes

the social welfare. Then, the central controller can choose k�

peers from the group as agents to download data from the peers
outside the group based on some mechanism, e.g., the peers
take turns to serve as agents. However, since peers’ behaviors
are highly dynamic, they may join in or leave the P2P network
at any time. In such a case, the centralized approach may not
be practical.

B. Distributed Agent Selection

To overcome the drawback of the centralized approach, it
is possible to consider a distributed approach where each peer
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acts as an agent with probability x. Then, according to (2) and
(3), the group’s social welfare can be computed by

Utotal(x)=
N∑
i=1

(
N

i

)
xi(1 − x)N−i

[
Pr(yi ≥ r)GN − iC

]
. (8)

The problem of finding an optimal x to maximize the social
welfare can be formulated as

max
x

N∑
i=1

(
N

i

)
xi(1 − x)N−i

[
Pr(yi ≥ r)GN − iC

]
s.t. 0 ≤ x ≤ 1. (9)

However, since peers are selfish by nature, they are not
as cooperative as a system designer/controller desires. By
solving (9), we can find the optimal x� that maximizes the
social welfare, but x� cannot maximize each peer’s own
utility. Therefore, the social welfare maximizer x� is not
attainable when peers are selfish. Moreover, the solution to
the optimization problem shown in (9) is not stable since any
perturbation will lead to a new solution.

C. Evolutionary Cooperative Streaming Game

In order to provide a robust equilibrium strategy for the
selfish peers, we adopt the concept of ESS [30], [31], which
is defined as follows.

Definition 1: A strategy a� is an ESS if and only if, ∀a �= a�,
a� satisfies:

1) equilibrium condition: Ui(a, a�) ≤ Ui(a�, a�);
2) stability condition: if Ui(a, a�) = Ui(a�, a�), Ui(a, a) <

Ui(a�, a)

where Ui(a1, a2) is the utility of player i when he/she uses
strategy a1 and another player uses strategy a2.

Since all peers are selfish, they will cheat if cheating can
improve their payoffs, which means that all peers are uncertain
of other peers’ actions and utilities. In such a case, to improve
their utilities, peers will try different strategies in every play
and learn from the strategic interactions using the method-
ology of understanding-by-building. During the process, the
percentage of peers using a certain pure strategy may change.
Such a population evolution can be modelled by replicator
dynamics. Specifically, let xa stand for the probability of a
peer using pure strategy a ∈ A, where A = {A, N} is the set
of pure strategies including being an agent (A) and not being
an agent (N). By replicator dynamics, the evolution dynamics
of xa are given by the following differential equation:

ẋa = η[Ū(a, x−a) − Ū(xa)]xa (10)

where Ū(a, x−a) is the average payoff of the peers using pure
strategy a, x−a is the set of peers who use pure strategies
other than a, Ū(xa) is the average payoff of all peers, and η

is a positive scale factor.
From (10), we can see that if adopting pure strategy a can

lead to a higher payoff than the average level, the probability
of a peer using a will grow and the growth rate ẋa/xa is
proportional to the difference between the average payoff of
using strategy a [i.e., Ū(a, x−a)] and the average payoff of all
peers [i.e., Ū(xa)].

Fig. 2. Deceasing property of wi.

D. Analysis of the Cooperative Streaming Game

According to (2) and (3), the average payoff of a peer if
he/she choose to be an agent can be computed by

ŪA(x) =
N−1∑
i=0

(
N−1

i

)
xi(1 − x)N−1−i

[
Pr(yi+1 ≥ r)G − C

]
(11)

where x is the probability of a peer being an agent, and(
N−1

i

)
xi(1 − x)N−1−i is the probability that there are i agents

out of N − 1 other peers.
Similarly, the average payoff of a peer if he/she chooses not

to be an agent is given by

ŪN (x) =
N−1∑
i=1

(
N−1

i

)
xi(1 − x)N−1−iPr(yi ≥ r)G. (12)

According to (11) and (12), the average payoff of a peer is

Ū(x) = xŪA(x) + (1 − x)ŪN (x). (13)

Substituting (13) back to (10), we have

ẋ = ηx(1 − x)[ŪA(x) − ŪN (x)]. (14)

At equilibrium x�, no player will deviate from the optimal
strategy, which means ẋ� = 0, and we can obtain x� = 0, 1,
or the solutions to ŪA(x) = ŪN (x). However, since ẋ� = 0 is
only the necessary condition for x� to be ESS, we examine
the sufficient condition for each ESS candidate and draw the
following conclusions with the proofs shown in Theorems 2–4.

1) x� = 0 is an ESS only when Pr(y1 ≥ r)G − C ≤ 0.
2) x� = 1 is an ESS only when Pr(yN ≥ r)G − Pr(yN−1 ≥

r)G ≥ C.
3) Let x� be the solution to ŪA(x) = ŪN (x), and x� ∈ (0, 1).

Then, x� is an ESS.

Lemma 1: Let f (x) = ŪA(x)− ŪN (x), then f ′(x) < 0, ∀x ∈
[0, 1].



1350 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 20, NO. 10, OCTOBER 2010

Proof: According to (11) and (12), we have

f (x) =
N−1∑
i=0

(
N−1

i

)
xi(1 − x)N−1−iwi − C (15)

where wi = [Pr(yi+1 ≥ r) − Pr(yi ≥ r)]G.

1) ∀x ∈ (0, 1), by taking the derivative of f (x) over x, we
have

f ′(x) =
N−1∑
i=0

(
N−1

i

)
xi−1(1 − x)N−2−i[i − (N − 1)x]wi

=
i1∑
i=0

(
N−1

i

)
xi−1(1 − x)N−2−i[i − (N − 1)x]wi

+
N−1∑
i=i1+1

(
N−1

i

)
xi−1(1 − x)N−2−i[i − (N − 1)x]wi

(16)

where i1 is the integer such that i1 ≤ (N − 1)x and
i1 + 1 > (N − 1)x.
Since wi stands for the additional gain by introducing
one more agent into the i-agent system, as shown in Fig.
2, it is a decreasing function in terms of i, which means
that wi ≥ wi1 , ∀i ≤ i1 and wi ≤ wi1 , ∀i > i1. Therefore,
according to (16), we have

f ′(x) <

i1∑
i=0

(
N−1

i

)
xi−1(1 − x)N−2−i[i − (N − 1)x]wi1

+
N−1∑
i=i1+1

(
N−1

i

)
xi−1(1 − x)N−2−i[i − (N − 1)x]wi1

=wi1

N−1∑
i=0

(
N−1

i

)
xi−1(1 − x)N−2−i[i − (N − 1)x]

=wi1

d

[∑N−1
i=0

(
N−1

i

)
xi(1 − x)N−1−i

]
dx

=0. (17)

Therefore, f ′(x) < 0, ∀x ∈ (0, 1).
2) The derivative of f (x) over x at x = 0 can be computed

by

f ′(0) = lim
ε→0

f (ε) − f (0)

ε

= lim
ε→0

∑N−1
i=0

(
N−1

i

)
εi(1 − ε)N−1−iwi − w0

ε

= lim
ε→0

(1 − ε)N−1w0 − w0

ε

+ lim
ε→0

(N − 1)ε(1 − ε)N−2w1

ε
= (N − 1)(w1 − w0)

< 0 (18)

where the last inequality comes from the fact that wi is
a decreasing function in terms of i.

3) Similarly, the derivative of f (x) over x at x = 1 can be
computed by

f ′(1) = lim
ε→0

f (1) − f (1 − ε)

ε

= lim
ε→0

wN−1 − ∑N−1
i=0

(
N−1

i

)
(1 − ε)iεN−1−iwi

ε

= lim
ε→0

wN−1 − (1 − ε)N−1wN−1

ε

+ lim
ε→0

−(N − 1)(1 − ε)N−2εwN−2

ε
= (N − 1)(wN−1 − wN−2)

< 0 (19)

where the last inequality comes from the fact that wi is
a decreasing function in terms of i.

In all, f ′(x) < 0, ∀x ∈ [0, 1]. This completes the proof of the
lemma.

Theorem 2: The condition for x� = 0 to be an ESS is
Pr(y1 ≥ r)G − C ≤ 0.

Proof: According to (11-13), the utility that a peer using
mixed strategy x and the other peers use mixed strategy x� = 0
can be written as

Ū(x, 0) = ŪN (0) + (ŪA(0) − ŪN (0))x

where ŪA(0) = Pr(y1 ≥ r)G − C and ŪN (0) = 0.

1) If Pr(y1 ≥ r)G−C > 0, i.e. ŪA(0) > ŪN (0), every peer
will deviate to x = 1 to obtain ŪA(0) rather than ŪN (0).

2) If Pr(y1 ≥ r)G−C < 0, i.e. ŪA(0) < ŪN (0), every peer
will stay at x = 0 to obtain ŪN (0) rather than ŪA(0).

3) If Pr(y1 ≥ r)G − C = 0, i.e. ŪA(0) = ŪN (0), then
Ū(x, 0) = 0 ∀x, and f (0) = ŪA(0) − ŪN (0) = 0.
According to Lemma 1, we know that f ′(x) < 0
∀x ∈ [0, 1], so f (x) = ŪA(x) − ŪN (x) < 0. In such
a case, Ū(0, x) = ŪN (x) > Ū(x, x) = ŪN (x) + (ŪA(x) −
ŪN (x))x, which means x� = 0 is an ESS according to
Definition 1.

Therefore, x� = 0 is an ESS only when Pr(y1 ≥ r)G−C ≤ 0.
Theorem 3: The condition for x� = 1 to be an ESS is

Pr(yN ≥ r)G − Pr(yN−1 ≥ r)G ≥ C.
Proof: According to (11)–(13), the utility that a peer using

mixed strategy x and the other peers use mixed strategy x� = 1
can be written as

Ū(x, 1) = ŪN (1) + (ŪA(1) − ŪN (1))x

where ŪA(1) = Pr(yN ≥ r)G−C and ŪN (1) = Pr(yN−1 ≥ r)G.

1) If Pr(yN ≥ r)G − Pr(yN−1 ≥ r)G < C, i.e., ŪN (1) >

ŪA(1), every peer will deviate to x = 0 to obtain ŪN (1)
rather than ŪA(1).

2) If Pr(yN ≥ r)G − Pr(yN−1 ≥ r)G > C, i.e., ŪN (1) <

ŪA(1), every peer will stay at x = 1 to obtain ŪA(1)
rather than ŪN (1).

3) If Pr(yN ≥ r)G − Pr(yN−1 ≥ r)G = C, i.e. ŪN (1) =
ŪA(1), then Ū(x, 1) = ŪN (1) ∀x, and f (1) = ŪA(1) −
ŪN (1) = 0. According to Lemma 1, we know that
f ′(x) < 0 ∀x ∈ [0, 1], so f (x) = ŪA(x) − ŪN (x) > 0.
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In such a case, Ū(1, x) = ŪN (x) + (ŪA(x) − ŪN (x))1 >

Ū(x, x) = ŪN (x)+(ŪA(x)−ŪN (x))x which means x� = 1
is an ESS according to Definition 1.

Therefore, x� = 1 is an ESS only when Pr(yN ≥ r)G −
Pr(yN−1 ≥ r)G ≥ C.

Theorem 4: If x� ∈ (0, 1) is a solution to ŪA(x) = ŪN (x),
then x� is an ESS.

Proof: Let Ūi(x, x�) be the utility of player i when player
i uses mixed strategy x and other users use mixed strategy x�.
Then, we have

Ūi(x, x�) = xŪA(x�) + (1 − x)ŪN (x�). (20)

Since x� is a solution to ŪA(x) = ŪN (x), we have ŪA(x�) =
ŪN (x�). Therefore, (20) becomes

Ūi(x, x�) = ŪA(x�) = Ūi(x
�, x�), (21)

which means x� satisfies the equilibrium condition shown in
Definition 1.

Moreover, according to (13), we have

Ūi(x, x) = ŪN (x) + (ŪA(x) − ŪN (x))x (22)

and

Ūi(x
�, x) = ŪN (x) + (ŪA(x) − ŪN (x))x�. (23)

Therefore, we have

Ūi(x
�, x) − Ūi(x, x) = (ŪA(x) − ŪN (x))(x� − x). (24)

From Lemma 1, we know that f (x) = ŪA(x) − ŪN (x) is
a monotonically decreasing function. Since ŪA(x�) = ŪN (x�),
ŪA(x) − ŪN (x) > 0 if x < x�, and ŪA(x) − ŪN (x) < 0 if
x > x�. Therefore, (ŪA(x) − ŪN (x))(x� − x) > 0, ∀x �= x�, that
is

Ūi(x
�, x) > Ūi(x, x), ∀x �= x� (25)

which means x� satisfies the stability condition shown in
Definition 1.

According to (21) and (25), we know that x� is an ESS.

IV. Agents Selection Within A Heterogeneous

Group

In this section, we will discuss how to select agents within
a heterogeneous group where the costs of the peers acting as
agents are different.

Let xi,ai
stand for the probability of peer ui using pure strat-

egy ai ∈ A. By replicator dynamics, the evolution dynamics
of xi,ai

are given by the following differential equation:

ẋi,ai
= η[Ūi(ai, x−i) − Ūi(xi)]xi,ai

(26)

where Ūi(ai, x−i) is the average payoff of peer ui using pure
strategy ai, Ūi(xi) is the average payoff of peer ui using mixed
strategy xi, and η is a positive scale factor.

Since it is generally very difficult to represent Ūi(ai, x−i)
and Ūi(xi) in a compact form, in the following, we first analyze
a two-player game to gain some insight. Then, we generalize
the observation in the two-player game to the multi-player
game.

TABLE I

Utility Table of a Two-Player Game

“A′′ “N”
“A” (B2 − C1, B2 − C2) (B1 − C1, B1)
“N” (B1, B1 − C2) (0, 0)

A. Two-Player Game

Let x1 and x2 be the probability of u1 and u2 being an
agent, respectively. Let B1 = Pr(y1 ≥ r)G and B2 = Pr(y2 ≥
r)G. Then, the payoff matrix of u1 and u2 can be written as
in Table I. Therefore, the average payoff Ū1(A, x2) can be
computed by

Ū1(A, x2) = (B2 − C1)x2 + (B1 − C1)(1 − x2) (27)

and the average payoff Ū1(x1) becomes

Ū1(x1) = (B2 − C1)x1x2

+ (B1 − C1)x1(1 − x2) + B1(1 − x1)x2. (28)

According to (26), the replicator dynamics equation of u1

is given by
ẋ1 = ηx1(1 − x1) [B1 − C1 − (2B1 − B2)x2] . (29)

Similarly, the replicator dynamics equation of u2 can be
computed by

ẋ2 = ηx2(1 − x2) [B1 − C2 − (2B1 − B2)x1] . (30)

At equilibrium, we know that ẋ1 = 0 and ẋ2 = 0. According
to (29) and (30), we can get five equilibria: (0, 0), (0, 1), (1, 0),
(1, 1), and the mixed strategy equilibrium

(
B1−C2
2B1−B2

, B1−C1
2B1−B2

)
.

According to [32], if an equilibrium of the replicator dy-
namics equations is a locally asymptotically stable point in
a dynamic system, it is an ESS. Therefore, by viewing (29)
and (30) as a nonlinear dynamic system and analyzing the
corresponding Jacobian matrix, we can examine whether the
five equilibria are ESSs. By taking partial derivatives of (29)
and (30), the Jacobian matrix can be written as

J =

⎡
⎢⎢⎢⎣

∂ẋ1

∂x1

∂ẋ1

∂x2

∂ẋ2

∂x1

∂ẋ2

∂x2

⎤
⎥⎥⎥⎦ = η

[
J11 J12

J21 J22

]
(31)

where J11 = (1−2x1)(B1 −C1 − (2B1 −B2)x2), J12 = −x1(1−
x1)(2B1 − B2), J21 = −x2(1 − x2)(2B1 − B2), and J22 = (1 −
2x2)(B1 − C2 − (2B1 − B2)x1).

The asymptotical stability requires that det(J) > 0 and
tr(J) < 0 [32]. Substituting the five equilibria, i.e. (0, 0),
(0, 1), (1, 0), (1, 1), and

(
B1−C2
2B1−B2

, B1−C1
2B1−B2

)
, to (31), we con-

clude that the following.
1) If B2 − B1 − C1 > 0 and B2 − B1 − C2 > 0, there is

a unique ESS (1, 1), where both u1 and u2 converge to
be agents.

2) Elseif B2 −B1 −C1 > 0 and B2 −B1 −C2 < 0, there is
a unique ESS (1, 0), where u1 converges to be an agent
and u2 converges to be a free-rider.

3) Elseif B2 −B1 −C1 < 0 and B2 −B1 −C2 > 0, there is
a unique ESS (0, 1), where u2 converges to be an agent
and u1 converges to be a free-rider.
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Algorithm 1 : A Distributed Learning Algorithm for ESS

1. Given the step size η and the slot index t = 0, each peer
ui initializes xi with xi(0).
2. During slot t, for q = 1 : M,

1) ui tosses a coin with probability xi(t) being head.
If the outcome is head, ui serves as an agent and
downloads data from the peers outside the group
with download rate ri(t, q). On the other hand, if the
outcome is tail, ui acts as a free-rider and downloads
the data from the agents.

2) ui computes his/her utility using (34).
3) ui computes the indicator function using (33).

3. Then, ui approximates Ūi(A, x−i(t)) and Ūi(xi(t)) using
(35) and (36).
4. Finally, ui updates the probability of being an agent xi(t)
using (32).

4) Else, there are two ESSs (0, 1) and (1, 0), where the con-
verged strategy profiles depends on the initial strategy
profiles.

From the above analysis, we can see that when the gain of
being an agent (B2 − B1) is greater than the cost of being an
agent (C1 or C2), the peer tends to be an agent. And the peer
with a higher cost tends to be a free-rider and rely on the peer
with a lower cost.

B. Multi-Player Game

From the analysis of the two-player game, we can infer that
the peer with a higher cost (Ci) tends to take advantage of the
peer with a lower cost. This observation can be extended to
multi-player game. If there are more than two peers in the
game, the strategy of the peers with higher Cis will converge
to “N” with a greater probability. The peers with lower Cis
tend to be agents since they suffer relatively heavier losses if
no one serves as an agent.

V. A Distributed Learning Algorithm for ESS

From the previous two sections, we can see that the ESS can
be found by solving the replicator dynamics equations [(14)
or (26)]. However, solving the replicator dynamics equations
require the exchange of private information and strategies
adopted by other peers. In this section, we will present a
distributed learning algorithm that can gradually converge to
ESS without information exchange.

We first discretize the replicator dynamics equation shown
in (26) as

xi(t + 1) = xi(t) + η
[
Ūi(A, x−i(t)) − Ūi(xi(t))

]
xi(t) (32)

where t is the slot index and xi(t) is the probability of ui being
an agent during slot t. Here, we assume that each slot can be
further divided into M subslots and each peer can choose to
be an agent or not at the beginning of each subslot.

From (32), we can see that in order to update xi(t + 1), we
need to first compute Ūi(A, x−i(t)) and Ūi(xi(t)). Let us define

an indicator function 1i(t, k) as

1i(t, q)=

{
1 if ui is an agent at subslot q in slot t

0 else
(33)

where q is the subslot index.
The immediate utility of ui at subslot q in slot t can be

computed by

Ui(t, q) =

⎧⎪⎪⎨
⎪⎪⎩

G − Ci if ui is an agent and rt ≥ r

−Ci if ui is an agent and rt < r

G if ui is not an agent and rt ≥ r

0 if ui is not an agent and rt < r

(34)

where rt is the total download rate of the agents and r is the
source rate.

Then, Ūi(A, x−i(t)) can be approximated using

Ūi(A, x−i(t)) =

∑M
q=1 Ui(t, q)1i(t, q)∑M

q=1 1i(t, q)
. (35)

Similarly Ūi(xi(t)) can be approximated as

Ūi(xi(t)) =
1

M

M∑
q=1

Ui(t, q). (36)

Based on (32)–(36), ui can gradually learn the ESS. In
Algorithm 1, we summarize the detailed procedures of the
proposed distributed learning algorithm.

VI. Simulation Results

In all simulations, the parameters G, rL, and rU are set to
be 1, 50, and 800, respectively. For convenience, in the rest
of this paper, we denote the centralized approach maximizing
the social welfare shown in (7) as MSW-C, the distributed
approach maximizing the social welfare shown in (9) as
MSW-D, and the ESS-based approach as ESS-D. We compare
the proposed methods with the traditional P2P non-cooperation
method, denoted as Non-Coop. In Non-Coop, each peer
acts as an individual and randomly selects some peers for
downloading video streams. Such a protocol has been widely
used in the existing P2P systems, e.g., Coolstreaming [7] and
PPLive [8].

In the first simulation, we show the social welfare (the sum
of all peers’ utilities) comparison among different approaches,
where we assume that there are 20 homogenous peers and
the cost C is 0.1. As show in Fig. 3, MSW-C achieves the
best social welfare performance since its objective function is
to maximize the social welfare with pure strategy. By using
the mixed strategy to maximize the social welfare, MSW-D
achieves the second best social welfare performance. However,
as discussed in Section III. B, the solution to MSW-D is not
stable. With ESS-D, a stable NE solution can be obtained at
the cost of a slight loss in social welfare. Nevertheless, all
three proposed algorithms perform much better than the Non-
Coop method. In Non-Coop, the social welfare performance
decreases linearly in terms of the source rate. With cooperation
and adaptively selecting the proper number of agents, all
three proposed algorithms can preserve a high social welfare
performance even with a large source rate.
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Fig. 3. Social welfare comparison among Non-Coop, MSW-C, MSW-D,
and ESS-D.

Fig. 4. Behavior dynamic of a homogeneous group of peers.

In the second simulation, we evaluate the convergence prop-
erty of the ESS-D. In Fig. 4, we show the replicator dynamic
of the cooperation streaming game with homogeneous peers,
where C = 0.1 and r = 500. We can see that starting from a
high initial value, all peers gradually reduce their probabilities
of being an agent since being a free-rider more often can bring
a higher payoff. However, since too low a probability of being
an agent increases the chance of having no peer be an agent,
the probability of being an agent will finally converge to a
certain value which is determined by the number of peers.

In Fig. 5, we show the replicator dynamic of the cooperation
streaming game with 20 heterogeneous peers, where r = 500
and the cost Ci is randomly chosen from [0.1, 0.3]. We further
assume that Ci is monotonically increasing in i where u1 has
the lowest cost and u20 has the highest cost. From Fig. 5,
we can see that the peers with lower costs (u1, u2, and u3

in this simulation) converge to be an agent while the peers
with higher costs (u4 − u20 in this simulation) converge to be
a free-rider. This observation coincides with our conclusion
in Section IV-B, which is the following: the peers with lower

Fig. 5. Behavior dynamic of a heterogeneous group of peers.

Fig. 6. Probability of real-time streaming comparison between Non-Coop
and ESS-D.

costs tend to be an agent since they suffer relatively higher
losses if no one serves as an agent. Note that due to the space
limitation, we only show the behavior dynamics of u1 − u4.
All other peers u5 − u20 have the similar behavior dynamics
with u4, and they all converge to be free-riders.

In the third simulation, we compare the performance of
Non-Coop and ESS-D in terms of the probability of real-time
streaming, which is defined as the probability that the total
download rate is greater than the source rate. The simulation
results are shown in Fig. 6. We can see that with cooperation,
the probability of real-time streaming can be significantly
improved especially at the high source rate region. We also
find that at the high source rate region, the probability of real-
time streaming increases as N increases.

The visual quality comparison between Non-Coop and
ESS-D is shown in Fig. 7. In this simulation, we fix the
probability of real-time streaming to be 0.85. According to
Fig. 6, we can see that the corresponding source rates for
“Non-Coop,” “ESS-D with N=2,” “ESS-D with N=3,” and
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Fig. 7. Visual quality comparison. (a) Non-Coop. (b) ESS-D with N = 2. (c) ESS-D with N = 3. (d) ESS-D with N = 4.

“ESS-D with N=4” are around 100 kb/s, 300 kb/s, 520 kb/s,
and 720 kb/s, respectively. By setting the above source rates as
the target bitrates, we encode the Foreman sequence with CIF
format using H.264 encoder. From Fig. 7, we can see that the
video visual quality with the proposed ESS-D is much better
than that with Non-Coop.

Then, we show the simulation result of the source rate vs.
the utility. As shown in Fig. 8, without cooperation, if the
peer requires a utility around 0.8, the source rate cannot be
larger than 130 kb/s. However, with cooperation, the source
rate can be more than 400 kb/s even when there are only 2
peers. Therefore, with cooperation, the peers can enjoy much
higher quality video with the same utility.

In the fourth simulation, we consider the case that the
peers in the same group are viewing multiple channels with
L being the number of the channels. We assume that the
source rate is the same for all channels and there are 20
homogenous peers with the cost C = 0.1. Similar to the view-
upload decoupling (VUD) scheme [33], the uploading and
downloading are decoupled in the proposed ESS-D algorithm
in this case. We allow cooperation among all the peers where
the agent may download source data that he/she is not viewing.
As shown in Fig. 9, without cooperation, if the peer requires
a utility around 0.8, the source rate cannot be larger than 130

Fig. 8. Single-source rate comparison between Non-Coop and ESS-D.

kb/s in the Non-Coop method. However, with the proposed
ESS-D algorithm, the source rate can be around 240 kb/s
even when the peers are view 8 different channels. This
phenomenon fully demonstrates the efficiency of the proposed
method.
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Fig. 9. Multi-source rate comparison between Non-Coop and ESS-D.

Fig. 10. Social welfare comparison between Non-Coop and ESS-D when
the utility function is defined as (37).

In the last simulation, we consider the scenario when there is
buffering effect. In such a scenario, the gain in the utility will
not drop to zero when the total download rate is smaller than
the source rate. Instead, the gain should maintain a positive
value due to the existence of buffers. One possible utility
function that considers the buffering effect is

UA,i(k) =
1

ln(r)
E
[
ln(yk)

]
G − Ci∀k ∈ [1, N]

UN,i(k) =

⎧⎪⎨
⎪⎩

1

ln(r)
E
[
ln(yk)

]
G if k ∈ [1, N − 1]

0 if k = 0.

(37)

From the above utility function, we can see that for any
given source rate r, the gain increases as the total download
rate yk increases. Moreover, since the probability of playback
delay becomes smaller with more data in the buffer, a certain
increase in the high yk region should lead to a less significant
gain than that in the low yk region [34]. Here, we use the ln(.)
function to characterize such properties. Nevertheless, other
functions that have similar properties can also be used.

The social welfare comparison between Non-Coop and
ESS-D with the utility function in (37) is shown in Fig. 10.
From Fig. 10, we can see that when the utility function in
(37) is used, the social welfare performance of Non-Coop
no longer decreases linearly in terms of the source rate. This
phenomenon is mainly because, with the existence of buffers,
the gain will not drop to zero when the total download rate
is smaller than the source rate. Nevertheless, ESS-D can still
lead to a much higher social welfare performance for all source
rates, compared with Non-Coop. Moreover, we should notice
that all the analysis in Section III is still applicable to the
utility function in (37).

VII. Conclusion

In this paper, we proposed a cooperative streaming scheme
to address the network inefficiency problem encountered by
the traditional non-cooperative P2P schemes. We answer the
question of how a group of selfish peers with large intra-
group upload and download bandwidths cooperate with each
other to achieve better streaming performance by formulating
the problem as an evolutionary game and deriving the ESS
for every peer. We further proposed a distributed learning
algorithm for each peer to converge to the ESS by learning
from his/her own past payoff history. From the simulation
results, we can see that compared with the traditional non-
cooperative P2P schemes, the proposed algorithm achieves
much better social welfare, higher probability of real-time
streaming, and better video quality (higher source rate). More-
over, by incorporating with the recent proposed VUD scheme,
the proposed cooperative streaming scheme allows the peers
who are viewing different videos to cooperate with each other
and mutually improve the streaming performance.

Appendix

A. Proof of Theorem 1

Proof: Let r̂l = rl−rL

rU−rL , ∀l, then r̂1, r̂2, ..., r̂k are i.i.d. uni-
formly distributed with [0, 1]. And the characteristic function
of r̂l is given by

φ(t) =
i(1 − eit)

t
. (38)

Let ŷk =
∑k

l=1 r̂l, then the characteristic function of ŷk can
be computed by

φŷk
(t) =

(
i(1 − eit)

t

)k

. (39)

Therefore, the density function of ŷk is

fŷk
(y)=F−1

t

[(
i(1 − eit)

t

)k
]

(y)

=
1

2(k − 1)!

k∑
l=0

(−1)l
(

k

l

)
sgn(y − l)(y − l)k−1. (40)
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Since Pr(yk ≥ r) = Pr(ŷk ≥ r̂), according to (40), we have

Pr(yk ≥ r)

= Pr(ŷk ≥ r̂) =
∫ ∞

r̂

fŷk
(y)dy

=
1

2k!

k∑
l=0

(−1)l
(

k

l

)[
(k − l)k − sgn(r̂ − l)(r̂ − l)k

]
. (41)

When k is sufficiently large, according to the central limit
theory, the distribution of ŷk can be approximated as Gaussian
distribution N( k

2 , k
12 ). Therefore, we have

Pr(yk ≥ r) = Pr(ŷk ≥ r̂) ≈ Q

⎛
⎝ r̂ − k

2√
k

12

⎞
⎠ . (42)

References

[1] Accustream iMedia Research Homepage [Online]. Available:
http://www.accustreamresearch.com

[2] YouTube [Online]. Available: http://www.youtube.com
[3] S. Deering and D. Cheriton, “Multicast routing in datagram inter-

networks and extended lans,” ACM Trans. Comput. Syst., vol. 8, no. 2,
pp. 85–111, 1990.

[4] L. Kontothanassis, R. Sitaraman, J. Wein, D. Hong, R. Kleinberg,
B. Mancuso, D. Shaw, and D. Stodolsky, “A transport layer for live
streaming in a content delivery network,” IEEE Proc., vol. 92, no. 9,
pp. 1408–1419, Sep. 2004.

[5] Y. Liu, Y. Guo, and C. Liang, “A survey on peer-to-peer video streaming
systems,” J. Peer-to-Peer Netw. Applicat., vol. 1, no. 1, pp. 18–28, 2008.

[6] Y. Chu, S. G. Rao, and H. Zhang, “A case for end system multicast,”
in Proc. ACM SIGMETRICS, 2000, pp. 1–12.

[7] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum, “Coolstreaming: A data-driven
overlay network for peer-to-peer live media streaming,” in Proc. IEEE
Conf. Comput. Commun. (INFOCOM), 2005, pp. 2102–2111.

[8] PPLive [Online]. Available: http://www.pplive.com
[9] PPStream [Online]. Available: http://www.ppstream.com

[10] UUSee [Online]. Available: http://www.uusee.com
[11] Sopcast [Online]. Available: http://www.sopcast.com
[12] X. Hei, C. Liang, J. Liang, Y. Liu, and K. Ross, “A measurement study

of a large-scale P2P IPTV system,” IEEE Trans. Multimedia, vol. 9,
no. 8, pp. 1672–1687, Dec. 2007.

[13] H. Xie, Y. R. Yang, A. Krishnamurthy, Y. Liu, and A. Siberschatz, “P4P:
Provider portal for applications,” in Proc. ACM SIGCOMM, 2008, pp.
351–362.

[14] T. Karagiannis, P. Rodriguez, and K. Papagiannaki, “Should internet ser-
vice providers fear peer-assisted content distribution?” in Proc. Internet
Meas. Conf., 2005, p. 6.

[15] S. Seetharaman and M. Ammar, “Characterizing and mitigating inter-
domain policy violations in overlay routes,” in Proc. IEEE Int. Conf.
Netw. Protocols, 2006, pp. 259–268.

[16] M. Xiao and D. Xiao, “Understanding peer behavior and designing
incentive mechanism in peer-to-peer networks: An analytical model
based on game theory,” in Proc. ICA3PP, 2007, pp. 368–379.

[17] A. Habib and J. Chuang, “Service differentiated peer selection: An
incentive mechanism for peer-to-peer media streaming,” IEEE Trans.
Multimedia, vol. 8, no. 3, pp. 610–621, Jun. 2006.

[18] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson, A. Kr-
ishnamurthy, and A. Venkataramani, “iplane: An information plane for
distributed services,” in Proc. 7th Symp. OSDI, 2006, pp. 367–380.

[19] D. Purandare and R. Guha, “An alliance based peering scheme for p2p
live media streaming,” IEEE Trans. Multimedia, vol. 9, no. 8, pp. 1633–
1644, Dec. 2007.

[20] V. Vishumurthy, S. Chandrakumar, and E. Sirer, “KARMA: A secure
economic framework for peer-to-peer resource sharing,” in Proc. Work-
shop Econ. Peer-to-Peer Syst., 2003.

[21] P. Golle, K. Leyton-Brown, and I. Mironov, “Incentive for sharing in
peer-to-peer networks,” in Proc. ACM Conf. Electron. Commerce, 2001,
pp. 75–87.

[22] S. Marti and H. Garcia-Molina, “Limited reputation sharing in P2P
systems,” in Proc. 5th ACM Conf. Electron. Commerce, 2004, pp. 91–
101.

[23] M. Gupta, P. Judge, and M. Ammar, “A reputation system for peer-to-
peer networks,” in Proc. ACM 13th Int. Workshop Netw. Operating Syst.
Support Digital Audio Video, 2003, pp. 144–152.

[24] B. Wang, Y. Wu, and K. J. R. Liu, “Game theory for cognitive radio
networks: An overview,” Comput. Netw., vol. 54, no. 14, pp. 2537–2561,
Oct. 2010.

[25] H. Zhao, W. Lin, and K. J. R. Liu, “Behavior modeling and forensics for
multimedia social networks: A case study in multimedia fingerprinting,”
IEEE Signal Process. Mag., vol. 26, no. 1, pp. 118–139, Jan. 2009.

[26] I. Ahmad and J. Luo, “On using game theory for perceptually tuned rate
control algorithm for video coding,” IEEE Trans. Circuits Syst. Video
Technol., vol. 16, no. 2, pp. 202–208, Feb. 2006.

[27] Y. Chen, B. Wang, and K. J. R. Liu, “Multi-user rate allocation games
for multimedia communications,” IEEE Trans. Commun., vol. 11, no. 6,
pp. 1170–1181, Oct. 2009.

[28] W. S. Lin, H. V. Zhao, and K. J. R. Liu, “Incentive cooperation strategies
for peer-to-peer live multimedia streaming social networks,” IEEE Trans.
Multimedia, vol. 11, no. 3, pp. 396–412, Apr. 2009.

[29] C. Huang, J. Li, and K. W. Ross, “Can internet video-on-demand be
profitable?” in Proc. ACM SIGCOMM, 2007, pp. 133–144.

[30] J. M. Smith, Evolutionary and the Theory of Games. Cambridge, MA:
Cambridge University Press, 1982.

[31] B. Wang, K. J. R. Liu, and T. C. Clancy, “Evolutionary cooperative
spectrum sensing game: How to collaborate,” IEEE Trans. Commun.,
vol. 58, no. 3, pp. 890–900, Mar. 2010.

[32] R. Cressman, Evolutionary Dynamics and Extensive Form Games.
Cambridge, MA: MIT Press, 2003.

[33] D. Wu, C. Liang, Y. Liu, and K. W. Ross, “View-upload decoupling:
A redesign of multi-channel P2P video systems,” in Proc. IEEE INFO-
COM, 2009, pp. 2760–2730.

[34] Y. Chen, Y. Wu, B. Wang, and K. Liu, “Spectrum auction games
for multimedia streaming over cognitive radio networks,” IEEE Trans.
Commun., vol. 58, no. 8, pp. 2381–2390, Aug. 2010.

Yan Chen (S’06) received the Bachelors degree
from the University of Science and Technology of
China, Hefei, Anhui, China, in 2004, and the M.Phil.
degree from the Hong Kong University of Science
and Technology, Clear Water Bay, Hong Kong, in
2007. He is currently pursuing the Ph.D. degree
from the Department of Electrical and Computer
Engineering, University of Maryland, College Park.

His current research interests include game the-
oretical modeling for multimedia social networks,
multimedia signal processing, cooperative multime-

dia communication and networking, and multimedia forensics.
Mr. Chen received the University of Maryland Future Faculty Fellowship

in 2010.

Beibei Wang (S’07) received the B.S. degree in
electrical engineering (with highest honors) from
the University of Science and Technology of China,
Hefei, China, in 2004, and the Ph.D. degree in elec-
trical engineering from the University of Maryland,
College Park, in 2009.

She is currently a Research Associate with the
Department of Electrical and Computer Engineer-
ing, University of Maryland. Her current research
interests include dynamic spectrum allocation and
management in cognitive radio systems, wireless

communications and networking, game theory, wireless multimedia, and
network security.

Dr. Wang was the recipient of the Graduate School Fellowship, the Future
Faculty Fellowship, and the Dean’s Doctoral Research Award from the
University of Maryland.



CHEN et al.: COOPERATIVE PEER-TO-PEER STREAMING: AN EVOLUTIONARY GAME-THEORETIC APPROACH 1357

W. Sabrina Lin (M’06) received the B.S. and M.S.
degrees from National Taiwan University, Taipei
City, Taiwan, in 2002 and 2004, respectively, and
the Ph.D. degree from the University of Maryland,
College Park, in 2009, all in electrical engineering.

She is currently with the Department of Electrical
and Computer Engineering, University of Maryland.
Her current research interests include the area of in-
formation security and forensics, multimedia signal
processing, and multimedia social network analysis.

Dr. Lin received the University of Maryland Future
Faculty Fellowship in 2007.

Yongle Wu (S’08) received the B.S. (with highest
honors) and M.S. degrees in electronic engineering
from Tsinghua University, Beijing, China, in 2003
and 2006, respectively. He is currently working
toward the Ph.D. degree from the Department of
Electrical and Computer Engineering, University of
Maryland, College Park.

His current research interests include the areas of
wireless communications and networks, including
cognitive radio techniques, dynamic spectrum ac-
cess, and network security.

Mr. Wu received the Graduate School Fellowship from the University of
Maryland in 2006, and the Future Faculty Fellowship from the A. James
Clark School of Engineering, University of Maryland, in 2009.

K. J. Ray Liu (F’03) was a Distinguished Scholar-
Teacher with the University of Maryland, College
Park, in 2007. He is an Associate Chair of the
Graduate Studies and Research of the Department
of Electrical and Computer Engineering and leads
the Maryland Signals and Information Group where
he conducts research encompassing broad aspects
of wireless communications and networking, infor-
mation forensics and security, multimedia signal
processing, and biomedical engineering. His recent
books include Cognitive Radio Networking and Se-

curity: A Game Theoretical View (Cambridge University Press, 2010), Coop-
erative Communications and Networking (Cambridge University Press, 2008),
Resource Allocation for Wireless Networks: Basics, Techniques, and Applica-
tions (Cambridge University Press, 2008), Ultra-Wideband Communication
Systems: The Multiband OFDM Approach (IEEE-Wiley, 2007), Network-
Aware Security for Group Communications (Springer, 2007), Multimedia
Fingerprinting Forensics for Traitor Tracing (Hindawi, 2005), and Handbook
on Array Processing and Sensor Networks (IEEE-Wiley, 2009).

He is the recipient of numerous honors and awards, including the IEEE
Signal Processing Society Technical Achievement Award and Distinguished
Lecturer Award. He received various teaching and research recognitions from
the University of Maryland, including the University-Level Invention of the
Year Award, and the Poole and Kent Senior Faculty Teaching Award and
Outstanding Faculty Research Award, both from the A. James Clark School
of Engineering. He is a Fellow of AAAS. He is the President-Elect and was
the Vice President of Publications of the IEEE Signal Processing Society. He
was the Editor-in-Chief of the IEEE Signal Processing Magazine and
the Founding Editor-in-Chief of the EURASIP Journal on Advances in Signal
Processing.


