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Abstract—In this paper, we introduce TR-BREATH, a time-
reversal (TR) based contact-free breathing monitoring system.
It is capable of breathing detection and multi-person breathing
rate estimation within a short period of time using off-the-shelf
WiFi devices. The proposed system exploits the channel state
information (CSI) to capture the miniature variations in the envi-
ronment caused by breathing. To magnify the CSI variations, TR-
BREATH projects CSIs into the TR resonating strength (TRRS)
feature space and analyzes the TRRS by the Root-MUSIC and
affinity propagation algorithms. Extensive experiment results
indoor demonstrate a perfect detection rate of breathing. With
only 10 seconds of measurement, a mean accuracy of 99% can
be obtained for single-person breathing rate estimation under
the non-line-of-sight (NLOS) scenario. Furthermore, it achieves
a mean accuracy of 98.65% in breathing rate estimation for a
dozen people under the line-of-sight (LOS) scenario and a mean
accuracy of 98.07% in breathing rate estimation of 9 people
under the NLOS scenario, both with 63 seconds of measurement.
Moreover, TR-BREATH can estimate the number of people with
an error around 1. We also demonstrate that TR-BREATH is
robust against packet loss and motions. With the prevailing of
WiFi, TR-BREATH can be applied for in-home and real-time
breathing monitoring.

Index Terms—Channel state information, time-reversal,
breathing rate estimation, breathing detection.

I. INTRODUCTION

Breathing rate is an important vital indicator for the health
status and predictor of medical conditions [1]. Breathing
monitoring is the key technology in the future medical care
system. Nevertheless, most conventional breathing monitoring
methods are invasive in that they require physical contact with
human bodies.

Contact-free breathing monitoring schemes are developed
to overcome the drawbacks of conventional schemes for in-
home breathing monitoring. Among them, schemes driven
by radio frequency (RF) techniques are the most promising
candidates due to their abilities to sense breathing in a highly
complicated indoor environment by leveraging the propagation
of electromagnetic (EM) waves. In terms of techniques, these
schemes can be classified into radar-based and WiFi-based.
Among the radar-based schemes, Doppler radar is commonly

Chen Chen, Yi Han, Hung-Quoc Lai, Feng Zhang, Beibei Wang, and K. J.
Ray Liu are with Origin Wireless Inc., Greenbelt, MD 20770, United States.
Chen Chen, Feng Zhang, Beibei Wang, and K. J. Ray Liu are also with the
Department of Electrical and Engineering, University of Maryland College
Park, College Park, MD 20742 United States (e-mail: {cc8834, fzhang15,
bebewang, kjrliu}@umd.edu). Yan Chen was with Origin Wireless Inc., and
now with University of Electronic Science and Technology of China, Chengdu,
Sichuan, China (e-mail: eecyan@uestc.edu.cn). Yi Han and Hung-Quoc Lai
are with Origin Wireless Inc. (e-mail: {yi.han, quoc.lai}@originwireless.net).

used which measures the frequency shift of the signals caused
by the periodic variations of the EM waves reflected from
human bodies [2]. Recently, Adib et al. present a vital sign
monitoring system that uses the Universal Software Radio
Peripheral (USRP) as the RF front-end to emulate a frequency
modulated continuous radar (FMCW) [3]. However, the re-
quirement of specialized hardware hinders the deployment of
these schemes.

On the other hand, WiFi-based schemes are infrastructure-
free since they are built upon the existing WiFi networks
available indoor. Received signal strength indicator (RSSI)
is often used due to its availability on most WiFi devices.
In [4], Abdelnasser et al. present UbiBreathe that harnesses
RSSI on WiFi devices for breathing estimation. However,
UbiBreathe is accurate only when users hold the WiFi devices
close to their chests. Another exploitable information on WiFi
devices is the channel state information (CSI), a fine-grained
information that portraits the EM wave propagation. The
scheme proposed by Liu et al. in [5] is one of the first
few CSI-based breathing monitoring approaches. Nevertheless,
they assume the number of people to be known. Moreover,
periodogram is used for spectral analysis that needs a relatively
long time for accurate breathing monitoring. In [6], Chen et
al. demonstrate the feasibility of high accuracy multi-person
breathing rate estimation using CSIs by leveraging the Root-
MUSIC algorithm [7].

In this work, we propose TR-BREATH, a WiFi-based
contact-free breathing monitoring system leveraging time-
reversal (TR) technique that detects and monitors multi-
person breathing. TR technique is a promising paradigm for
future internet-of-things applications [8]. The TR technique
is utilized for centimeter-level indoor localization [9]–[12],
speed estimation [13], human biometrics [14], and event
detection [15]. In this paper, we demonstrate that TR could
also capture the minor but periodic variations embedded in
the CSIs.

TR-BREATH measures the CSI variations via the time-
reversal resonating strength (TRRS) [16]. The TRRS values
are further analyzed by the Root-MUSIC algorithm to produce
breathing rate candidates. Then, key statistics are derived
based on these candidates to facilitate breathing detection. If
breathing is detected, TR-BREATH estimates the multi-person
breathing rates via affinity propagation [17], likelihood assign-
ment, and cluster merging. Based on the cluster likelihoods,
TR-BREATH could formulate an estimation on the number
of people. Also, TR-BREATH makes full use of the sequence
numbers in WiFi packets to enhance its robustness against
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packet loss which is common in areas with densely deployed
WiFi devices.

Extensive experiments in an office environment show that
TR-BREATH achieves perfect detection on the existence of
breathing within 63 seconds of measurements. Moreover, with
only 10 seconds of measurements, TR-BREATH achieves 99%
accuracy for single-person breathing rate estimation under
NLOS. For multi-person breathing monitoring, TR-BREATH
achieves a mean accuracy of 98.65% for a dozen people under
LOS and 98.07% for 9 people under NLOS, both with 63
seconds of measurement. With the knowledge of the maximum
number of people, TR-BREATH can count the people number
with an error around 1.

TR-BREATH differs from the prior works in the following
ways:

• It is infrastructure-free since it utilizes off-the-shelf WiFi
devices, while the schemes in [2], [3], [18] require
dedicated hardware.

• With the Root-MUSIC algorithm, TR-BREATH can
achieve highly accurate breathing rate estimations within
10 seconds, much shorter than the periodogram schemes
used in [3] and [5] so that real-time breathing monitoring
is viable.

• It can resolve the breathing rates of 9 people breathing
concurrently, while in [3] and [5], the authors merely
show the results for up to 3 people.

• It integrates both breathing detection and estimation,
while [3], [5], [6] only emphasize breathing rate estima-
tion.

• It can estimate the number of people, which is assumed
to be known in advance in [3], [5], [6].

• It is robust against packet loss in the presence of ambient
WiFi traffic, while [3], [5], [6] ignore this practical issue.

The rest of the paper is organized as follows. Section II
presents an intuitive CSI model that encapsulates the effect of
breathing, ambient WiFi traffic, and motions, followed by a
brief introduction to the Root-MUSIC algorithm that extracts
breathing rates. Section III elaborates on the algorithm of TR-
BREATH. Section IV demonstrates the experiment results for
both single-person and multi-person LOS and NLOS scenar-
ios. Section V demonstrates the performances of TR-BREATH
in the presence of a few practical issues. Future research
directions are discussed in Section VI. Finally, Section VII
concludes the paper.

II. THEORETICAL FOUNDATION

In this section, we first present the CSI model in a static
environment without dynamics. Then, we extend the model
by considering environmental dynamics, motions, and ambient
WiFi traffic. After that, we introduce TRRS as a feature that
captures the CSI variations. Finally, we introduce the Root-
MUSIC algorithm for breathing rate estimations.

A. CSI Model without Environmental Dynamics

In the absence of dynamics, the CSI on subcarrier k at time
t denoted by Hk(t) can be written as

Hk(t) =
L∑
`=1

ζ`e
−j2π d`λk + ek(t) , (1)

where k ∈ V and V denotes the set of usable subcarriers with
a cardinality of V , i.e., V usable subcarriers, L is the total
number of multipath components (MPC), ζ` is the complex
gain of MPC `, d` is the length of MPC `, and λk is the
wavelength of subcarrier k given by

λk =
c

fc + k
NDFTTs

, (2)

where fc is the carrier frequency, c is the speed of the light,
Ts is the sampling interval given as Ts = 1

B where B is the
baseband bandwidth of the WiFi signals, and NDFT is the
size of discrete Fourier Transform (DFT). ek(t) is the thermal
noise on subcarrier k at time t. The MPC gains and delays
are time-invariant.

B. CSI Model with Breathing Impact

With breathing, one or more MPC gains and delays become
time-varying. For simplicity, we assume that breathing only
affects MPC #1. Then, the gain of MPC #1 takes the
form [19]

ζ1(t) = ζ1 ×
(

1 +
∆d1
d1

sin θ sin(
2πb

60
t+ φ)

)−ψ
(3)

where ζ1 and d1 are the gain and length for MPC #1 without
breathing, ∆d1 is the additional positional displacement of
MPC #1 caused by breathing, ψ is the path-loss exponent, θ
is the angle between the subject and the impinging EM wave,
b is the breathing rate measured in breath-per-minute (BPM),
φ is the initial phase of breathing. Given that d1 � ∆d1, we
can approximate ζ1(t) with the time-invariant MPC gain ζ1.

On the other hand, breathing affects the phase of MPC #1
by changing its path length d1(t) expressed as

d1(t) = d1 + ∆d1 sin θ sin(
2πb

60
t+ φ) . (4)

Now, Hk(t) takes the form

Hk(t) = ζ1e
−j2π d1(t)

λk +
L∑
`=2

ζ`e
−j2π d`λk + ek(t) , (5)

which can be further written as

Hk(t) = ζ1e
−j2π d1

λk e
−j2π

∆d1 sin θ sin( 2πb
60

t+φ)

λk

+
L∑
`=2

ζ`e
−j2π d`λk + ek(t) . (6)

The first term on the right hand side of Hk(t) in (6) can
be decomposed into an infinite summation according to the
Jacobi-Anger expansion [20], as



0018-9294 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBME.2017.2699422, IEEE
Transactions on Biomedical Engineering

3

e
−j2π

∆d1 sin θ sin( 2πb
60

t+φ)

λk =
+∞∑

m=−∞
(−1)mJm(νk)ejm

2πb
60 tejmφ

(7)
where νk = 2π sin θ∆d1/λk and Jm(x) is the m-th order
Bessel function with argument x. It can be seen that in addition
to the spectral line at b, there also exists an infinite number
of harmonics with spectral lines at mb where m is a non-zero
integer.

In practice, Jm(νk) decays quickly for |m| ≥ 2 given the
typical values of νk. Thus, (7) can be approximated as

e
−j2π

∆d1 sin θ sin( 2πb
60

t+φ)

λk ≈
+1∑

m=−1
(−1)mJm(νk)ejm

2πb
60 tejmφ

(8)
which consists of two spectral lines at ±b with respect to
m = ±1 as well as a DC component with respect to m = 0.
Thus, Hk(t) can be expressed as

Hk(t) ≈ ζ1e−j2π
d1
λk

+1∑
m=−1

(−1)mJm(νk)ejm
2πb
60 tejmφ︸ ︷︷ ︸

Sk(t)

+
L∑
`=2

ζ`e
−j2π d`λk︸ ︷︷ ︸
Ik

+ek(t) , (9)

where Sk(t) stands for the useful signal for breathing monitor-
ing on subcarrier k, and Ik represents the time-invariant part
due to the static environment and regarded as the interference.
Notice that the dynamic model of Hk(t) shown in (9) can be
extended easily to the multi-person case.

C. Impact of Non-idealities on CSIs

In practice, we need to consider two random non-idealities
in the CSI model:
• Random phase distortion caused by the differences

between the local oscillators of the WiFi transmitter and
receiver, which consists of an initial and a linear phase
distortion.

• Random amplitude variation due to the automatic gain
control (AGC) in the RF front-end that scales the input
voltage into the dynamic range of the analog-to-digital
converter (ADC).

With these two non-idealities, Hk(t) in (9) should be modified
as

Hk(t) = Γ(t) (Sk(t) + Ik) ej(ω(t)+κ(t)k) + ek(t) , (10)

where Γ(t) is the real-valued AGC gain at time t, ω(t) is the
initial phase distortion at time t, and κ(t) is the linear phase
distortion at time t.

D. Impact of Motions on CSIs

The propagation of EM wave is affected by the motions of
the subject under breathing monitoring such as turning heads
or bending forward, known as the subject motion, as well as by

the motion caused by nearby people and/or objects not under
monitoring, known as the ambient motion. Next, we present
the CSI model incorporating both effects.

1) Subject Motion: When there exists subject motion, we
need to partition time t into two time durations: the time
duration without subject motion denoted as Tsm, and the time
duration with subject motion denoted as T csm, which is the
complementary of Tsm. Then, Sk(t) is modified as

Sk(t) =

{
S0
k(t) , t ∈ Tsm
S′k(t) , t ∈ T csm ,

(11)

where S0
k(t) is the original breathing signal and S′k(t) is a

random signal caused by the subject motion.
2) Ambient Motion: In the presence of ambient motion, Ik

in (10) becomes time-variant and thus (10) should be rewritten
as

Hk(t) = Γ(t) (Sk(t) + Ik(t)) ej(ω(t)+κ(t)k) + ek(t) . (12)

The ambient motion Ik(t) can be either periodic or non-
periodic. For instance, Ik(t) can be caused by the breathing
of another person in the vicinity of the person under moni-
toring, or produced by the random motion of nearby people
and objects. Clearly, Ik(t) incurs interference into breathing
monitoring. In this paper, we consider the ambient motion as
bursty by affecting a portion of the monitoring duration, i.e.,

Ik(t) =

{
I0k(t) , t ∈ Tam
0 , t ∈ T cam ,

(13)

where Tam is the continuous time duration with ambient
motion while T cam is the duration without ambient motion,
and I0k(t) is the original ambient motion signal.

E. Impact of Ambient WiFi Traffic on CSIs
In reality, CSIs are sampled with a time interval of Tsp with

an initial time given as t0. The i-th CSI, denoted by Hk[i],
is sampled at the i-th time instant with a sequence number of
si = s0+i. Its reception time is given by ti = t0+iTsp, where
s0 is the sequence number of the first CSI sample. Yet, due
to the ambient WiFi traffic on the same WiFi channel, packet
loss is unavoidable, leading to a sequence number si 6= s0 + i
and a reception time ti = t0 + (si − s0)Tsp 6= t0 + iTsp.

F. Overall CSI Model
Considering all effects discussed in Section II-C, Sec-

tion II-D, and Section II-E, the discrete CSI model takes the
form of

Hk[i] = Γ[i] (Sk[i] + Ik[i]) ej(ω[i]+κ[i]k) + ek[i] , (14)

where Sk[i] and Ik[i] are the discrete signal and interference
of the i-th CSI as defined in (11) and (13), Γ[i] and ek[i] are
the discrete AGC gain and thermal noise, and Sk[i] and Ik[i]
are given as

Sk[i] =

{
S0
k[i] , i ∈ Tsm
S′k , i ∈ Tcsm

, (15)

Ik[i] =

{
I0k [i] , i ∈ Tam
0 , i ∈ Tcam

, (16)
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where Tsm and Tam are the discrete CSI time index affected
by subject motion and ambient motion respectively, while Tcsm
and Tcam are the complementary discrete time index sets with
respect to Tsm and Tam.

G. Calculating TRRS from CSIs

TRRS is used as a measure of similarity between any two
CSIs. Different from the calculation of TRRS in the time
domain as shown in [12], we calculate the TRRS between the
i-th received CSI and the j-th received CSI in the frequency
domain based on Hk[i] and Hk[j] in (14) as follows:

TR [H[i],H[j]] =

∑
k∈V Hk[i]H∗k [j]e−j(ω

?+κ?k)

||H[i]||2||H[j]||2
, (17)

where H[i] = {Hk[i]}k∈V and ||x||2 is the `2 norm of the
vector x. ω? and κ? in (17) are introduced to remove the
initial and linear phase distortions, which are given by

κ? = arg max
κ

∣∣∣∣∣∑
k∈V

Hk[i]H∗k [j]e−jκk

∣∣∣∣∣ (18)

ω? = ]

(∑
k∈V

Hk[i]H∗k [j]e−jκ
?k

)∗
. (19)

The denominator of (17) normalizes the TRRS so that
TR [H[i],H[j]] ∈ [0, 1]. In other words, the denominator
mitigates the impact of the random gains Γ[i] and Γ[j]. ](x) is
the operator that extracts the phase from the complex argument
x.

H. Extracting Breathing Rates using Root-MUSIC

Root-MUSIC is a variant to the well-known MUltiple SIgnal
Classification (MUSIC) algorithm [21]. It is a super-resolution
subspace-based spectral analysis algorithm widely used in
signal processing applications [7]. Assume a total of N CSIs
sampled uniformly with an interval of Tsp, we can calculate
the N ×N TRRS matrix R based on (17), with the (i, j)-th
element of R given as TR [H[i],H[j]].

After calculating R, we perform an eigenvalue decomposi-
tion (EVD) on R to produce

R = UΛU† , (20)

where † is the transpose and conjugate operator, U is a
N ×N orthonormal matrix such that U†U = I where I is a
N × N identity matrix, and Λ is a N × N diagonal matrix
with descending real-valued diagonal entries equivalent to the
eigenvalues of R.

Secondly, the orthonormal matrix U is decomposed into a
signal subspace and a noise subspace. The signal subspace,
denoted by Us, consists of the first p columns of U, where
p ≤ N − 1 is the signal subspace dimension. On the other
hand, the noise subspace, denoted by Un, consists of the last
N − p columns of U.

Next, we calculate the matrix Q = UnU†n. Then, we
formulate the polynomial f(z) as

f(z) =
N−1∑
m=0

N−1∑
n=0

[Q]m,n z
gm,n , (21)

where [Q]m,n is the (m,n)-th element of Q, z = e−j
2πbTsp

60 ,
and gm,n is the discrete difference function highlighting the
time difference between two CSI samples normalized to Tsp,
given as

gm,n =

{
sm − sn, Considering Packet Loss
m− n, Otherwise .

(22)

Notice that, by using gm,n = sm − sn, the Root-MUSIC
algorithm is robust against WiFi packet loss. Yet, when the
ambient WiFi traffic is not severe, setting gm,n as m − n
suffices to produce accurate results.

Solving f(z) = 0 in (21) results in 2N − 2 complex
roots denoted by ẑ = {ẑ1, ẑ2, ẑ3, · · · , ẑ2N−2}. Since Q is
Hermitian, if ẑ is a complex root of f(z) = 0, then 1/ẑ∗ is
also a complex root of f(z) = 0. In other words, the roots of
f(z) = 0 come in pairs. Considering that only the phase of the
complex roots carry the information about the breathing rates,
we keep the N −1 complex roots inside the unit circle. Then,
we choose p out of the N − 1 complex roots closest to the
unit circle. The breathing rate estimation can be formulated as

b̂i = 60× ]ẑi
2πTsp

, i = 1, 2, · · · , p . (23)

From (12), we find that, while some complex roots are
associated with breathing rates, the rest of these complex roots
are produced by the motion interference and thermal noise. In
particular, the power of the motion interference Ik(t) can be
even stronger than the breathing signal Sk(t), e.g., when the
motion happens very close to the WiFi devices capturing CSIs.
As shown in Section V, as long as the WiFi devices are far
away from the motions, the impact of motion can be largely
neglected, and most of the complex roots of f(z) in (21) are
still associated with breathing.

Moreover, we realize that the breathing rates are limited to a
finite range [bmin, bmax] since people cannot breathe either too
fast or too slow. Thus, we sift the breathing rate estimations
b̂ = [b̂1, b̂2, · · · , b̂p] by discarding those outside the range of
[bmin, bmax], which leads to b̃ = [b̂r1 , b̂r2 , · · · , b̂rp′ ], where p′

is the number of the remaining complex roots and ri is the
index of the i-th remaining estimation.

III. ALGORITHM

The architecture of TR-BREATH is illustrated in Fig. 1. We
assume the availability of CSIs on a total of D links in a multi-
antenna WiFi system. In the following parts, we elaborate on
the details of the algorithms in TR-BREATH.

A. CSI Calibration

The miniature and periodic changes in CSIs are masked
by the phase distortions caused by residual synchronization
errors. To overcome this issue, in the calculation of TRRS,
we evaluate κ? and ω? according to (18) and (19). This step
is executed on all links in parallel.
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Link D

Affinity Propagation

Likelihood Assignment

1 2 3 4 5

Fig. 1: Overview of the architecture of TR-BREATH

B. Breathing Feature Extraction

1) Calculating the TRRS Matrix: Assume that we obtain N
CSIs for each link. Since breathing is not strictly stationary
in the long run, calculating the N × N TRRS matrix R
using the calibrated CSIs according to (17) is not optimal
which degrades the performance. So, TR-BREATH divides
the duration of measurements into multiple blocks, where each
block consists of M CSIs where M ≤ N . Assume that two
blocks overlap by P CSIs, TR-BREATH can obtain a total of
B = bN−PM c+ 1 blocks.

For each block, TR-BREATH further partitions the block
duration into several overlapping time windows with W CSIs
for each, with the CSIs associated with the i-th time window
given by {H[i],H[i + 1], · · · ,H[i + W − 1]}. Two adjacent
time windows overlap by 1 CSI.

2) Temporal Smoothing of the TRRS Matrix: To suppress
the spurious estimations due to interference and noise, TR-
BREATH performs temporal smoothing on the TRRS matrix
for each block taking the packet loss into consideration.
Firstly, for link d, block b, TR-BREATH parses the sequence
numbers for the M CSIs inside that block, denoted as
sb(N−P )+1, sb(N−P )+2, · · · , sb(N−P )+M . Then, TR-BREATH
calculates the difference M ′ between the maximum sequence
number smax = sb(N−P )+M and the minimum sequence
number smin = sb(N−P )+1. If M ′ = smax − smin > M , we
infer that M ′ −M WiFi packets are missing due to ambient
WiFi traffic.

Secondly, TR-BREATH calculates the M×M TRRS matrix
for link d and block b according to (17), denoted as Rb,d.
Then, TR-BREATH forms an extended TRRS matrix R′b,d
with dimension M ′ ×M ′. The entries of R′b,d are initialized
with zeros. Then, TR-BREATH fills the (si, sj)-th entry of
R′b,d with the (i, j)-th element of Rb,d. Equivalently speaking,
R′b,d is an interpolated version of Rb,d, with entries of zero

standing for the index of the missing packets 1. With a time
window size W , TR-BREATH could formulate Z = M ′ −
W+1 time windows in total. Meanwhile, TR-BREATH forms
a counting matrix C′b,d for link d and block b such that

[C′b,d]i,j =

{
1, If [R′b,d]i,j > 0

0, Otherwise .
(24)

Next, TR-BREATH partitions R′b,d into Z square submatrix,
with the z-th submatrix given by R′b,d,z composed by the
entries of Rb,d from row z to row z + W − 1 and column
z to column z + W − 1. The same operation is performed
on C′b,d, leading to Z square submatrix {C′b,d,z}z=1,2,··· ,Z .
{R′b,d,z}z=1,2,··· ,Z and {C′b,d,z}z=1,2,··· ,Z are accumulated as
R′b,d =

∑Z
z=1 R′b,d,z and C′b,d =

∑Z
z=1 C′b,d,z . Also, we

replace the sequence numbers with [1, 2, · · · ,W ].
Then, we locate and delete the rows and columns of R′b,d

and C′b,d with at least one zero, resulting in the matrix R′′b,d
and C′′b,d, both with dimension W ′ × W ′ where W ′ ≤ W .
The deleted index are also removed from the updated sequence
numbers in the previous step, leading to the updated sequence
numbers s′′1 , s

′′
2 , · · · , s′′W ′ .

Finally, we calculate the temporal smoothed matrix Rb,d

with its (i, j)-th element given by [R′′b,d]i,j/[C
′′
b,d]i,j for fur-

ther processing. Fig. 2 shows an example of generating Rb,d

under N = 5,M = 4,M ′ = 5,W = 4,W ′ = 2, P = 1, and
B = 2. Notice that the parameters indicate the lost of one
WiFi packet since M ′ −M = 1.

H[0] H[1] H[2] H[3] H[4]

H[0] H[1] H[2] H[3] 

R'b,d,1 C'b,d,1

Rb,d

Fig. 2: Procedure of TRRS matrix smoothing

3) Analysis via Root-MUSIC: The smoothed W ′ × W ′

TRRS matrix Rb,d is analyzed via the Root-MUSIC algorithm.
An EVD is invoked on Rb,d, leading to the W ′ × (W ′ − p)

1For example, Rb,d =

[
1 0.95

0.95 1

]
and s1 = 1, s2 = 3. Then, R′

b,d = 1 0 0.95
0 0 0

0.95 0 1

.
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noise subspace matrix U′n and thus Q′ = U′n(U′n)†. The
polynomial is modified as

f(z) =
W ′−1∑
m=0

W ′−1∑
n=0

[Q′]m,n z
gm,n . (25)

where gm,n = m − n if packet loss is not considered, and
gm,n = s′′m − s′′n otherwise. Here, p should be set to the
maximum possible number of people, e.g., the capacity of
a room. When the polynomial in (25) cannot produce results
in the range [bmin, bmax], we call f(z) = 0 insolvable and
put an empty solution into a set Nb,d. Otherwise, we save the
breathing rate candidates {b̂1, b̂2, · · · , b̂p′} into a set denoted
as Sb,d, where p′ is the number of candidates after filtering
as discussed in Section II-H. After processing all D links,
the sets {Sb,d}d=1,2,··· ,D

b=1,2,··· ,B are combined together into S as
∪Dd=1 ∪Bb=1 Sb,d and N as ∪Dd=1 ∪Bb=1 Nb,d, where ∪ denotes
the set union operator.

C. Breathing Detection

Some of the breathing rate candidates generated by the
breathing feature extraction might still be noisy estimations
caused by interference and/or thermal noise in the CSIs.
Therefore, we need to assess how likely these candidates are
caused by interference and noise. If with high probability,
these candidates have no correlation with human breathing,
we determine that there is no people breathing. Otherwise, we
conclude that breathing is present.

We observe from extensive experiments that the statistics of
the set S and set N are indicator functions of the presence of
breathing: in the absence of breathing, it is more likely that
the polynomial in (25) is insolvable, which yields a large N
and a small S in terms of their cardinalities, i.e., number of
unique set elements. On the contrary, when breathing exists,
solving the polynomial in (25) would produce many breathing
rate candidates, giving rise to a small N and a large S. We
leverage this observation for breathing detection.

1) Calculating α and β: Firstly, we formulate two statistics
α and β expressed as

α =
#(N )

#(S) + #(N )
, β =

#(S)

BDp
, (26)

where the denominator of β stands for the total number of
possible breathing rate candidates with B blocks, D links,
and p estimations per link per time window. #(·) denotes
the cardinality of a set. α indicates the insolvability of (25),
while β indicates the diversity of (25). The correlation between
(α, β) and the presence of breathing motivates us to develop
a detection scheme based on the observed (α, β) values.

2) Automatic Label Learning: TR-BREATH can learn the
labels y associated with each (α, β) obtained in the training
phase automatically. Write θ = (α, β) for convenience, and
by convention, y equals to +1 if the associated θ is measured
in the presence of breathing, and y equals to −1 otherwise.

During the training phase, TR-BREATH makes T obser-
vations of θ, written as {θi}i=1,2,··· ,T . Based on the ob-
servations, TR-BREATH extracts the labels {ŷi}i=1,2,··· ,T
using unsupervised label learning consisting of two phases (i)

Partition {θi}i=1,2,··· ,T into 2 classes by invoking k-means
clustering [22] with k = 2. Denote the centroids of cluster 1
and 2 as (α̂1, β̂1) and (α̂2, β̂2), respectively. (ii) If α̂1 > α̂2,
label all members of cluster 1 with ŷ = −1 to indicate that
they are observed in the absence of breathing. Then, label the
members of cluster 2 with ŷ = +1. Similar procedure applies
to the case of α̂1 < α̂2. In the rare case that α̂1 = α̂2, label
the elements within the cluster with a larger β̂ with ŷ = +1.

3) SVM Classification: Based on {θi}i=1,2,··· ,T and
{ŷi}i=1,2,··· ,T , we train a support vector machine (SVM) [23],
a widely used binary classifier. SVM returns two weight
factors ωα and ωβ as well as a bias ωb. ωα and ωβ signify
the importance of α and β in breathing detection. After the
training phase, given any θ = (α, β), TR-BREATH determines
that breathing exists if ωαα+ωββ+ωb > 0 and non-existent
otherwise.

D. Breathing Rate Estimation

If breathing is detected, TR-BREATH proceeds by formu-
lating multi-person breathing rate estimation.

1) Clustering by Affinity Propagation: The breathing rate
candidates in S are fed into the affinity propagation algo-
rithm [17]. It works by passing the responsibility message to
decide which estimations are exemplars, and the availability
message to determine the membership of an estimation to
one of the clusters. Different from k-means [22], affinity
propagation does not require the knowledge of the cluster
number. Here, we assume that affinity propagation partitions
the elements of S into U clusters.

2) Likelihood Assignment: For each cluster, TR-BREATH
evaluates its population, variance, and centroid, expressed as
pi, vi, and ci. Then, pi and vi are normalized as pi =
pi/
∑U
i=1 pi and vi = vi/

∑U
i=1 vi. The likelihood of cluster

i, denoted by li, is calculated as

li =

{
0, (vi = 0, pi = 1), or pi < 2%

eωppi−ωvvi−ωcci∑U
i=1 e

ωppi−ωvvi−ωcci , Otherwise
,

(27)
where ωp, ωv , and ωc are positive weighting factors to account
for different scales of the corresponding terms. The likelihood
assignment in (27) incorporates a term related to the cluster
centroid ci. The insight is that a high breathing rate is less
likely than a low breathing rate in real life. Meanwhile,
high breathing rate candidates are more likely to be caused
by the harmonics of breathing rates. Also, (27) implies that
singletons, i.e., clusters with a single element (vi = 0 and
pi = 1), should be assigned with zero likelihoods. Clusters
with pi < 2% are also considered as outliers and are elimi-
nated.

3) Cluster Merging: Since the breathing rates are evaluated
for each time window and for each link independently, it is
likely that breathing rate estimations for the same person differ
slightly in a small range. This results in several closely-spaced
clusters, which should be merged to improve the performance.

To identify the clusters to be merged, we calculate the
inter-cluster distances by calculating the differences in their
centroids. Then, we merge clusters with inter-cluster distance
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falling below a threshold, known as the merging radius denoted
by γ. For example, if |ci− ci+1| < γ, then, cluster i and i+ 1
would be merged. Denote the new cluster index as i′, the
normalized population of cluster i′ is given by pi′ = pi+pi+1

and the normalized variance vi′ is recalculated. The centroid
of cluster i′ is expressed as the weighted average of the merged
two clusters, given by ci′ = lici+li+1ci+1

li+li+1
.

Finally, the likelihood of cluster i′ is updated using (27).
Merging of more than two clusters can be generalized from
the aforementioned steps and is omitted here for brevity. The
procedures for likelihood assignment and cluster merging are
highlighted in Fig. 1.

Assuming a total of K clusters after merging and that the
number of people K is known, TR-BREATH directly outputs
Ko = min(K,K) centroids with the highest likelihoods as the
multi-person breathing rate estimations, i.e., b̂i = cidxi , i =
1, 2, · · · ,Ko where idxi stands for the index of the i-th largest
likelihood.

E. Estimating the Number of People

Denote the set J as J = {j|
∑min(K,j)
i=1 lidxi ≥ λ} where λ

is a threshold. In other words, the set J contains the number
of clusters with an accumulated likelihood exceeding λ. When
the exact people number is unknown, given the knowledge
of the maximum possible number of people, TR-BREATH
formulates an estimation K̂(λ) given by the minimum element
of J denoted as K̂(λ) = min(J ), i.e., the smallest j that
satisfies

∑min(K,j)
i=1 lidxi ≥ λ.

IV. EXPERIMENT RESULTS

A. Experiment Setups

1) Environment: We conduct extensive experiments to eval-
uate the performance of the breathing monitoring system.
The experiments are conducted in three different rooms in an
office suite with dimensions 5.5m×5m, 8m×7m, and 8m×5m,
respectively.

2) Devices: We build one pair of prototypes equipped
with off-the-shelf WiFi cards with 3 omnidirectional an-
tennas to obtain CSIs. Thus, the total number of links D
is 9. One of the prototypes works as the access point
(AP), while the other works as the station (STA). The cen-
ter frequency is configured as 5.765 GHz with a band-
width of 40 MHz. The transmit power is 20 dBm (100
milliwatts). The set of usable subcarriers V is given as
{−58,−57,−56, · · · ,−2, 2, 3, · · · , 56, 57, 58} with V = 114.
The size of DFT is NDFT = 128.

3) Placement of WiFi devices: The performance is evalu-
ated in both LOS and NLOS scenarios. For the LOS scenarios,
the AP and STA are placed in the same room with people,
while for the NLOS scenarios, they are placed outside the
room blocked by two walls. The locations of both WiFi devices
are marked in Fig. 3.

4) Participants: A total of 17 different participants were
invited. During the experiments, slight movements, e.g., head
or limb movements, were allowed.

5) Parameter Settings: The following parameters are used
unless otherwise stated:

• Each experiment lasts for 2 minutes.
• The signal subspace dimension p is configured as 10.
• The merging radius γ is set as 0.5 BPM.
• The range of interest of the breathing rate is from
bmin = 10 BPM to bmax = 50 BPM. This covers the adult
breathing rate at rest (10−14 BPM), infant breathing rate
(37 BPM), and the breathing rate after workout [24], [25].

• The packet rate of WiFi transmission is 10 Hz2.
• The sampling interval Tsp is 0.1s where s stands for

second. For notational convenience, we write the time
duration of each block measured in seconds as Mt =
MTsp and the window size measured in seconds as
Wt = WTsp. The overlap in terms of seconds between
different blocks is Pt = PTsp. As default values, we
adopt the parameters Mt = 45s, Wt = 40.5s, Pt = 4.5s,
and B = 5 unless otherwise stated. The total time of
CSI measurements Ttot is thus Mt+ (B−1)×Pt which
equals to 63s.

During the experiments, we only observe 2 ∼ 3 WiFi
networks sharing the same WiFi channel with the experimental
devices, leading to less than 1% packet loss rate for all
experiments. The impact of packet loss can be safely ignored
in this case. Therefore, (25) reduces to (21), and we use
gm,n = m−n in (22). Meanwhile, M equals to M ′ as shown
in Fig. 2.

6) Ground-Truths: The performance of the proposed mon-
itoring system is evaluated by comparing the breathing rate
estimations against the ground-truths. To obtain the ground-
truths, we ask each participant to synchronize his/her breathing
according to a metronome application on his/her cellphone.
After the controlled breathing experiments, we conduct exper-
iments in a more practical setting where the participants are
asked to breathe naturally according to their personal habits
and count their own breathing rates manually.

B. Metrics for Performance Evaluation

1) Breathing Detection Rate: The detection performance
of the proposed system is directly determined by the SVM
classification accuracy, which is evaluated by performing K-
fold cross-validation on the SVM classifier.

2) Breathing Rate Estimation Accuracy: Assume that
K is known in advance with ground-truths given by
b = [b1, b2, · · · , bK ], and the proposed system out-
puts Ko = min(K,K) estimations denoted as b̂ =
[b̂1, b̂2, · · · , b̂K ], the accuracy of estimation is calculated as(

1− 1
Ko

∑Ko
i=1

∣∣∣ b̂i−bibi

∣∣∣) × 100%. For instance, the accuracy

calculated from b̂ = [25.1, 29.8] BPM and b = [25, 30] BPM
is 99.5%.

2The 10Hz packet rate agrees with the beaconing rate of a commercial
WiFi AP, and the packet size containing one CSI measurement is 2.5KB,
resulting in a data rate of 25KB/s during CSI acquisition. Therefore, the
proposed system only introduces minor interference to the co-existing WiFi
networks on the same WiFi channel.
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Fig. 3: Experiment settings: (a) single-person, LOS (b) multi-person, LOS (c) single-person, NLOS (d) multi-person, NLOS.

3) Average Ko: Still assuming that K is known and the
monitoring system outputs Ko = min(K,K) estimations. In
this case, there is no penalty if K ≥ K since the breathing
rates estimations are given by the first K estimations with
the highest likelihoods. On the other hand, when K < K,
the breathing rates associated with K−K people are missing
in the estimations. Therefore, the average of Ko, denoted as
Ko, is also an important metric, as Ko closer to K indicates
that most of the human breathing rates can be resolved by the
monitoring system.

4) Estimation Error of Number of People: When K is
unknown, we formulate an estimation on the number of people
K via K̂(λ), with the performance evaluated by the function
P (λ) = E(|K − K̂(λ)|), where E stands for the expectation
operator.

Fig. 4: Classification performance for breathing detection.

C. Breathing Detection Performance
The proposed breathing detection scheme determines the

existence of breathing based on the output of the SVM
algorithm. We use 84 CSI measurements for evaluation, where
32 of them are collected in the presence of at least one person
breathing, and 52 measurements are obtained without people
breathing in the room. The devices are placed according to the
NLOS setting shown in Fig. 3(c).

In Fig. 4, we demonstrate the breathing detection perfor-
mance of the proposed system. First of all, we observe that the
labels ŷ can be inferred from (α, β) without errors. Secondly,
we observe that SVM returns a hyperplane that partitions
(α, β) perfectly, implying a 100% detection rate. This is
further validated by performing K-fold cross-validation on the
results, leading to a 100% accuracy for each cross-validation.

D. Performance of Breathing Rate Estimation

In this part, we evaluate the performance of the pro-
posed system based on the ground-truth breathing rates using
metronomes.

Fig. 5: Accuracy with single-person breathing under the LOS
scenario. Mt = 45s, Wt = 40.5s, Pt = 4.5s, B = 5, and
Ttot = 63s.

1) Accuracy under Single-Person LOS Scenario: We ask
one participant to sit at 5 positions as shown in Fig. 3(a) under
the LOS scenario. For each position, the participant breathes at
15 BPM in synchronization to the metronome. After that, the
participant switches the breathing rate to 17.5 BPM and later
20 BPM. The accuracy performances at the 5 positions with
various breathing rates are depicted in Fig. 5. For comparison
purpose, Fig. 5 also demonstrates the ground-truths. As can
be seen from the figure, the proposed system can estimate the
breathing rate with an accuracy of 99.56% averaging over all
cases. The worst case is when the participant sits at position
4 and breathes at 17.5 BPM with an accuracy of 98.58%,
equivalent to an estimation error of ±0.249 BPM.

2) Accuracy under Multi-Person LOS Scenario: A total of
12 people were invited into the conference room as shown
in Fig. 3(b) under the LOS scenario. The details of the
position and breathing rate for each participant are displayed
in Fig. 3(b). The normalized population, variance, likelihood,
and centroid for each cluster are presented in Fig. 6. It can be
seen that the proposed system resolves the breathing rates of
9 out of a dozen people with an accuracy of 98.65%.

3) Accuracy under Single-Person NLOS Scenario: One
participant was invited into the conference room to breathe
with 15 BPM at 6 different positions, with details shown in
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Fig. 6: Performance of estimating breathing rates of a dozen
people under the LOS scenario. Mt = 45s, Wt = 40.5s, Pt =
4.5s, B = 5, and Ttot = 63s.

Fig. 7: Accuracy with single-person breathing under the NLOS
scenario. Mt = 45s, Wt = 40.5s, Pt = 4.5s, B = 5, and
Ttot = 63s.

Fig. 3(c). Both WiFi devices are placed outside the conference
room. Fig. 7 shows that a mean accuracy of 98.74% averaging
over the 6 positions is achieved even when the two devices
are blocked by two concrete walls of the conference room,
which validates the high accuracy under the through-the-wall
scenario.

To evaluate the impact of distances between WiFi devices
on the performance, we place the AP at 6 different locations
with 1 meter resolution. The participant breathes at 15 BPM

Fig. 8: Accuracy of breathing rate estimation with various
distances. Mt = 45s, Wt = 40.5s, Pt = 4.5s, B = 5, and
Ttot = 63s.

Fig. 9: Accuracy of breathing rate estimation with 10 seconds
of CSI measurement. Mt = 10s, Wt = 9s, Pt = 0.5s, B = 1,
and Ttot = 10s.

in this experiment. The distance between the AP and the STA
ranges from 5 meters to 11 meters. As shown in Fig. 8, the
proposed scheme achieves more than 98.38% in accuracy,
with a mean accuracy of 99.37% averaging over the results of
various distances. Even when the device distance reaches 11
meters, the accuracy is maintained at 99.70%, demonstrating
the robustness of the proposed system under different device
distances.

We further evaluate TR-BREATH by reducing Mt to 10s.
Besides, we set Wt = 9s, Pt = 0.5s, and Ttot = 10s.
The packet rate is increased to 30 Hz. One participant sits
at position 1 of Fig. 3(c) and breathe at 15, 17.5, 20 BPM,
with each breathing rate lasting for 20 seconds. The total
measurement time is 60 seconds. Fig. 9 shows that TR-
BREATH could track the breathing rate accurately with a
mean accuracy of 99%. Therefore, TR-BREATH can provide
accurate breathing rates every 10 second for single-person
breathing monitoring that fits well to the patient monitoring
scenarios.

Fig. 10: Accuracy with multiple people under the NLOS
scenario. Mt = 45s, Wt = 40.5s, Pt = 4.5s, B = 5, and
Ttot = 63s.

4) Accuracy under Multi-Person NLOS Scenario: We invite
up to 7 people into one conference room with two devices
placed under the NLOS scenario. The positions and breathing
rates associated with each person are depicted in Fig. 3(d).
Fig. 10 summarizes the accuracy performances, which shows
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that an accuracy of 99.1% when K = 7 and a mean accuracy
of 97.3% averaging over all 7 cases can be achieved.

Fig. 11: Ko with multiple people under the NLOS scenario.
Mt = 45s, Wt = 40.5s, Pt = 4.5s, B = 5, and Ttot = 63s.

5) Ko under Multi-Person NLOS Scenario: Fig. 11 demon-
strates the Ko performance for the multi-person NLOS sce-
nario. As we can see, with a various number of people K,
Ko equals to K, which shows that the proposed system could
resolve the breathing rates of all people. Combining the results
in Fig. 10, we conclude that given K people, the proposed
system resolves the breathing rates of K people with high
accuracy.

Fig. 12: Performance of estimating the natural breathing rates
of one person under the NLOS scenario. Mt = 45s, Wt =
40.5s, Pt = 4.5s, Ttot = 63s.

E. Performance of Natural Breathing Rate Estimation

In this part, we investigate the performance of the proposed
system in a more practical setting by asking the participants
to breathe naturally. Instead of using the metronomes, the
participants were asked to memorize how many breaths they
took in a minute.

1) Accuracy under Single-Person NLOS Scenario: One
participant is asked to breathe naturally at 4 different positions
in the same conference room as in Fig. 3(c). Then, the
participant lies on the ground and breathe. Fig. 12 shows that
a mean accuracy of 97.0% can be achieved. Moreover, the
breathing rate of a person lying on the ground can be estimated
accurately, which shows the viability of the proposed scheme
in monitoring the breathing rate of a sleeping person.
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Fig. 13: Performance of estimating the natural breathing rates
of 9 people under the NLOS scenario. Mt = 45s, Wt = 40.5s,
Pt = 4.5s, Ttot = 63s.

2) Accuracy under Multi-Person NLOS Scenario: Nine
participants breathe naturally in the conference room
shown in Fig. 3(c). The breathing rates are given as
[16, 11.5, 10.5, 12, 13, 15.5, 16.5, 26.5, 12] BPM, where two
participants coincide in their breathing rates. Fig. 13 shows
that 6 out of the 8 resolvable breathing rates are obtained
with an accuracy of 98.07%.

Fig. 14: Performance of people number estimation. Mt = 45s,
Wt = 40.5s, Pt = 4.5s, B = 5, and Ttot = 63s.

F. Estimating the Number of People K

Fig. 14 illustrates that the optimal P (λ) is 1.15 when λ =
0.88. Thus, the proposed system can estimate the number of
people with an error around 1.

V. IMPACT OF VARIOUS FACTORS

In this section, we further investigate the performance of
TR-BREATH in a more practical application scenario. First
of all, we study the performance under the influence of packet
loss with various severity. Then, we discuss the effects of
motions on TR-BREATH. Finally, we demonstrate the signif-
icant improvement of TR-BREATH using both amplitude and
phase information compared to the approach using amplitude
only in [5]. The parameters are configured to be the same as
Section IV-A5 unless otherwise stated.
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A. Impact of Packet Loss

We present the accuracy under the NLOS single-person at
position 1 shown in Fig. 3(c) with different packet loss rate.
We consider two packet loss mechanism, i.e., bursty packet
loss and random packet loss. The bursty packet loss is mainly
caused by the continuous data transmission among few WiFi
devices which fully jams the medium for a long time. On the
other hand, the random packet loss is due to the random access
of a large number of nearby WiFi devices which occupy the
medium occasionally.

To emulate packet loss, we intentionally discard collected
CSI samples in the experiments. More specifically, for the
bursty packet loss, we discard CSI samples within a certain
time period, while for the random packet loss, we discard CSI
samples with index following a uniform distribution. When
the packet loss compensation is enabled, gm,n = s′′m − s′′n is
used, otherwise gm,n = m− n.

The results with different packet loss rate with the aforemen-
tioned two mechanisms are shown in Fig. 15. We observe that
the consequence of random packet loss is much more severe
than the bursty packet loss when the packet loss compensation
is not enabled. With 10% random packet loss, the accuracy
drops to 88.35% from 99.35%. The accuracy further deterio-
rates to 74.13% and 62.83% with 20% and 30% packet loss,
respectively. The advantage of packet loss compensation is
obvious since TR-BREATH maintains an accuracy of 99.70%
even with 30% packet loss. On the contrary, bursty packet loss
does not degrade the accuracy greatly. It can be justified by
the fact that most CSIs are still sampled uniformly under this
scenario.

10 20 30

65

70

75

80

85

90

95

100

Packet Loss (%)

A
c
c
u

ra
c
y
 (

%
)

W

W

W

W

With Compensation, Bursty Packet Loss

Without Compensation, Bursty Packet Loss

With Compensation, Random Packet Loss

Without Compensation, Random Packet Loss

Fig. 15: Impact of packet loss on accuracy

B. Impact of Motion

To study the effect of motion, we perform additional ex-
periments involving ambient motions and subject motions.
The experiment settings are shown in Fig. 16. The participant
breathes at 20 BPM.

1) Impact of Ambient Motion: Besides the participant under
breathing monitoring, we ask another participant to walk
randomly in the eight highlighted areas in Fig. 16, where S1

to S4 stands for the ambient motions in the conference room
and S5 to S8 in the foyer. We further classify these areas in
terms of their distances to the WiFi AP as very close, close,

S1

S2

S3

S4

S5

S6

S7

S8

AP

STA

P1, 20 BPM

Fig. 16: Experiment settings for investigation of ambient
motions and subject motions

far, and very far. For instance, S1 is considered to be very
close from the WiFi AP, while S4 is regarded as very far
away from the WiFi AP. Despite that the impact of motion
is location-dependent, in general, we find that the motions
introduce severe interference into TR-BREATH when they
occur within 1m radius to either the AP or the STA.

The results are depicted in Fig. 17. Clearly, when the
ambient motion occurs very close to the WiFi AP, the accuracy
degrades significantly, especially for the case of ambient
motions in the foyer area indicated by S5. When the distance
between the motion to the WiFi AP increases, the accuracy is
improved. We observe similar results when the ambient motion
occurs close to the WiFi device. Thus, we conclude that TR-
BREATH can tolerate ambient motions as long as both WiFi
devices of TR-BREATH are far from these motions.
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Fig. 17: Impact of ambient motion on accuracy

2) Impact of Subject Motion: In this experiment, we ask the
participant under monitoring to move randomly for a certain
period of time, and then sit back to the original position as
shown in Fig. 16 to continue breathing. The results are shown
in Fig. 18. We observe that when the participant only moves
for 10 seconds, the accuracy can be maintained at 95.96%.
The accuracy drops to 87.61% when the participant moves
for 40 seconds, corresponding to an error of ±2.48 BPM.
This demonstrates that TR-BREATH can tolerate the subject
motions given that the participant stays still during most of
the time.

3) Impact of using CSI Amplitude Only: Thanks to the
additional step of CSI calibration mentioned in Section III,
TR-BREATH makes full use of the complex CSIs, which is
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Fig. 18: Impact of subject motion on accuracy

a major difference from [5] which uses the CSI amplitudes
only. In this section, we show that using both CSI amplitudes
and phases could improve the performance of TR-BREATH.
Furthermore, we replace the Root-MUSIC algorithm with
the conventional Welch estimator [26], a widely used non-
parametric scheme. For the Welch estimator, we use the CSI
amplitude only, which coincides with the spectral analysis
scheme used in [5].

We ask the participant to breathe at [20, 25, 30, 35, 40, 45]
BPM under the setting of Fig. 16 without ambient and subject
motions. Each experiment lasts for 1 minute. The cumulative
density functions (CDFs) of the accuracy for this experiment
are shown in Fig. 19. We observe that the results are more
concentrated in areas close to 100% accuracy in the complex
CSI case, indicating that using complex CSIs outperforms the
amplitude-only case and the Welch estimator.

Fig. 19: Comparison of CDFs among different schemes

VI. FUTURE WORK

As a future work, we would conduct long-term experiments
to investigate the performance of TR-BREATH in the long
run. Meanwhile, we would investigate the way to detect and
discard CSI samples significantly affected by subject and
ambient motions so as to further enhance the robustness of
TR-BREATH.

VII. CONCLUSION

In this paper, we present TR-BREATH, a contact-free
and highly accurate breathing monitoring system leveraging
TR for breathing detection and multi-person breathing rate

estimations using commercial WiFi devices. The TR resonat-
ing strengths are analyzed by the Root-MUSIC algorithm
to extract features for breathing detection and breathing rate
estimation. Experiment results in a typical indoor environment
demonstrate that, with 63 seconds of measurements, a perfect
detection rate can be obtained. Meanwhile, the proposed sys-
tem can estimate the single-person breathing rate in the NLOS
scenario with an accuracy of 99% with only 10 seconds of
measurement. With 63 seconds of measurement, the proposed
system achieves a mean accuracy of 98.65% for a dozen
people under the LOS scenario and 98.07% for 9 people
under the NLOS scenario even when the two WiFi devices are
blocked by two walls. The proposed system can also estimate
the number of people with an average error around 1. We
also show that TR-BREATH is robust against packet loss and
motions in the environment. With the ubiquity of WiFi-enabled
mobile devices, TR-BREATH can provide real-time, in-home,
and non-invasive breathing monitoring in the future medical
applications.
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