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ith the increasing ubiquity and power of 
mobile devices as well as the prevalence of 

social systems, more activities in our daily 
life are being recorded, tracked, and shared, 

creating the notion of social media. Such abun-
dant and still growing real-life data, known as big data, provide a 
tremendous research opportunity in many fields. To analyze, 
learn, and understand such user-generated data, machine learning 
has been an important tool, and various machine-learning algo-
rithms have been developed. However, since the user-generated 
data are the outcome of users’ decisions, actions, and 

socioeconomic interactions, which are highly dynamic, without 
considering users’ local behaviors and interests, existing learning 
approaches tend to focus on optimizing a global objective function 
at the macroeconomic level, while totally ignoring users’ local 
interactions at the microeconomic level. As such, there is a grow-
ing need to combine learning with strategic decision making, 
which are two traditionally distinct research disciplines, to be able 
to jointly consider both global phenomena and local effects to bet-
ter understand, model, and analyze the newly arising issues in the 
emerging social media with user-generated data. In this article, we 
present an overview of the emerging notion of decision learning, 
i.e., learning with strategic decision making, which involves users’ 
behaviors and interactions by combining learning with strategic 
decision making. We will discuss some examples from social 
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[FIG1] Decision learning: bridging learning and strategic decision making. Learning and decision making are traditionally two distinct 
research disciplines. Bridging them allows us to jointly consider both global and local effects to better understand, model, and analyze 
user-generated data from social media.
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media with real data to show how decision learning can be used to 
better analyze users’ optimal decision from a user’s perspective, as 
well as design a mechanism from the system designer’s perspec-
tive to achieve a desirable outcome.

IntroDuctIon
With the rapid development of communication and information 
technologies, the last decade has witnessed a proliferation of 
emerging social systems that help to promote the connectivity of 
people to an unprecedentedly high 
level. Examples of these emerging sys-
tems can be found in a wide range of 
domains, from online social networks 
like Facebook or Twitter to crowd-
sourcing sites like Amazon Mechani-
cal Turk or Topcoder where people 
solve various tasks by assigning them 
among a large pool of online workers 
to online question-and-answer (Q&A) 
sites like Quora or Stack Overflow where people ask all kinds of 
questions, and all the way to new paradigms of power systems like 
smart grid. In a social system, there are two key characters: the sys-
tem designer, who designs the social system, and the users, who 
participate in the social system and generate the data.

Because of the increasing ubiquity and power of mobile 
devices, the prevalence of social systems, and the rise of cloud data 
storage, our daily activities are increasingly being recorded, 
tracked, and shared. Big data provides a tremendous research 
opportunity in many fields, for example, behavior and sentiment 
analysis, epidemics and diseases propagation modeling, grid and 
network traffic management, and financial market trends track-
ing, just to name a few.

Machine learning has been an important tool to understand 
user-generated data, [1], [2]. Learning aims to use reasoning to 
find new, relevant information, given some background knowl-
edge through representation, evaluation, and optimization. How-
ever, there are some limitations and constraints. For example, the 
generalization assumption that the training set is statistically 

consistent with the testing set is often not true because users 
behave differently at different times and under different settings. 
Moreover, the single-objective function cannot address all inter-
ests of users since interests vary and, thus, there will be different 
objective functions. Besides, users are rational and naturally self-
ish, so they want to optimize their own objective functions [3], [4]. 
In addition, the data are the outcome of users’ interactions, while 
learning algorithms cannot naturally involve users’ individual 
local interests. Therefore, the knowledge contained in the data is 

difficult to fully exploit from such a 
macroscopic view.

Existing learning approaches 
tend to focus on optimizing a global 
objective function at the macroeco-
nomic level but totally ignore users’ 
local decisions and interactions at 
the microeconomic level. Indeed, 
user-generated data are the outcome 
of users’ decisions, actions, and their 

social–economic interactions, which are highly dynamic, and, 
thus, the interactions of users and their decision-making process 
should be taken into consideration. As such, there is a growing 
need to bridge learning and strategic decision making to be more 
effective in mining, reasoning, and extracting knowledge and 
information from big data.

Yet there is a missing link. Traditionally, both learning and 
decision making are two distinct research disciplines. Success-
fully bridging them allows us to jointly consider both global phe-
nomena and local effects to better understand, model, and 
analyze user-generated data from social media. Besides, learning 
is for making optimal decisions. In essence, learning and decision 
making are destined to couple due to the network externality, i.e., 
the influence of other users’ behaviors on one user’s reward [5]. 
In this article, we describe the emerging research field of decision 
learning, i.e., learning with strategic decision making, which 
involves users’ behaviors and interactions by combining learning 
with strategic decision making, as illustrated in Figure 1. In deci-
sion learning, there are two major elements of data-driven issues: 
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one is the modeling, analysis, and understanding of user behav-
iors and their interactions, and the other is the design of mecha-
nisms to achieve the desired outcomes. The former considers the 
issues from user perspectives, while 
the latter is motivated by the sys-
tem’s point of view.

In contrast to traditional net-
works and systems, where users are 
constrained by fixed and predeter-
mined rules, user interactions in 
social networks are generally self-
enforcing [6], [7]. On the one hand, 
users in these systems have great 
flexibility in their actions and have 
the ability to observe, learn, and make intelligent decisions. On the 
other hand, because of their selfish nature, users will act to pur-
suit their own interests, which often conflict with other users’ 
objectives and the system designer’s goal. These new features call 
for new theoretical and practical solutions to the designs of social 
networks. How can system designers design their systems to 
resolve the conflicting interests among users? And given the vari-
ous and conflicting interests among users, how is the desired sys-
tem-wide performance achieved?

The aforementioned questions motivate the study of user 
behaviors and incentive mechanisms in social systems. Incentive 
mechanisms refer to schemes that aim to steer user behaviors 
through the allocation of various forms of rewards, such as mone-
tary rewards, virtual points, and reputation status. Plenty of empiri-
cal evidence can be found in the social psychology literature that 
demonstrates user behaviors in social networks are indeed highly 
influenced by these rewards [8]–[13]. Although we can use the 
social psychology literature to learn what factors influence user 

behaviors and, thus, can be used as rewards, how to allocate the 
rewards to achieve the desired user behavior is still not well under-
stood, which leads to ad hoc or poor designs of incentive mecha-

nisms in many social networks in 
practice. How can we fundamentally 
understand user behavior under the 
presence of rewards in social net-
works? Moreover, based on such 
understanding, how should a system 
developer design incentive mecha-
nisms to achieve various objectives in 
a systematic way?

The focus of this article is to open 
a discussion in a tutorial way of an 

emerging field, termed decision learning, which jointly combines 
learning with decision making toward a better fundamental under-
standing of user behaviors embedded under the tsunami of user-
generated big data. In this article, we present three game-theoretic 
frameworks (readers who are interested in the preliminaries of 
game theory are referred to [3], [4], [6], [7], and [14]) to formally 
model user participation and interactions under various scenarios 
in social networks: decision learning with evolutionary user behav-
ior, decision learning with sequential user behavior, and decision 
learning with mechanism design. A high-level comparison of the 
three frameworks is shown in Figure 2. On the evolutionary behav-
ior, how information diffuses over online social networks using a 
graphical evolutionary game will be presented [15], [16], and the 
focus will be on how to learn users’ utility function from Twitter 
and MemeTracker data for understanding and modeling strategic 
decision making; on the sequential behavior, how customers learn 
and choose the “best” deals using the Chinese-restaurant-game 
framework will be considered [17], [18]. In addition, Groupon deals 
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[FIG2] a high-level comparison of decision learning with evolutionary user behavior, decision learning with sequential user behavior, 
and decision learning with mechanism design.
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and Yelp rating data will be used to discuss how users can learn 
from each other’s interactions for better strategic decision making. 
On the mechanism design, how to design the mechanism to collect 
high-quality data with low cost from 
crowdsourcing will be illustrated [19]. 
Using these frameworks, we can theo-
retically analyze and predict user 
behaviors through equilibrium analy-
sis. And, based on the analysis, one 
can optimize in a systematic way the 
design of incentive mechanisms for 
social networks to achieve a wide 
range of system objectives and analyze 
their performances accordingly. Finally, recent related works on 
the intersection of learning and strategic decision making will be 
surveyed and discussed.

user BehavIor moDeLInG anD anaLysIs  
In DecIsIon LearnInG
In this section, we will address decision learning from the user’s 
point of view. Both the evolutionary and sequential user behaviors 
are commonly exhibited in social systems. How learning with stra-
tegic decision making may arise from both settings will be illus-
trated, first with information diffusion over online social networks 
using the graphical evolutionary game framework from Twitter 
and MemeTracker data, and then with the optimal restaurant 
strategy using the Chinese-restaurant-game framework from both 
Groupon deals and Yelp ratings, respectively.

EVOLUTIONARY USER BEHAVIOR: GRAPHICAL 
EVOLUTIONARY GAME FRAMEWORK
One typical user behavior in social systems is the repetitive and 
evolutionary decision making. A good example is that users 
repetitively decide whether to post information or not on online 
social networks. Figure 3 shows the top 50 threads in the news 
cycle with highest volume for the period of 1 August–31 October 
2008, where each thread consists of all new articles and blog 
posts containing a textual variant of a particular quoted phrase. 
The five large peaks between late August and late September 
corresponding to the Democratic and Republican National Con-
ventions illustrate the spread of comments and phrasing by can-
didates. Notice that the information forwarding is often not 
unconditional. One has to make a decision on whether or not to 
do so based on many factors, such as if the information is excit-
ing or if friends are interested in it, etc. Other examples include 
repetitive online purchasing and review posting.

We find that, in essence, the repetitive and evolutionary decision-
making process on social systems follows the evolution process in 
natural ecological systems [21]. It is a process that evolves from one 
state at a particular instance to another when information is shared 
and a decision is made. Thus, the evolutionary game is an ideal tool 
to model and analyze the social system users’ repetitive and evolu-
tionary behavior. Evolutionary game theory (EGT) is an application 
of the mathematical theory of games to the interaction-dependent 
strategy evolution in populations [21]. Arising from the realization 

that frequency-dependent fitness introduces a strategic aspect to 
evolution, EGT becomes an essential component of a mathematical 
and computational approach to biological contexts, such as genes, 

viruses, cells, and humans. Recently, 
EGT has also become of increased 
interest to economists, sociologists, 
anthropologists, and social scientists. 
Here, we show how the evolutionary 
game theory is deployed to study 
users’ repetitive and evolutionary 
behavior in social systems.

In the setting of our consideration, 
the social system user topology can be 

treated as a graph structure, and the user with a new decision can be 
regarded as the mutant. By considering the decision-making process 
as the mutant-spreading process [to forward or not to forward when 
an event (mutation) takes place], the graphical evolutionary game 
provides us with an analytical means to find the evolutionary dynam-
ics and equilibrium of user behavior.

GRAPHICAL EVOLuTIONARy GAME FRAMEWORK
In EGT, the utility of a player is referred to as fitness [22]. Specifi-
cally, the fitness U  is a linear combination of the baseline fitness 
(B) representing the player’s inherent property and the player’s 
payoff (U), which is determined by the predefined payoff matrix 
and the player’s interactions with others as follows:

 ( ) ,B U1 a aU = - +  (1)

where the combining weight a  is called the selection intensity. 
One can interpret that one’s fitness is not only determined by 
one’s own strength, but also from one’s environment affecting 
with a selection intensity .a  The case that 0"a  represents the 
limit of weak selection [23], while 1"a  denotes strong selection. 
The selection intensity can also be time varying, e.g., ,e ta b= f-  
which means that the contribution of game interaction decreases 
with time.

With the fitness function, the EGT studies and characterizes 
how a group of players converge to a stable equilibrium after a 
period of strategic interactions. Such a final equilibrium state is 
called the evolutionarily stable state (ESS), which is “a strategy 
such that, if all members of the population adopt it, then no 
mutant strategy could invade the population under the influ-
ence of natural selection” [21]. In other words, even if a small 
fraction of players may not be rational and take out-of-equilib-
rium strategies, ESS is still a locally stable state. How to find 
the ESSs is an important issue in EGT. One common approach 
is to find the stable points of the system state dynamic, which is 
known as replicator dynamics. The corresponding underlying 
physical meaning is that, if adopting a certain strategy can lead 
to a higher fitness than the average level, the proportion of pop-
ulation adopting this strategy will increase, and the increasing 
rate is proportional to the difference between the average fitness 
with this strategy and the average fitness of the whole popula-
tion. Note that when the total population is sufficiently large 
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[FIG4] the imitation strategy updating rule.
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and homogeneous, the proportion of players adopting a certain 
strategy is equivalent to the probability of one individual player 
adopting such a strategy, i.e., the strategy distribution over the 
whole population can be interpreted as each player’s mixed 
strategy, and the replicator dynamics can be interpreted as each 
player’s mixed strategy update. 

Graphical EGT studies the strategies’ evolution in such a 
structured population [24]. In the EGT, in addition to the enti-
ties of players, strategy, and fitness matrix, each game model is 
associated with a graph structure, where the vertices represent 
players and the edges determine which player to interact with. 
Since the players only have limited connections with others, 
each player’s fitness is locally determined from interactions 
with all adjacent players.

The commonly used strategy updating rules [25] are origi-
nated from the evolutionary biology field and used to model the 
mutant evolution process. Figure 4 illustrates the detailed evolu-
tion procedures of the imitation strategy update rule. In the first 
step, a user is randomly chosen from the population for imita-
tion. Then, the fitness of the chosen user and all corresponding 
neighbors is computed. Finally, the user will, in all probability, 
either be imitated by one of the neighbors or remain with the 
current strategy, with the probability being proportional to fit-
ness. There are also other rules, such as the birth–death strategy 
update rule and death–birth strategy update rule, but through 
theoretical analysis [15], we find that these rules are equivalent 
when the network degree is sufficiently large.

INFORMATION-DIFFuSION  
FORMuLATION AND ANALySIS
A social network is usually illustrated by a graph, e.g., a Facebook 
subnetwork is shown in Figure 5, where each node represents a user, 
and lines represent the relationships between users.  When some 
new information is originated from one user, the information may be 
propagated over the network, depending on other users’ actions to 
forward the information or not. For each user, whether he or she for-
wards the information is determined by several factors, including the 
user’s own interest in the information and the neighbor’s actions, in 
the sense that, if all the neighbors forward the information, the user 
may also forward the information with a relatively high probability. 
In such a case, the users’ actions are coupled with each other 
through their social interactions. This is very similar to the player’s 
strategy update in the graphical evolutionary game, where players’ 
strategies are also influenced with each other through the graph 

structure. In the graphical evolutionary 
game, a user’s strategy can influence one of 
the neighbors when the fitness of adopting 
this strategy is high. Similarly, in the infor-
mation-diffusion process, when forwarding 
the information can bring a user more utility, 
the user’s neighbors may also be influenced 
to forward the information in the near 
future. Therefore, the information-diffusion 
process can be well modeled by the graphical 
evolutionary game, as illustrated in Figure 6.

There are two possible actions for each 
user, i.e., to forward ( )Sf  or not forward 
( ),Sn  and the corresponding users’ payoff 
matrix can be written as

 ,
u
u

u
u

ff

fn

fn

nn
e o  (2)

where a symmetric payoff structure is con-
sidered, i.e., when a user with strategy Sf  
meets a user with strategy ,Sn  each of 
them receives the same payoff .ufn  Note 
that the payoff matrix is related to the fit-
ness in the graphical evolutionary game 
according to (1). The physical meaning of [FIG5] a Facebook subnetwork [16], [26].
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the payoff can be either the popularity of a user in a social network 
or the hit rate of a website. These three parameters will be learned 
from the data and then used for decision making. Under different 
application scenarios, the values of the payoff matrix may be differ-
ent. For example, if the information is related to recent hot topics 
and forwarding of the information can attract more attentions 
from other users or websites, the payoff matrix should have the 
following characteristic: .u u uff fn nn$ $  According to (1), the fit-
ness of forwarding is larger, and, thus, the probability of forward-
ing will be higher. On the other hand, if the information is about 
useless advertisements, the payoff matrix would exhibit 

,u u unn fn ff$ $  i.e., the fitness of not forwarding is higher, and, 
thus, users tend not to forward the information. Furthermore, if 
the information is supposed to be shared only within a circle, i.e., a 
small group with the same interest, the payoff matrix could exhibit 

.u u ufn ff nn$ $

Since the player’s payoff is determined by both his or her own 
strategy and the opponent’s strategy, to characterize the global 
population dynamics, we need to first derive the local influence 
dynamics as well as the corresponding influence equilibria. We 
find in [15] that the local network states, i.e., the neighbors’ strat-
egy distribution given a player’s strategy, evolve with a rate of 
order 1, while the global network state, i.e., the strategy distribu-
tion of the whole population, evolves with a rate at the order of the 
selection intensity ,a  which is much smaller than one due to the 
weak selection [23]. In such a case, the local network states will 
converge to equilibria at a much faster rate than the global net-
work state. This is because the dynamics of local network states 
are only in terms of a local area, which contains only the neigh-
bors. At such a small scale, the local dynamics can change and 
converge quite fast. On the other hand, if the dynamics of the 
global network state are associated with all users, i.e., the whole 
network, the dynamics would be much slower. Therefore, the 
global network state can be regarded as constant during the con-
vergence of influence dynamics. By doing so, the equilibria of the 
local influence dynamics can be obtained, which are found to be 
linear functions of the global network state.

With the equilibria of the local influence dynamics, the global 
population dynamics can be derived through analyzing the strat-
egy updating rules specified in the graphical evolutionary game 
[25]. It is found that the global population dynamics can be repre-
sented as a two-parameter, third-order polynomial function of the 
global network state [15]

 ( )
( )

( ) ( ) ( ) ( ) ( ) ,p t
k k

k k k
p t p t ap t b

1 2 1f f f f2 2

2a
=

-

- -
- +o

r

r r 6 6@ @  (3)

where ( )p tf  is the proportion of the population forwarding the 
information, ( )p tfo  is the corresponding dynamics, [ ]k E k=r  is 
the average degree of the network, [ ]k E k2 2=  is the second 
moment of the degree of the network, and a  and b  are two 
parameters determined by the payoff matrix shown in (2).

From (3), we can see that, given the characteristic of the net-
work, i.e., the average degree kr  and the second moment of the 
degree ,k2  the evolution dynamics of the information diffusion 
can be modeled by a simple two-parameter, third-order 

polynomial function, where the two parameters a  and b  are 
determined by the payoff in the payoff matrix, i.e., ,uff  ufn  and 

.unn  Therefore, by learning the payoff from the data, we are able 
characterize the evolution dynamics of information diffusion 
using the evolutionary game-theoretic framework.

By evaluating the global population dynamics at the steady 
state, the global population equilibria can be found [16], which is 
zero (no user shares the information with the neighbors), one 
(all users share the information with their neighbors), or only a 
portion of users share the information with their neighbors 
where the amount of such users is purely determined by the pay-
off matrices as follows:
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From (4), we can see that neither user forwarding the informa-
tion can gain the most payoff, while both forwarding gains the 
least payoff, .p 0*

f =  This corresponds to the scenario where the 
released information is useless or a negative advertisement, for-
warding that can only incur unnecessary cost. On the contrary, 
both users forwarding the information can gain the most payoff, 
while not forwarding gains the least payoff, .p 1*

f =  This corre-
sponds to the scenario where the released information is an 
extremely hot topic, and forwarding it can attract more attention. 
For other cases, p*

f  lies between zero and one. For this third ESS, 
some approximations can be made as follows:
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where the last approximation is due to /k k k2 $r r  and the assump-
tion that the average network degree k 2&r  in real social 
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[FIG6] Information diffusion as a graphical evolutionary game.
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networks. We can see that, when the average network degree kr  is 
sufficiently large, the information-diffusion result is independent 
of the network scale, i.e., there is a scale-free phenomenon for the 
information-diffusion equilibrium.

EXPERIMENTS WITH REAL-WORLD DATA SETS
The real-world data sets are used to validate the proposed 
model. We first use the Twitter hashtag data set to validate the 
evolutionary population dynamics [15]. Specifically, we learn 
the payoff matrix in (2) by fitting the real temporal dynamics 
with the evolution dynamics in (3) and generate the corre-
sponding evolution dynamics based on the estimated payoff 
matrix. The Twitter hashtag data set contains the number of 
mentions per hour of 1,000 Twitter hashtags with the corre-
sponding time series, which are the 1,000 hashtags with highest 
total mention times among 6 million hashtags from June to 
December 2009 [26]. We compare our results with one of the 
most related existing works using a data mining method [20]. 
Figure 7 shows the comparison results, where the vertical axis 
is the dynamics and the mention times of different hastags per 
hour in the Twitter data set are normalized within interval [0, 1] 

and denoted by solid gray square. From the figure, we can see 
that the game-theoretic model can fit very well the real-world 
information-diffusion dynamics, better than the data mining 
method in [20] since the users’ interactions and decision-mak-
ing behaviors are taken into account.

We then use the MemeTracker data set to validate the ESS 
[16]. The data set contains more than 172 million news articles 
and blog posts from 1 million online sources [20]. When a site 
publishes a new post, it will put hyperlinks to related posts in 
some other sites published earlier as its sources. Later, the site 
will also be cited by other newer posts as well. An example is 
shown in Figure 8. In such a case, the hyperlinks between arti-
cles and posts can be used to represent the spreading of infor-
mation from one site to another. We extract five groups of sites, 
where each group includes 500 sites. Each group is regarded as 
a complete graph, and each site is considered a user. We divide 
the data set into two halves, where the first half is used to train 
the payoff matrix and the second half is used for testing. 
Figure 9 shows the results using the proposed model and the 
results from the real-world data set, from which we can see 
they match well with each other. We also depict the variances 
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[FIG7] experimental results of the evolutionary population dynamics: (a) #googlewave, (b) #Davidarchuleta, (c) #nIn, and (d) #tehran.
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of the estimated results in Figure 9, which shows that the sim-
ulated results are always in the variance interval of the corre-
sponding estimated results. Figure 9 also reveals the 
cohesiveness of different groups. We can see that the sites in 
Group 5 behave cohesively or share major common interests, 
while the sites in Group 1 share relatively few common inter-
ests. This is particularly interesting in advertisement or advo-
cation scenarios where certain cohesive focus groups need to 
be mined to target high return value.

SEQUENTIAL USER BEHAVIOR:  
THE CHINESE-RESTAURANT-GAME FRAMEWORK
Another distinguishing feature of social systems is that users often 
participate sequentially in their own time and space. For example, 
users sequentially Q&A sites like Yahoo! Answers and Stack Over-
flow and decide whether to provide an answer, to vote on an exist-
ing answer, or not to participate. Other examples include online 
reviews, where customers write reviews for the product they pur-
chase, and social news sites where online users post and promote 
stories under various categories.

The existence of network externality [5] in a social group dic-
tates that users’ actions and decisions influence each other. The 
network externality can be either positive or negative. When it is 
positive, users will have higher utilities when making the same 
decisions. On the contrary, when negative, users tend to make dif-
ferent decisions from others to achieve higher utilities. To achieve 
better performance, users should take into account the effect of 
network externality when making decisions.

On the other hand, users’ decisions are also influenced by their 
knowledge of the system. In general, a user’s knowledge of the sys-
tem may be very limited because of the uncertainty in observa-
tions. This limitation reduces the accuracy of the user’s decision 
and, thus, the overall system performance. The phenomenon of 
limited knowledge can be overcome through learning [27]–[30]. 
Users can learn from their previous experiences through machine-
learning techniques and/or from other users’ decisions and obser-
vations through social learning. All such information can help 
users to construct a belief, which can be probabilistic, on the 

unknown system states. In most cases, the accuracy of users’ deci-
sions can be greatly enhanced by taking the belief into account.

Therefore, to achieve the best utilities, users need to consider 
the effects of both learning and network externality when mak-
ing decisions. While there are some existing works on combining 
positive network externality with learning [31]–[33], few works 
have been done on combining negative network externality with 
learning in the literature, mainly due to the difficulty of the prob-
lem, where a user has to consider the previous users’ decisions 
and predict those of the subsequent users’ decisions. Further-
more, the information leaked by a user’s decision may eventually 
impair the utility the user can obtain. However, in practice, nega-
tive network externality commonly exists in social systems where 
users share and/or compete for resources and contents. To 
address this issue, we have developed a joint learning-decision-
making framework, called the Chinese-restaurant game [17], 
[18], to study users’ sequential learning and decision-making 
behavior in social systems.

2  8  we're not commenting on that story i'm afraid   2131865

     3  3  we're not commenting on that    489007

        2008-08-18 14:23:05  1  M  http://business.theage.com.au/business/bb-chief-set-to-walk-plank-20080818-3xp7.html

        2008-11-26 01:27:13  1  B  http://sfweekly.com/2008-11-26/news/buy-line

        2008-11-27 18:55:30  1  B  http://aconstantineblacklist.blogspot.com/2008/11/re-researcher-matt-janovic.html

     5  2  we're not commenting on that story      2131864

        2008-12-08 14:50:18  3  B  http://videogaming247.com/2008/12/08/home-in-10-days-were-not-commenting-on-that-story-says-scee

        2008-12-08 19:35:31  2  B  http://jplaystation.com/2008/12/08/home-in-10-days-were-not-commenting-on-that-story-says-scee

[FIG8] an example of a memetracker phrase-cluster data set [20].

[FIG9] experimental results of the evolutionarily stable strategy.
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CHINESE-RESTAuRANT-GAME FRAMEWORK
The well-known Chinese-restaurant process has been used in vari-
ous fields, including machine learning, speech recognition, text 
modeling, and object detection in images and biological data clus-
tering [34]. It offers an ideal structure to jointly formulate the 
decision-making problems with negative network externality. The 
Chinese-restaurant process is a nonparametric learning method 
for an unbounded number of objects in machine learning. In a 
Chinese-restaurant process, a restaurant has an infinite number of 
tables and customers arrive the restaurant sequentially. When a 
customer enters, he/she either joins one of the existing tables or 
requests a new table with a predetermined probability. However, 
there is not yet any notion of strategic decision making in the Chi-
nese-restaurant process.

By introducing the strategic behavior into the nonstrategic 
Chinese-restaurant process, we proposed a new framework, the 
Chinese-restaurant game [17], [18], to study the learning and 
decision-making problem with negative network externality. To 
illustrate the framework, let us start with a Chinese restaurant 
that has a fixed number of tables, and customers sequentially 
come in requesting seats at these tables. Each customer may 
request a table. Since tables are available to all customers, there 
may be multiple customers requesting to sit at the same table, 
which, thereafter, incurs the negative network externality. We can 
imagine that the more personal space a customer has, the more 
comfortable the dining experience. Moreover, when the table sizes 
are unknown to the customers (before arriving at the restaurant), 
each of them may resort to some signals (e.g., through advertise-
ments or discussions with previous customers) about the table 
sizes. By observing previous actions or signals, a user can exercise 
a learning process to make up the shortcoming of limited knowl-
edge. With the proposed Chinese-restaurant game, we are able to 
develop an analytical framework involving the learning and deci-
sion making with negative network externality.

As shown in Figure 10, in the Chinese-restaurant game, there 
is a Chinese restaurant with K  tables numbered , , ..., K1 2  and 
N  customers labeled , , ..., .N1 2  The table sizes are determined by 
the restaurant state !i H  and the table size functions 
{ ( ), ( ), ..., ( )} .R R RK1 2i i i  When customer i  arrives, he or she 
receives a signal si  about the state i  and makes a decision about 
which table to choose such that he or she can maximize his or her 
utility, based on what was observed and the prediction of future 
customers’ decisions. The prior distribution of the state 

information is assumed to be known by all customers. The signal 
is generated from a predefined distribution. Since there are uncer-
tainties on the table sizes, customers who arrive first may not 
choose the right tables, and, consequently, their utilities may be 
lower. On the other hand, customers who arrive later may eventu-
ally have better chances to get the better tables since they can col-
lect more information to make the right decisions. In other 
words, when signals are not perfect, learning can help to result in 
higher utilities for customers choosing later. Therefore, there is a 
tradeoff between more choices when playing first and more accu-
rate signals when playing later. To study this tradeoff, some ques-
tions need to be answered: How can customers learn from their 
own signals and the information revealed by other customers? 
How can customers predict the decisions of future customers? 
And what are the best strategies for the customers? 

To study how customers learn from the revealed information 
from others and their own signals, we first introduce the concept 
of belief to describe customers’ uncertainty about the system state. 
One customer’s belief on the system state is the conditional proba-
bility of the system state, given all the information observed by the 
customer, as follows:

 { | ( | , , ), },g h gg g P l s l, ,i i l i l i i 0 6 !i H= = =  (6)

where { , , ..., }h s s si i1 2 1= -  is the signals observed by customer ,i  
and { | ( ), }g g g P l l, ,l l0 0 0 6 !i H= = =  is the prior distribution.

With Bayesian learning [29], rational customers use Bayes’ 
rule to find the optimal estimate about the system state and 
update their belief on the system state as follows:
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Because of their rationality and selfish nature, customers will 
choose their strategies to maximize their own utilities. In such a 
case, considering the incomplete information about the future cus-
tomers, the best response of a customer is to maximize his or her 
expected utility based on all the observed information as follows:

 ( , , ) ( ( ), ) | , , , ,BE n h n harg maxs E U R n s x j*
i i i i i j j i i i i

j
i= =6 @  (8)

where n*
j  is the final number of customers choosing table ;j  

( ( ), )U R n*
i j ji  is the utility of customer i  choosing table ;j  

{ , , ..., }nn n ni i i iK1 2=  is the grouping observed by customer ,i  
with nik  being the number of customers choosing table k  before 
customer ;i  and xi  is the action of customer .i

Note that the best response is determined by the final group-
ing, which depends on the subsequent customers’ decisions. 
Since the decisions of subsequent customers are unknown to a 
customer when the customer is making the decision, a closed-
form solution to the best response function is generally impossi-
ble and impractical. To find the best response for each customer, 
a recursive method based on backward induction is designed [18]. 
The key idea is to use the next customer’s best response 

( , , )BE n hsi i i i1 1 1 1+ + + +  to derive the current customer’s best 
response .( , , )BE n hsi i i i

1 2 K. . .Table

Customer

Signal

1 2 3 4 5 6 7 8

s1 s2 s3 s4 s5 s6 s7 s8

[FIG10] a system model of the chinese-restaurant game.
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With the best-response function, a customer’s optimal deci-
sion is purely determined by the received signal given the group-
ing, i.e., the number of customers at each table and the 
information revealed by other customers. Therefore, we can parti-
tion the signal space into subspaces where within each subspace 
the customer will choose a specific table. By integrating the sig-
nal over each subspace, we can derive a recursive form of the 
probability mass function for the final grouping, i.e., the final 
number of customers at each table. With the recursive form of 
the final grouping, the expected utility of each customer can be 
computed, and the best response of all customers using backward 
induction can be derived.

From previous discussions, we can see that the learning and 
decision making in the Chinese-restaurant-game framework are 
interweaved. On one hand, customers learn the system state from 
the information revealed by previous customers for better deci-
sion making. On the other hand, the decisions and information 
revealed by the customers will affect subsequent customers’ 
learning and decision-making processes. Moreover, before any 
decision making, the utility function in (8) needs to be learned 
from the real data.

EXPERIMENTS WITH REAL DATA  
FROM SOCIAL SySTEMS
We use deal selection on Groupon as an example to illustrate 
the Chinese-restaurant-game framework. Many have the experi-
ences that some deals on Groupon look good but eventually 
turn out to have poor quality because of the overwhelming 
number of customers showing up at the same time, i.e., the 
negative network externality is at work. By collecting the data 
on Groupon and Yelp around the Washington, D.C., area for 
eight months, we indeed observe the decline of Yelp review rat-
ings after some successful Groupon deals, as depicted in 
Figure 11. One can see a nonlinear decline function in review 
ratings. Let us use the real Yelp rating data to train the utility 
function of customers by approximating it as a linear model, as 
shown in Figure 12(a). Then, based on (8), we evaluate the 
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[FIG11] yelp star rating declines after a successful Groupon deal.

[FIG12] (a) utility function modeling using real data from 
Groupon and yelp and (b) the performance comparison of our 
method with the learning method without negative network 
externality.
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[FIG13] a new restaurant’s strategy: the number of customers choosing the restaurant with (a) low quality and (b) high quality and the 
result of the revenue of the (a) low-quality and (b) high-quality restaurants.

average utility, which is the average review rating customers 
can obtain. A comparison was made between the decision-learn-
ing method, denoted as learning with negative network exter-
nality, and that which does not consider negative network 
externality, denoted as learning without negative network 
externality. Note that the former considers the interplay 
between the learning and decision making, while the latter only 
considers the learning of system state but totally ignores the 
influence among customers’ decision making. The results are 
shown in Figure 12(b). One can see that by combing learning 
with negative network externality, the proposed method can 
achieve much better utility for customers.

We further study the best pricing and promotion strategy of 
a new restaurant under the Chinese-restaurant-game frame-
work. Let us consider two restaurants. One is always of high 
quality, and the other is a new restaurant, which could be of low 
or high quality. The same utility function trained from the real 
data in the above experiment is used to infer the strategy. The 
results are shown in Figure 13. One can see that if the new res-
taurant is of low quality, then the number of customers 

choosing the new restaurant decreases as signal quality 
increases and vice versa. One can also see that the optimal deal 
price of the high-quality restaurant is higher than that of the 
low-quality restaurant. Therefore, the high-quality restaurant 
should make every effort to increase the signal quality, while the 
low-quality restaurant should hide the quality information and 
use a low deal price to attract customers to increase the reve-
nue. This offers a vivid example of using data to learn and come 
out with an optimal strategy.

EXTENSION TO THE CHINESE-RESTAuRANT-GAME FAMILy
We have discussed the Chinese-restaurant game under a fixed 
population setting, i.e., there are a finite number of customers 
choosing the tables sequentially. However, in some applications, 
customers may arrive and leave the restaurant at any time, 
which results in the dynamic population setting. Examples 
include cloud storage service selection, deal selection on Grou-
pon, and Wi-Fi access point selection in a conference hall [35]. 
In such a case, the utilities of customers will change from time 
to time because of the dynamic number of customers on each 
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table. To tackle this challenge, we 
have extended the Chinese-restau-
rant game to the dynamic popula-
tion setting [36], [37], where we 
consider the scenario that custom-
ers may arrive and leave the restau-
rant with, e.g., a Poisson process. With such a dynamic 
population setting, each newly arriving customer not only 
learns the system state according to the information received 
and revealed by former customers, but also predicts the future 
customers’ decisions to maximize the utility.

The Chinese-restaurant game is proposed by introducing stra-
tegic decision-making into the Chinese-restaurant process, where 
each customer can choose one table to maximize the utility. 
However, in some applications, users may want to simultaneously 
choose multiple resources. For example, mobile terminals may 
access multiple channels, cloud users may have multiple cloud 
storage services, and students may take multiple online courses. 
To further generalize the setting, we have introduced strategic 
decision making into another well-known random process, the 
Indian-buffet process [38], and develop a new framework, called 
the Indian-buffet game, to study the learning and decision-mak-
ing problem with negative network externality under the scenario 
that customers can have multiple choices [39]. In the Indian-buf-
fet game framework, we also consider multislot interactions 
where customers can interact and make decisions repeatedly, and 
only partial information is revealed, i.e., customers only reveal 
beliefs instead of full signals to others. We use the non-Bayesian 
social learning to learn from each other to improve the knowl-
edge of the system and thus make better decisions. Similar exten-
sion can be applied to multiarmed-bandit problems by 
introducing decision-making processing into their formulation.

mechanIsm DesIGn In 
DecIsIon LearnInG
In this section, we will address deci-
sion learning from the system point 
of view. Can we design mechanisms 
for users to learn the desired behav-

ior and thus achieve the goals of the system designer, as shown in 
Figure 14? In the following, we will use microtask crowdsourcing 
to illustrate how to design a mechanism to obtain high-quality 
data for data analytics.

One key factor for the success of supervised and semisuper-
vised learning is a large-scale labeled data set [1], [2]. In gen-
eral, a larger-scale data set will lead to a more accurate model 
and, thus, better performance. However, large-scale annota-
tion is very expensive, which often becomes one of the bottle-
necks of supervised and semisupervised learning. To address 
this challenge, microtask crowdsourcing, with access to a 
large and relatively cheap online labor pool, is a promising 
method since it can generate large volume of labeled data in a 
short time at a much lower price compared with traditional 
in-house solutions. An example of microtask crowdsourcing is 
illustrated in Figure 15.

On the other hand, because of the lack of proper incen-
tives, microtask crowdsourcing suffers from quality issues. 
Since workers are paid a fixed amount of money per task 
they complete, it is profitable for them to provide random or 
bad-quality solutions to increase the number of submissions 
within a certain amount of time or with the least effort. It 
has been reported that most workers on Mturk, a leading 
marketplace for microtask crowdsourcing, do not contribute 
high-quality work [40]. To address this issue, a common 
machine-learning solution is to either add a data-curation 

[FIG14] an illustration of mechanism design. users may behave randomly without a well-designed mechanism, which can greatly 
degrade the system performance. through mechanism design, the system designer can guide users to learn the desired behavior and 
thus achieve the expected goals at the system level.
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[FIG16] the state transition diagram of the incentive mechanism .Mt
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phase to filter out low-quality data or to modify the learning 
algorithm to accept noisy labels [41]–[45].

In contrast to existing machine-learning solutions, we tackle 
such a problem by incentivizing the high-quality data in the first 
place [19], e.g., from the workers. This problem is challenging 
because of the inherent conflict between incentivizing high-quality 
solutions from workers and maintaining the low-cost advantage of 
microtask crowdsourcing for requesters. On one hand, requesters 
typically have a very low budget for each task in microtask crowd-
sourcing. On the other hand, the implementation of incentive mech-
anisms is costly as the  operation of verifying the quality of submitted 
solutions is expensive [41]. Such a conflict makes it extremely chal-
lenging to design proper incentives for microtask crowdsourcing and 
motivates us to ask the following question: What incentive mecha-
nisms should requesters employ to collect high-quality solutions in a 
cost-effective way? In a general sense, the core problem is how to 
design mechanism for obtaining good data.

To answer the question, we first study and model the behavior of 
workers. Specifically, let us consider a model with strategic workers, 
where the action of a worker is the quality of the solution [ , ]q 0 1!  
and the primary objective of a worker is to maximize his or her own 
utility, defined as the reward he or she will receive minus the cost of 
producing solutions of a certain quality ( ) .qc  Based on this model, 
we analyze two basic mechanisms that are widely adopted in existing 
microtask crowdsourcing applications: reward consensus mecha-
nism Mc  and reward accuracy mechanism Ma  [19].

REWARD CONSENSUS MECHANISM Mc

With this mechanism, a task is assigned to multiple workers. Only 
the same answer that is submitted by the majority of workers will 
be chosen as the correct solution and the workers whose solution 
agrees with the correct one will receive a positive reward. Through 
analyzing this mechanism, we find that there exists a minimum 
mechanism cost per task to obtain high-quality solutions [19]

 ( ),C c3 1*
Mc = l  (9)

where ( )c 1l  is the first-order derivative of the cost function ( )c q  
evaluating at the desired solution quality .q 1=

REWARD ACCURACY MECHANISM Ma

This mechanism assigns each task only to one worker. The requester 
evaluates with a certain probability the quality of submitted solutions 
directly, where each validation incurs a constant cost .d  The valida-
tion can be erroneous with a probability of .f  The workers whose 
solutions are not evaluated or evaluated and confirmed as correct 
will receive a positive reward. Through analyzing this mechanism, 
we again find that there exists a minimum mechanism cost per task 
to obtain high-quality solutions [19]
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From (9) and (10), we can see that to obtain high-quality solu-
tions using the two basic mechanisms (Mc  and ),Ma  the unit cost 
incurred by requesters per task is subject to a lower bound con-
straint, which is beyond the control of requesters. In case that the 
budget of the requester is lower than the minimum cost constraint, 
it becomes impossible for the requester to achieve the desired quality 
solutions with these two basic mechanisms. In other words, neither 
of these two basic mechanisms is cost effective.

INCENTIVE MECHANISM VIA TRAINING Mt

To tackle this challenge, we design a cost-effective mechanism by 
employing quality-aware worker training as a tool to stimulate 
workers to provide high-quality solutions [19]. Different from cur-
rent microtask crowdsourcing applications where training tasks 
are usually assigned to workers at the very beginning and are irrel-
evant to the quality of submitted solutions, we use the training 
tasks in a more effective way by assigning them to workers when 
they perform poorly. That is, when a worker performs poorly, he/
she will be required to enter a training session without a reward to 
regain accreditation to be able to go back to perform in the regular 
session with a reward.

With the introduction of quality-aware training tasks, there 
will be two system states in our proposed mechanism: the work-
ing state and the training state. The working state is for produc-
tion purposes, where workers work on standard tasks in return 
for rewards, while the training state is an auxiliary state, where 
workers do a set of training tasks to gain qualifications for the 

[FIG15] an example of microtask crowdsourcing.
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working state. The state transition 
diagram is shown in Figure 16, 
where ( , )P q qw w wu  represents the 
probability of a solution with quality 
qw  being accepted in the working 
state when other submitted solu-
tions from the working state are of 
quality ,qwu  and ( )P qt t  is the proba-
bility of a worker who produces solu-
tions of quality qt  at the training 
state being allowed to enter the 
working state next time.

From Figure 16, we can see that the current action of a 
worker will affect the future system state of the worker. In other 
words, the quality of a worker’s solution to one task will affect 
not only the worker’s immediate utility but also his future util-
ity due to the possible change of the system state. Such a depen-
dence provides requesters with an extra degree of freedom in 
designing incentive mechanisms and thus enables them to col-
lect high-quality solutions while still having control over their 
incurred costs.

To find the optimal action, each worker must solve a Markov 
decision process (MDP), according to the state transition dia-
gram shown in Figure 16; the MDP faced by each worker also 
depends on other workers’ actions. In essence, this is a challeng-
ing game-theoretic MDP problem [19]. Through analyzing the 
incentive mechanism ,Mt  we find that, as long as the number of 
training tasks is large enough, there always exists a desirable 
equilibrium where workers submit high-quality solutions at the 
working state. In other words, given any parameters in the work-
ing state, one can always guarantee the existence of a desirable 
equilibrium through the design of the training state. When the 
desirable equilibrium is adopted by all workers by following a 
certain design procedure, the minimum mechanism cost is the-
oretically proved to be zero [19], i.e.,

 ,C 0*
Mt =  (11)

which means that one can collect 
high-quality solutions with an arbi-
trarily low cost. In other words, given 
any predetermined budget, the 
incentive mechanism Mt  enables the 
requester to collect high-quality 
solutions while still staying within 
the budget.

Notice that one can easily achieve 
better learning purposes with the 
high-quality data collected by the 

incentive mechanism .Mt  Therefore, through modeling and ana-
lyzing users’ strategic decision-making processes, one can design 
mechanisms from the system point of view to steer users’ strategic 
behaviors to obtain better-quality data for better learning.

REAL BEHAVIORAL EXPERIMENTS
A set of behavioral experiments are conducted to test the incentive 
mechanism Mt  in practice. We evaluate the performance of partici-
pants on a set of simple computational tasks under different incen-
tive mechanisms. We compare the incentive mechanism Mt  with 
the reward accuracy mechanism ,Ma  where the quality of submitted 
solutions is evaluated with a certain probability.

There are 41 participants in our experiments, most of whom 
are engineering graduate students. We use the accuracy of each 
participant as an indicator to the effectiveness of the incentive 
mechanisms, and the results are shown in Figure 17, where 
(a) shows the results of the reward accuracy mechanism Ma  with 
sampling probability 1, i.e., every submitted solution is evaluated; 
(b) shows the results of the reward accuracy mechanism Ma  with 
sampling probability 0.3, i.e., 30% of the submitted solutions are 
evaluated; and (c) shows the results using the incentive mecha-
nism Mt  with the sampling probability as that in (b).

As shown in Figure 17(a), with the highest sampling proba-
bility, most participants respond positively by submitting solu-
tions with very high qualities. There is only one participant who 
had relatively low accuracy compared with others in that he/she 

[FIG17] histogram of accuracy: (a) the results using the reward accuracy mechanism Ma  with sampling probability 1; (b) the results 
using the reward accuracy mechanism Ma  with sampling probability 0.3; and (c) the results using the incentive mechanism Mt  with 
sampling probability 0.3.
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was playing the strategy of avoiding difficult tasks according to 
our exit survey. When a much lower sampling probability of 0.3 
is used, it becomes profitable to increase the number of submis-
sions by submitting lower-quality solutions, as most errors will 
simply not be detected. This explains why the majority of partic-
ipants had very low accuracies, as shown in Figure 17(b). Nota-
bly, a few workers, five of 41, still exhibited very high accuracies 
in this case. Our exit survey suggests that their behaviors are 
influenced by a sense of work ethics, which prevents them from 
playing strategically to exploit the mechanism vulnerability. 
With the incentive mechanism ,Mt  as the introduction of train-
ing tasks makes it more costly to submit wrong solutions, par-
ticipants need to reevaluate their strategies to achieve a good 
tradeoff between accuracy and the number of submitted tasks. 
From Figure 17(c), we can see that the accuracy of the partici-
pants with the incentive mechanism Mt  has a very similar dis-
tribution to that of the group using the reward accuracy 
mechanism Ma  with the highest sampling probability. There-
fore, through the use of quality-aware worker training, the 
incentive mechanism Mt  can greatly improve the effectiveness 
of the basic reward accuracy mechanism Ma  with a low sam-
pling probability to a level that is comparable to the one that 
has the highest sampling probability.

reLateD Works
Although not referred to specifically as decision learning, there 
has been a growing body of literature in recent years on the 
intersection of learning and strategic decision making, as 

summarized in Figure 18. One class of related works is learning 
to understand how human beings make strategic decisions from 
real data. For example, classical machine-learning techniques 
are used in [46] to predict how people make and respond to 
offers during negotiations and how they reveal information and 
their response to potential revelation actions by others. Their 
results showed that the strategies derived from machine-learn-
ing algorithms, even when not optimal, can beat real human 
beings [46]. The year-long study of empirical data shows that an 
experienced human being in a repeated game will be more 
cooperative but turn the tables more definitely when he or she 
is betrayed by the opponent [47]. Additionally, the study in [48] 
shows that human beings have very limited memory space and 
computation capability, which limits the optimality of their 
decisions. It has also been shown in [49] that a dynamic belief 
model, by ignoring the older signals in constructing the belief, 
works best in predicting human decisions. Through empiri-
cally analyzing the purchase history on Taobao, a large-scale 
online shopping social network, Guo et al. revealed that a real 
human values purchase experiences shared by his or her  
friend and would be willing to pay a higher price for trustwor-
thy vendors [50]. Nevertheless, in such a complicated system, 
it is still difficult to predict the purchase decisions with more 
than 50% accuracy using traditional machine-learning algo-
rithms [50]. In [51], how users make decisions on social com-
puting systems is learned from real data and used to guide the 
design of mechanisms for the systems. The aforementioned 
works establish a solid foundation of decision learning. These 

[FIG18] a summary of related works.
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works reveal the real nature of peo-
ple in making decisions and suggest 
that people usually behave in a 
rational way with several limita-
tions such as short memory. These 
evidences become a strong support 
to the rationality assumption in 
decision learning.

Another class of related works is 
finding equilibrium through learn-
ing. Finding Nash equilibrium is critical yet challenging in most 
game models since the difficulty has been shown to be polyno-
mial parity arguments on directed graphs  in general settings or 
even nondeterministic polynomial time-complete in specific 
problems [52]. Given that a general and exact solution is intracta-
ble, it is a natural choice to design proper learning algorithms to 
find the solutions. No-regret learning, for instance, has been 
shown to be a practical candidate. It has been applied in exten-
sive-form games to reduce the number of subgame trees to 
explore [53]. The sufficient conditions for such type of learning 
algorithms to converge in the selfish routing problem [54] are 
also theoretically studied. Reinforcement learning is another can-
didate since its action-reward structure naturally forms the best 
response dynamic in game theory. Since traditional Q-learning 
may fail to converge if directly applied in a game, especially when 
the Nash equilibrium is not unique, maxmin Q-learning is pro-
posed in [55] to find the Nash equilibrium in a two-player zero-
sum game. The objective of maxmin Q-learning is modified from 
pure reward maximization into a max–min problem with an 
opponent’s actions in mind. Nash Q-learning, a more general 
Q-learning algorithm, is proposed in [56] to handle multiplayer 
game with non-zero sum. The objective of Nash Q-learning is 
replaced with equilibrium conditions defined in game theory. 
The experiment results show that Nash Q-learning can help 
identify better Nash equilibrium than the traditional Q-learn-
ing algorithm. Learning has also been used to reduce the com-
plexity in finding the subgame-perfect Nash equilibrium in a 
sequential game [57], which is PSPACE-hard in general. In 
[58], MDP and Monte Carlo simulation is used to reduce the 
complexity in identifying the optimal bidding strategy in 
sequential auctions. Finding the equilibrium point is also a 
critical part in decision learning since the performance of the 
decision-learning method relies on the equilibrium point. The 
aforementioned works contribute useful methods to help find 
the equilibrium point efficiently.

There have also been some related works that formulate the 
training problem in machine learning as a game. For instance, 
it was shown in [59] that a class of online learning algorithms 
can be modeled as a drifting game with both the trainer and the 
system as players. The learning algorithm in such a formation 
becomes the best response of the trainer to the system’s reply to 
each training problem. Another application is maintaining fair-
ness in a multiagent sequential decision problem. Given that 
the objective of the system is max–min fairness, one may model 
the learning model as a two-player game, where the first player 

aims at maximizing the utility of 
the target agent who is chosen by 
second player, while the second 
player chooses the agent with low-
est utility as the target agent [60]. 
Decision learning not only inherits 
the spirit of the previously men-
tioned works but also makes one 
critical extension to address the 
competition effect in real world. 

That is, in decision learning, we introduce the game-theoretic 
competition effect into not only the system-versus-user relation 
but also user-versus-user relations.

Active learning is another related field [61]. Through 
actively choosing which data to learn from, active learning 
algorithms have the potential to greatly reduce the amount of 
labeling effort in machine-learning algorithms. Active learn-
ing with an explicit labeling cost has been widely studied [62]–
[65]. It is known that active learning algorithms degrade 
quickly as the noise rate of labels increases [66]. To address 
the quality issue in labeled data collection, a variety of 
approaches have been proposed to filter low-quality labels and 
to increase the robustness of machine-learning algorithms 
[41]–[45]. In [67], a game-theoretic dynamics was proposed to 
approximately denoise the data to exploit the power of active 
learning. Incentive mechanisms have also been used to 
improve the quality of collected data. In [11], [68], and [69], 
all-pay auctions are applied to incentify high-quality user con-
tributions. In [70], Shaw et al. conducted an experiment to 
compare the effectiveness of a collection of social and financial 
incentive mechanisms. A reputation-based incentive mecha-
nism was proposed and analyzed for microtask crowdsourcing 
in [71]. In [72] and [73], Singer and Mittal proposed an online 
mechanism for microtask crowdsourcing where tasks are 
dynamically priced and allocated to workers based on their 
bids. In [74], Singla and Krause proposed a posted price 
scheme where workers are offered a take-it-or-leave-it price 
offer. The earlier works are closely related to decision learning 
since they also focus on the rationality and incentives of users 
in the learning process. Crowdsourcing is one of the main 
applications of decision learning, of which we also gave a 
detailed illustration previously.

A nonstrategic but related problem is the multiarmed-bandit 
problem [75]. In the multiarmed-bandit problem, a bandit with 
multiple arms is provided to a gambler. The gambler may have 
different levels of rewards by playing different arms each time. 
Thus, the gambler may try and learn in each play to maximize his 
collected rewards. Liu and Zhao extended this model by consider-
ing multiple agents and including the network externality in [76]. 
They studied how agents learn the expected payoff and the other 
agent’s choice by estimating the regrets after choosing different 
arms based on his or her current belief. A multiarmed-bandit 
problem with costs in observations is discussed in [77]. Neverthe-
less, traditional studies in the multiarmed-bandit problem are 
generally nonstrategic. They assume agents will always follow the 
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learning rule designed by the system designer. Combining strate-
gic thinking with the multiarmed-bandit problem has gained 
more attention recently mainly because of a popular and practical 
application: website ad auctions. The ad slot on a website is usu-
ally sold through auction. The value of the ad depends on two fac-
tors: the value of the product in the ad and the expected number 
of clicks on the ad. The former is known by the advertiser and can 
be collected through truthful auction such as a Vickery auction. 
Nevertheless, the expected number of clicks, or the click-
through-rate (CTR) of the ad, is unknown to both the website 
owner and the advertiser. The no-regret algorithm in the multi-
armed-bandit problem can be used to learn CTR while maintain-
ing the truthfulness of the auction [78], [79]. In [80], it is shown 
that increasing number of explore stages will push the buyers to 
reveal their true valuation more, with fewer exploit stages for sell-
ers to gain extra revenue from the learned valuation in return. 
The strategic multiarm-bandit problem is the one receiving the 
most attention in the transition from traditional machine learn-
ing to decision learning because of its structure and potentials in 
real world applications such as ad auctions. The great success also 

shows the potential of decision learning in real-world applica-
tions, especially those involving competitions.

concLusIons anD FInaL thouGhts
Decision learning is learning with strategic decision making that 
can analyze users’ optimal behaviors from users’ perspectives 
while designing optimal mechanisms from system designers’ per-
spectives. In this article, we have used three social media examples 
to highlight the concepts of decision learning. Specifically, infor-
mation diffusion over online social networks was used to illustrate 
how to learn users’ utility functions from real data for understand-
ing and modeling strategic decision making. Deal selection on 
Groupon with Yelp data was used to discuss how users learn from 
each other’s interactions for better strategic decision making. 
Microtask crowdsourcing was used to discuss how to design 
mechanisms to steer users’ strategic behaviors to obtain better-
quality data for better learning. Besides the three examples dis-
cussed in this article, there can be other forms of joint learning 
with strategic decision making, including those discussed previ-
ously. In essence, in the coming big data tsunami, when a large 

[FIG19] In the coming big data tsunami, when a large volume of data is available, users can learn better models to improve their own 
decision making. on the other hand, their actions result in changes of the data pool, which consequently affects the models learned by 
the users. In summary, users’ decisions and actions affect each other in an ever-changing fashion for user-generated data applications. 
Decision learning is an emerging research area to bridge learning from large volumes of data with strategic decision making that 
understands and models user behaviors.
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volume of data is available, users can learn better models to 
improve their own decision making, as depicted in Figure 19. On 
the other hand, their actions result in changes of the data pool, 
which consequently affects the models learned by the users.

In summary, users’ decisions and actions affect each other in 
an ever-changing fashion for user-generated data applications. 
Decision learning is an emerging research area to bridge learning 
from large volumes of data with strategic decision making that 
understands and models user behaviors.
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