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ABSTRACT

The wide-spread use of P2P video streaming systems have in-

troduced a large number of unnecessary traverse links leading

to substantial network inefficiency. To address this problem and

achieve better streaming performance, we propose to enable co-

operation among group peers, which are geographically neigh-

boring peers with large intra-group upload and download band-

widths. Considering the peers’ selfish nature, we formulate the

cooperative streaming problem as an evolutionary game and de-

rive the evolutionarily stable strategy (ESS) for every peer. More-

over, we propose a simple and distributed learning algorithm for

the peers to converge to the ESSs. Compared to the traditional

non-cooperative P2P schemes, the proposed cooperative scheme

achieves much better performance in terms of social welfare and

probability of real-time streaming.

Index Terms— P2P, cooperative streaming, evolutionary,

game theory, replicator dynamics, distributed learning.

1. INTRODUCTION

With the rapid development of signal processing and networking

technologies, video-over-IP applications become more and more

popular and have attracted millions of users over the Internet. One

solution to video streaming over Internet is the Peer-to-Peer (P2P)

service model, where a peer not only acts as a client to download

data from the network, but also acts as a server to upload data for

the other peers in the network. The upload bandwidth of the peers

reduces the workload placed on the server dramatically, which

makes large-scale video streaming possible.

While P2P video streaming systems have achieved promising

results, they have several drawbacks. First, there is a large number

of unnecessary traverse links within a provider’s network. As ob-

served in [1], each P2P bit on the Verizon network traverses 1000

miles and takes 5.5 metro-hops on average. Second, there is a

huge number of cross Internet Service Provider (ISP) traffic. The

studies in [2] showed that 50%-90% of the existing local pieces

in active peers are downloaded externally. Third, most of the cur-

rent P2P systems assume that all peers are willing to contribute

their resources. However, this assumption may not be true since

the P2P systems are self-organizing networks and the peers are

selfish by nature [3].

In the literature, many approaches have been proposed to over-

come these drawbacks. Karagiannis et al. [2] proposed to use

locality-aware P2P schemes to reduce the unnecessary traverse

links within and cross ISPs and thus reduce the download time.

Xie et al. [1] proposed a P4P architecture that allows coopera-

tive traffic control between applications and network providers.

To stimulate selfish peers to contribute their resources, payment

mechanism [4] and reputation schemes [5] are proposed. Game

theoretical incentive mechanisms are also investigated in [3].

Most of the existing schemes treat every peer as an indepen-

dent individual. However, in reality, every peer can have a large

number of geographically neighboring peers with large intra-

group upload and download bandwidths, e.g. the peers in the

same lab, building, or campus. In this paper, we name those ge-

ographically neighboring peers with large intra-group upload and

download bandwidths as group peers. To reduce the unnecessary

traverse links and improve network efficiency, instead of consid-

ering each peer’s strategy independently, we investigate possible

cooperation among the group peers and answer the question of

“how a group of selfish peers should cooperate with each other to
achieve better streaming performance”.

The rest of this paper is organized as follows. In Section 2,

we describe the system model and the utility function. Then, we

show in details how to select agents in Section 3. In Section 4,

we propose a distributed learning algorithm for ESS. Finally, we

show the simulation results in Section 5 and draw conclusions in

Section 6.

2. THE SYSTEM MODEL AND UTILITY FUNCTION

2.1. System Model

As shown in Figure 1, there is a set of group peers1 (three in

this example) who want to view a real-time video streaming si-

multaneously. We assume that the upload and download band-

width among the group is large and the peers in the same group

will cooperate with each other and choose k representative peers,

called agents, to download video streams from the agents in other

groups. Then, the agents will distribute the video streams to the

other peers within the group. In order to achieve good stream-

1How to group the peers itself is an interesting problem. However, in this paper,

we assume that the peers have already been grouped and mainly focus on how the

group peers cooperate with each other to achieve better streaming performance.
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Fig. 1. In this example, there are three group peers who want to view a real-

time video streaming simultaneously. The peers within a group cooperate with

each other and choose k agents to download video streams from the agents in

other groups, where the agents are marked in purple. Then, the agents distribute

the video streams to the other peers within the group. Here, the solid line stands

for the inter-group connection while the dashed line stands for the intra-group

connection. In this paper, we address the following two questions: given a group

of peers, how many agents should be chosen and which peers should be chosen as

agents?

ing performance through cooperation, two questions need to be

addressed: given a group of peers, how many agents should be

chosen and which peers should be chosen as agents.

2.2. Utility Function

In a P2P network, a peer not only acts as a client to download

video data from the other peers but also acts as a server to upload

video data for the other peers. Therefore, while a peer can benefit

from downloading data from the other peers, he/she also incurs a

cost in uploading data for the other peers, where the cost can be

resource spending on uploading data, e.g. bandwidth, buffer size.

Given the group peers, u1, u2, ..., uN , we assume that k agents

are chosen to download multimedia data from the peers outside

the group. Suppose that the download rates of the k agents are r1,

r2, ..., rk, then the total download rate of the group peers is given

by yk =
∑k

i=1 ri.

Since the agents randomly and independently select peers out-

side the group for downloading data, the download rate ri’s are

random variables. According to [6], the Cumulative Distribution

Function (CDF) of a peer’s download bandwidth can be modelled

as a linear function, which means that the PDF of a peer’s down-

load bandwidth can be modelled as a uniform distribution, i.e.,

ri’s are uniformly distributed.

Obviously, if the total download rate yk is not smaller than the

source rate r, then the group peers can have a real-time streaming,

and all the group peers can obtain a certain gain G. Otherwise,

there will be some delay, and in this case we assume the gain is

zero. Therefore, given the total download rate yk and the source

rate r, if peer ui chooses to be an agent, then the utility function

of ui is given by

UA,i(k) = P (yk ≥ r)G − Ci,∀k ∈ [1, N ], (1)

where Ci is the cost of ui when he/she serves as an agnet, and

P (yk ≥ r) is the probability of achieving a real-time streaming.

Since the upload and download bandwidths within the group

is large, the cost of uploading data to the other peers within the

group can be negligible. In such a case, if peer ui chooses not to

be an agent, then there is no cost for ui and the utility function

becomes

UN,i(k) =
{

P (yk ≥ r)G, if k ∈ [1, N − 1];
0, if k = 0.

(2)

3. AGENTS SELECTION

In this section, we will discuss how to select agents within a ho-

mogeneous group where the cost of all peers serving as an agent

is assumed to be the same.2

3.1. Evolutionary Cooperative Streaming Game

Since peers are selfish by nature, they are not as cooperative as

a system designer/controller desires. To provide a robust equilib-

rium strategy for the selfish peers, we adopt the concept of Evolu-

tionarily Stable Strategy (ESS) [7].

Since all peers are selfish, they will cheat if cheating can

improve their payoffs, which means that all peers are uncertain

of other peers’ actions and utilities. In such a case, to improve

their utilities, peers will try different strategies in every play and

learn from the strategic interactions using the methodology of

understanding-by-building. During the process, the percentage of

peers using a certain pure strategy may change. Such a population

evolution can be modelled by replicator dynamics. Specifically,

let xa stand for the probability of a peer using pure strategy

a ∈ A, where A = {A,N} is the set of pure strategies including

being an agent (A) and not being an agent (N ). By replicator dy-

namics, the evolution dynamics of xa are given by the following

differential equation

ẋa = η[Ū(a, x−a) − Ū(xa)]xa, (3)

where Ū(a, x−a) is the average payoff of the peers using pure

strategy a, x−a is the set of peers who use pure strategies other

than a, Ū(xa) is the average payoff of all peers, and η is a positive

scale factor.

From (3), we can see that if adopting pure strategy a can lead

to a higher payoff than the average level, the probability of a peer

using a will grow and the growth rate ẋa/xa is proportional to

the difference between the average payoff of using strategy a (i.e.,

Ū(a, x−a)) and the average payoff of all peers (i.e., Ū(xa)).
2Due to the page limitation, we will not show the analysis for the heterogeneous

scenario in this paper. However, we would like to point out that the proposed

distributed learning algorithm in Section 4 is applicable to both the homogeneous

and heterogeneous scenarios.
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3.2. Analysis of the Cooperative Streaming Game

According to (1) and (2), the average payoff of a peer if he/she

choose to be an agent can be computed by

ŪA(x)=
N−1∑
i=0

(
N−1

i

)
xi(1− x)N−1−i

[
P (yi+1 ≥ r)G−C

]
, (4)

where x is the probability of a peer being an agent, and
(
N−1

i

)
xi(1−

x)N−1−i is the probability that there are i agents out of N − 1
other peers.

Similarly, the average payoff of a peer if he/she chooses not to

be an agent is given by

ŪN (x) =
N−1∑
i=1

(
N−1

i

)
xi(1 − x)N−1−iP (yi ≥ r)G. (5)

According to (4) and (5), the average payoff of a peer is

Ū(x) = xŪA(x) + (1 − x)ŪN (x). (6)

Substituting (6) back to (3), we have

ẋ = ηx(1 − x)[ŪA(x) − ŪN (x)]. (7)

At equilibrium x�, no player will deviate from the optimal

strategy, which means ẋ� = 0, and we can obtain x� = 0, 1, or

the solutions to ŪA(x) = ŪN (x). However, since ẋ� = 0 is only

the necessary condition for x� to be ESS, we examine the suf-

ficient condition for each ESS candidate and draw the following

conclusions.

• x� = 0 is an ESS only when P (y1 ≥ r)G − C ≤ 0.

• x� = 1 is an ESS only when P (yN ≥ r)G − P (yN−1 ≥
r)G ≥ C.

• Let x� be the solution to ŪA(x) = ŪN (x), and x� ∈ (0, 1).
Then, x� is an ESS.

4. A DISTRIBUTED LEARNING ALGORITHM FOR ESS

From the previous section, we can see that the ESS can be found

by solving the replicator dynamics equations. However, solving

the replicator dynamics equations require the exchange of private

information and strategies adopted by other peers. In this section,

we will present a distributed learning algorithm that can gradually

converge to ESS without information exchange.

We first discretize the replicator dynamics equation as

xi(t + 1) = xi(t) + η
[
Ūi(A, x−i(t)) − Ūi(xi(t))

]
xi(t), (8)

where t is the slot index and xi(t) is the probability of ui being an

agent during slot t. Here, we assume that each slot can be further

divided into M subslots and each peer can choose to be an agent

or not at the beginning of each subslot.
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Fig. 2. The social welfare comparison.

From (8), we can see that in order to update xi(t + 1), we

need to first compute Ūi(A, x−i(t)) and Ūi(xi(t)). Let us define

an indicator function 1i(t, k) as

1i(t, q)=
{

1, if ui is an agent at subslot q in slot t,
0, else,

(9)

where q is the subslot index.

The immediate utility of ui at subslot q in slot t can be com-

puted by

Ui(t, q) =

⎧⎪⎪⎨
⎪⎪⎩

G − Ci, if ui is an agent and rt ≥ r,

−Ci, if ui is an agent and rt < r,

G, if ui is not an agent and rt ≥ r,

0, if ui is not an agent and rt < r,

(10)

where rt is the total download rate of the agents and r is the source

rate.

Then, Ūi(A, x−i(t)) can be approximated using

Ūi(A, x−i(t)) =

∑M
q=1 Ui(t, q)1i(t, q)∑M

q=1 1i(t, q)
, (11)

Similarly Ūi(xi(t)) can be approximated as

Ūi(xi(t)) =
1
M

M∑
q=1

Ui(t, q). (12)

Based on (8-12), ui can gradually learn the ESS.

5. SIMULATION RESULTS

In all simulations, the parameters G, rL, and rU are set to be 1, 50,

and 800, respectively. For convenience, in the rest of this paper,
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Fig. 3. Behavior dynamic of a homogeneous group of peers.

we denote the proposed ESS-based approach as ESS-D. We com-

pare the proposed method with traditional P2P non-cooperation

method, which is denoted as Non-Coop.

In the first simulation, we show the social welfare compari-

son, where we assume that there are 20 homogenous peers and

the cost C is 0.1. As show in Fig. 2, ESS-D performs much better

than the Non-Coop method since the social welfare performance

of Non-Coop decreases linearly in terms of the source rate. With

cooperation and adaptively selecting the proper number of agents,

the proposed method can preserve a high social welfare perfor-

mance even with a large source rate.

In the second simulation, we evaluate the convergence prop-

erty of the ESS-D. In Fig. 3, we show the replicator dynamic

of the cooperation streaming game with homogeneous peers with

r = 500. We can see that starting from a high initial value, all

peers gradually reduce their probabilities of being an agent since

being a free-rider more often can bring a higher payoff. However,

since too low a probability of being an agent increases the chance

of having no peer be an agent, the probability of being an agent

will finally converge to a certain value which is determined by the

number of peers.

In the third simulation, we compare the probability of real-

time streaming performance between Non-Coop and ESS-D. The

simulation results are shown in Fig. 4. We can see that with co-

operation, the probability of real-time streaming can be signifi-

cantly improved especially at the high source rate region. We also

find that at the high source rate region, the probability of real-time

streaming increases as N increases. Note that to give more insight

into the proposed algorithms, we assume that there is no buffering

effect in this paper. However, the analysis and conclusion can be

extended to the case when buffering effect is considered.
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Fig. 4. The probability of real-time streaming comparison.

6. CONCLUSION

In this paper, we propose a cooperative streaming scheme to ad-

dress the network inefficiency problem encountered by the tra-

ditional non-cooperative P2P schemes. We answer the question

of “how a group of selfish peers with large intra-group upload
and download bandwidths cooperate with each other to achieve
better streaming performance” by formulating the problem as an

evolutionary game and deriving the ESS for every peer. We fur-

ther propose a distributed learning algorithm for each peer to con-

verge to the ESS by learning from his/her own past payoff history.

From the simulation results, we can see that compared with the

traditional non-cooperative P2P schemes, the proposed algorithm

achieves much better social welfare and higher probability of real-

time streaming.
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