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Abstract—In cognitive networks, since nodes generally belong
to different authorities and pursue different goals, they will not
cooperate with others unless cooperation can improve their own
performance. Thus, how to stimulate cooperation among nodes in
cognitive networks is very important. However, most of existing
game-theoretic cooperation stimulation approaches rely on the
assumption that the interactions between any pair of players
are long-lasting. When this assumption is not true, according to
the well-known Prisoner’s Dilemma and the backward induction
principle, the unique Nash equilibrium (NE) is to always play
non-cooperatively. In this paper, we propose a cooperation stim-
ulation scheme for the scenario where the number of interactions
between any pair of players are finite. The proposed algorithm
is based on indirect reciprocity game modelling where the key
concept is “I help you not because you have helped me but because
you have helped others”. We formulate the problem of finding
the optimal action rule as a Markov Decision Process (MDP).
Using the packet forwarding game as an example, we show that
with an appropriate cost-to-gain ratio, the strategy of forwarding
the number of packets that is equal to the reputation level of
the receiver is an evolutionarily stable strategy (ESS). Finally,
simulations are shown to verify the efficiency and effectiveness
of the proposed algorithm.

Index Terms—Indirect reciprocity, cognitive network, game
theory, Markov decision process.

I. INTRODUCTION

In cognitive networks [1], since nodes generally belong to

different authorities and pursue different goals, fully coopera-

tive behaviors cannot be taken for granted. Instead, nodes will

only cooperate with others when cooperation can improve their

own performance. We regard the nodes with such behaviors as

selfish nodes. Therefore, a key problem in cognitive networks

is how to stimulate cooperation among selfish nodes.

One way to stimulate cooperation among selfish nodes is to

use payment based methods [2] [3]. However, the requirement

of tamper-proof hardware or central billing services greatly

limits their potential applications. Another way to stimulate

cooperation among selfish nodes is to use reputation-based

methods. Marti et. al [4] propose to identify the misbehaving

nodes and deflect the traffic around them. Buchegger and

Boudec [5] propose to further punish the misbehaving nodes

by denying forwarding packets. Nevertheless, there is no the-

oretical justification about the optimality of such approaches.

Recently, efforts have been made to mathematically ana-

lyzing cooperation in cognitive networks using game theory.

Srinivasan et al. [6] propose to use generous TIT-FOR-TAT

strategy while Urpi et al. [7] propose to use Bayesian games.

In [8], Yu and Liu propose a game theoretic framework

to jointly analyze cooperation stimulation and security in

autonomous mobile ad hoc networks. However, most of the

existing game theoretical frameworks rely on the assumption

that the game between a pair of players is directly played

for infinite times. In reality, due to mobility or changes of

environment, nodes will periodically update their partners to

achieve better performance, which means that any pair of

players are supposed to play for only finite times with the

termination time are either known or can be estimated by

both players. Note that every player can experience infinite

times with many players but never always with the same

partner. In such a case, the only optimal strategy is to always

play non-cooperatively [9]. The major reason causing such

a non-cooperative optimal strategy is the implicit assumption

of direct reciprocity in most games, where the action of a

player taking towards his/her opponent is purely determined

by the history of how the opponent treats him/her. Obviously,

under such a scenario, all players have no incentive to play

cooperatively since their behaviors will not be evaluated by

other players except their opponents.

To stimulate the plays’ incentive to play cooperatively,

not only the evaluations from the opponents but also the

evaluations from other observers should be taken into account,

which leads to the notion of “indirect reciprocity”. Indirect

reciprocity is a key mechanism for the evolution of human

cooperation and has recently drawn a lot of attentions in the

area of social science and evolutionary biology [10] [11].

The key concept of indirect reciprocity is “I help you not

because you have helped me but because you have helped

others”. In this paper, we propose to use indirect reciprocity

game modelling to stimulate cooperation among selfish nodes

for the scenario where the number of interactions between

any pair of players are finite. We formulate the problem of

finding the optimal action rule as a Markov Decision Process

(MDP). Using the packet forwarding game as an example, we

show that with an appropriate cost-to-gain ratio, the strategy

of forwarding the number of packets that is equal to the

reputation level of the receiver is an evolutionarily stable

strategy (ESS). Finally, simulations are shown to verify the

efficiency and effectiveness of the proposed algorithm.

The rest of this paper is organized as follows. In Section II

and III, we describe the system model and show how to find

the optimal action rule. In Section IV, we describe the action

spreading algorithm. Finally, we show the simulation results

in Section V and draw conclusions in Section VI.
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Fig. 1. System model.

II. THE SYSTEM MODEL

As shown in Figure 1, let us consider a cognitive network

with sufficiently large population of nodes. Due to mobility

and/or changes of environment, short interactions rather than

long-lasting associations between anonymous partners are

dominant. At each time slot, a fraction of players is chosen

from the population to form pairs to forward packects. Within

each pair, one player acts as a transmitter and the other player

as a receiver. Let A = {0, 1, ..., L} stand for the action set that

the transmitter may choose, where the action i ∈ A stands for

the transmitter forwards i packets to the receiver.

In the simplest model with L = 1, the receiver can obtain

a gain g at a cost c to the transmitter. The payoff structure

yields an instance of the well-known Prisoner’s Dilemma game

and the unique NE is defecting. Moreover, with backward

deduction, the NE remains the same even the game is played

finite times. Such a non-cooperative optimal strategy is mainly

because of the use of direct reciprocity, where the action of a

transmitter taking towards a receiver is purely determined by

the history of how the receiver treats him/her.

To stimulate the cooperation within such a scenario, we use

the indirect reciprocity game modelling, where the essential

concept is: “I help you not because you have helped me but

because you have helped others”. Therefore, a key concept in

indirect reciprocity game is the establishment of the notion of

reputation, which is the evaluation of the history of the players’

action. We assume that the reputation is quantized to L + 1
levels with “0” being the worst reputation and “L” being the

best reputation, i.e., the reputation set can be represented as

T = {0, 1, ..., L}. Here, we also assume that everyone agrees

on the reputation of an individual and no private opinions are

allowed. However, errors in assigning reputation are possible.

A. Social Norms

A social norm, Q, is a matrix used for updating the im-

mediate reputation of players, where the immediate reputation

is the reputation that a transmitter can immediately obtain by

taking an action. Each element Qi,j in the social norm stands

for the immediate reputation assigned to a transmitter who

has taken the action i toward a receiver whose reputation is

j. Without loss of generality, we assume that all players in

the population share the same norm. Although the immediate

reputation is only determined by the action of the transmitter

and the reputation of the receiver, we can see from the later

discussion, the final reputation updating rule also involves the

reputation of the transmitter.

Social Norm Noisy Gossip 

Channel

Fig. 2. Reputation updating policy.

Since both the cardinalities of the action set and the rep-

utation set are L + 1, there are (L + 1)(L+1)×(L+1) possible

social norms. Based on the intuition that forwarding packets

to the receiver with good reputation or denying forwarding

packets to the receiver with bad reputation should receive

good reputation, in this paper, we assume that the immediate

reputation Qi,j is defined as follows

Qi,j = L− |i− j|. (1)

For the case L = 1, the 2× 2 social norm is

Q2×2 =

(

1 0
0 1

)

, (2)

where “1” and “0” stand for good and bad reputation.

With (2), we can see that the transmitter can obtain a

good immediate reputation by either forwarding packets to the

receiver with good reputation or denying forwarding packets to

the receiver with bad reputation. On the other hand, the trans-

mitter will obtain a bad immediate reputation if he/she either

denies forwarding packets to the receiver with good reputation

or forwards packets to the receiver with bad reputation.

B. Action Rules

An action rule, a, is an action table of the transmitter, where

ai,j stands for the action of the transmitter based on his/her

own reputation i and the corresponding receiver’s reputation j.

Since both the cardinalities of the action set and the reputation

set are L + 1, there are (L + 1)(L+1)×(L+1) possible action

rules. The optimal action rule, a⋆, should be the one that

maximizes the payoff function as discussed later.

III. OPTIMAL ACTION RULE

A. Reputation Updating Policy

A key concept in indirect reciprocity game is reputation

[11]. There is a similar notion of trust [12], however, which is

mostly based on direct reciprocity. Players monitor the social

interactions and help others establish the reputation of being

a helpful player. Therefore, one important step in indirect

reciprocity game modelling is how to update reputation based

on players’ actions. In this subsection, we develop a reputation

updating policy based on the action of the transmitter, the

reputation of the transmitter and the reputation of the receiver.

To capture not only the mean behavior of the transmitter’s

reputation but also all likelihoods of the transmitter’s reputa-

tion that may be, we assign a reputation distribution for each

player. Let d = [d0, d1, ..., dL]T be a reputation distribution

for a specific player. Then di stands for the likelihood of the

player being assigned with reputation i.
The proposed reputation updating policy is shown in Fig.

2. Suppose, at time index n, a transmitter with reputation

distribution dn
i is matched with a receiver with reputation
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distribution dn
j . By taking a certain action, the transmitter is

assigned with an immediate reputation d̂
n

i

d̂
n

i =
∑

p

∑

q: Qap,q,q=k

dn
i (p)dn

j (q). (3)

Then, the receiver and the observers will update the trans-

mitter’s reputation distribution using a linear combination of

the transmitter’s original and immediate reputations, where the

weight λ can be treated as a discounting factor.

d̃
n

i = λdn
i + (1− λ)d̂

n

i . (4)

Since the reputation is propagated among the population

through gossip, which can be modelled as a noisy channel,

the transmitter’s new reputation distribution is

dn+1
i = PN

(

λdn
i + (1− λ)d̂

n

i

)

, (5)

where PN is the transition matrix of the noisy channel.

Without loss of generality, we define PN as follows

PN (i, j) =

{

1− µ, i = j;

µ/L, else.
(6)

with µ ∈ [0, 0.5] being a constant. Note that the analysis in

this paper are also applicable to the PN with other forms.

B. Stationary Reputation Distribution

Let x = [x0, x1, ..., xL]T stand for the reputation dis-

tribution of the entire population, where xi is the portion

of the population that have the reputation i. Since every

pair of transmitter and receiver is randomly chosen from

the population, given the transmitter with reputation i, the

probability of matching with the receiver with reputation k
is xk. After the transmission, the reputation of the transmitter

is updated using the policy shown in Fig.2. Therefore, the

evolution of x can be described by
dx

dt
= xnew − x, (7)

where xnew is the new reputation distribution

xnew = PN (λI + (1− λ)PT ) x, (8)

with the matrix PT being defined as

PT (j, i) =
∑

k: Qa⋆
i,k

,k=j

xk. (9)

According to (7-9), the stationary reputation distribution x⋆

is the solution to the following equation

PN (λI + (1− λ)PT ) x⋆ = x⋆. (10)

From (9) and (10), we can see that, given the optimal

action a⋆, the stationary reputation distribution can be found

by solving the nonlinear equations in (10).

C. Payoff Function

Suppose that the cost of forwarding a packet is a constant, c,

the total cost of the transmitter with reputation i taking action

ai,j towards a receiver with reputation j is given by

C(ai,j) = ai,jc. (11)

Similarly, if the gain of receiving a packet is a constant, g,

the total gain of the receiver with reputation i is

G(aj,i) = aj,ig, (12)

where aj,i is the action of the transmitter with reputation j.

Let Wi,j denote the maximum payoff that a player, currently

having reputation i and being matched with a player with rep-

utation j, can gain from this interaction to future. Obviously,

if the player with reputation i serves as a transmitter, then the

long-term expected payoff that he/she can obtain by taking

action ai,j would be

f1(ai,j) = −ai,jc + δ
∑

k

∑

l

d̃i→j(k)x⋆(l)Wk,l, (13)

with d̃i→j = PN

(

λei + (1− λ)eQai,j ,j

)

.

The first term ai,jc is the immediate cost the transmit-

ter incurred by taking action ai,j , and the second term
∑

k

∑

l d̃i→j(k)x⋆(l)Wk,l stands for the benefit he gains in

the future with a discounting factor δ.

On the other hand, if the player with reputation i serves as

a receiver, the expected payoff that he/she can obtain is

f2 = a⋆
j,ig + δ

∑

l

x⋆
l Wi,l, (14)

where the first term a⋆
j,ig is the immediate gain he/she can

obtain when the transmitter taking the optimal action a⋆
j,i, and

the second term
∑

l x
⋆
l Wi,l stands for the benefit he gains in

the future with a discounting factor δ.

With each interaction, the play acts either as a transmitter or

as a receiver with equal probability 1
2 . Therefore, the Bellman

equation of Wi,j can be written as

Wi,j = max
ai,j

1

2

(

−ai,jc + δ
∑

k

∑

l

d̃i→j(k)x⋆(l)Wk,l

)

+
1

2

(

a⋆
j,ig + δ

∑

l

x⋆(l)Wi,l

)

, (15)

and the optimal action a⋆
i,j can be computed by

a⋆
i,j = arg max

ai,j

1

2

(

−ai,jc+δ
∑

k

∑

l

d̃i→j(k)x⋆(l)Wk,l

)

. (16)

From (15) and (16), we can see that the problem of finding

the optimal action rule is a Markov Decision Process (MDP),

where the state is the reputation pair (i, j), the action is ai,j ,

the transition probability is determined by d̃i→j and x⋆, and

the reward is determined by c and g. Therefore, given the

stationary reputation distribution, the optimal action can be

found by solving (16) using value iteration algorithm.

IV. ACTION SPREADING DUE TO NATURAL SELECTION

Based on the previous analysis, we can find the optimal

action rule and the stationary reputation distribution. However,

we do not include the perturbation effect, where players may

take non-optimal action rule due to uncertainty of the system

and/or the incorrect (noisy) parameters. Taking the pertur-

bation effect into account, we need to evaluate the stability

of the optimal action rule. Here, we adopt the concept of

evolutionarily stable strategy (ESS) [13], which is “a strategy

such that, if all members of the population adopt it, then

no mutant strategy could invade the population under the

influence of natural selection”. In the following, we discuss,

by natural selection, how the action rules spread over the

population using Wright-Fisher model [14].

Let M be the number of action rules, a1, ..., aM , used in

the population. Let pt
i be the percentage of the population that
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Fig. 3. The evolution using WFM when g = 1 and c = 0.1: (a) the
percentage of the population with reputation L = 1; (b) the percentage of the
population using optimal action shown in (19).

uses action rule ai at time t. Then, we have
∑M

i=1 pt
i = 1. Let

U t
i be the average payoff by using action rule ai at time t.
With the Wright-Fisher Model, the probability of using

action ai is proportional to the total payoff of the users using

ai. Therefore, the action spreading equation can be written as

pt+1
i =

pt
iU

t
i

∑M

j=1 pt
jU

t
j

. (17)

V. SIMULATION RESULTS

To verify the proposed algorithm, we simulate the packet

forwarding game. We study a population of fixed size, N =
1000. Each new player receives an initial reputation, which

is randomly chosen from {0, 1, ..., L} with equal probability
1

L+1 . Each player uses one of (L + 1)(L+1)×(L+1) possible

action rules. Before any one elementary step of action up-

dating, each individual has exactly 20 interactions with other

randomly chosen individuals. Individuals act as transmitter

and receiver on average 10 times each. After each interaction,

the reputation of the transmitter is updated according to the

reputation updating policy shown in Fig. 2. Then, the players

in the population choose their new action rules according

to previous payoff history of the whole population using

Wright Fisher Model, which is denoted as “WFM”. In all

the following simulations, the parameters λ, δ, and µ are set

to be 0.5, 0.9, and 0.95 respectively.

A. Binary Reputation Scenario

We first evaluate the binary reputation scenario where L =
1. We assume that g = 1 and c = 0.1. According to section

III, with different initial conditions, we can find three pairs

of stationary reputation distribution x⋆ and the optimal action

rule a⋆, which are

x⋆
1 =

(

0.5
0.5

)

, a⋆
1 =

(

0 0
0 0

)

. (18)

x⋆
2 =

(

0.0909
0.9091

)

, a⋆
2 =

(

0 1
0 1

)

. (19)

x⋆
3 =

(

0.9091
0.0909

)

, a⋆
3 =

(

1 0
1 0

)

. (20)

With (x⋆
1,a⋆

1), no one will transmit any packet to the re-

ceiver regardless his/her own reputation and the corresponding

receiver’s reputation. Obviously, it is a bad strategy since,

with such a strategy, there is no cooperation and the payoff
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Fig. 4. The evolution using WFM when g = 1 and c = 0.6: (a) the
percentage of the population with reputation L = 1; (b) the percentage of the
population using optimal action shown in (19).

of every player is zero. The pairs (x⋆
2,a⋆

2) and (x⋆
3,a⋆

3) are

symmetry where with the former pair, the transmitter will

always cooperate with the receiver with good reputation, and

with the latter pair, the transmitter will always cooperate with

the receiver with bad reputation. We can also find that the pair

(x⋆
2,a⋆

2) leads to a population with more than 90 percentage of

the population are good reputation while (x⋆
3,a⋆

3) leads to a

population with more than 90 percentage of the population

are bad reputation. Here, we prefer (x⋆
2,a⋆

2) since it leads to a

“good” society with more than 90 percentage of the population

are good reputation.

Then, we evaluate the evolutionary stability of (x⋆
2,a⋆

2). In

the simulation, the initial frequency of the optimal action rule

a⋆ shown in (19) is set to be 0.6. The initial frequencies of the

other action rules are randomly chosen. The initial reputation

of new players is randomly chosen from {0, 1} with equal

probability 1
2 . In Fig. 3, we show the evolutionary result using

WFM. From Fig. 3, we can see that, the reputation distribution

converges to the stationary reputation distribution x⋆
2 and the

action rule a⋆
2 spreads over the whole population. And once

the whole population adopt a⋆
2, no one will deviate. Therefore,

the action rule a⋆
2 is an ESS in this case.

From (15), we can see that the optimal action rule is

determined by the values of g and c. Intuitively, if g ≫ c, every

player is willing to cooperate with other players since in such

a scenario, the potential cooperation gain will be greater than

the immediate cooperation cost. On the other hand, if c≫ g,

every player tends not to cooperate with other players since the

potential cooperation gain will be smaller than the immediate

cooperation cost in such a scenario. Therefore, there should

exist a critical cost-to-gain ratio γ such that the optimal action

rule a⋆
2 is stable if c < γg and is not stable otherwise.

By setting a⋆
2 as the initial action rule a0 in the value

iteration algorithm and varying g and c, we find that if
c
g
≤ 0.582, the optimal action rule found by value iteration is

a⋆
2. On the other hand, if c

g
> 0.582, the optimal action rule

changes to be a⋆
1. Therefore, the critical cost-to-gain ratio γ

is equal to 0.582 in this case.

We verify the above statement by evaluating the stability of

a⋆
2 when g = 1 and c = 0.6. The corresponding evolutionary

results are shown in Fig. 4. From Fig. 4, we can see that

when c
g

= 0.6 > 0.582, the percentage of the population

using action rule a⋆
2 does not converge to 1. Therefore, a⋆

2 is

not stable in this case. Correspondingly, we can also see that
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Fig. 5. The evolution using WFM when g = 1 and c = 0.5: (a) the
percentage of the population with reputation L = 4; (b) the percentage of the
population using optimal action shown in (19) when L = 4.

the reputation distribution does not converge to x⋆
2 in this case.

B. Multi-Level Reputation Scenario

For the multi-level reputation scenario where L ≥ 2, due to

the large dimension of the action space ((L+1)(L+1)×(L+1)), it

is difficult to find all the possible pairs of x⋆ and a⋆. However,

based on the results in the binary reputation scenario, we can

infer that one possible optimal action rule a⋆
0 is to forward i

packets to the receiver with reputation i, i.e.,

a⋆
0(i, j) = j. (21)

Similar to the binary reputation scenario, we can find the

corresponding stationary reputation distribution x⋆
0. For the

special case with L = 4, x⋆
0 is

x⋆
0 =

(

0.0235 0.0235 0.0235 0.0235 0.906
)T

. (22)

Then, we obtain the stable region for the optimal action

rule a⋆
0. By setting a⋆

0 as the initial value in the value iteration

algorithm and varying g and c, we find that if c
g
≤ 0.622,

the optimal action rule found by value iteration is still a⋆
0. On

the other hand, if c
g

> 0.622, the optimal action rule changes.

Therefore, the critical cost-to-gain ratio in this case is equal to

0.622, which means that the stable region for a⋆
0 is c

g
≤ 0.622.

We then verify the above statement by simulating the packet

forwarding game with two different cost-to-gain ratio setting.

One is g = 1 and c = 0.5, i.e. c
g

= 0.5 < 0.622, and the

other is g = 1 and c = 0.7, i.e. c
g

= 0.7 > 0.622. The

evolutionary results for the former setting are shown in Fig. 5.

From Fig. 5, we can see that when the cost-to-gain ratio is set

to be c
g

= 0.5 < 0.622, the reputation distribution converges

to x⋆
0 and the optimal action rule a⋆

0 spread over the whole

population, which verifies that a⋆
0 is an ESS in this case. The

evolutionary results for the latter cost-to-gain ratio setting are

different and shown in Fig. 6. From Fig. 6, we can see that

when the cost-to-gain ratio is set to be c
g

= 0.7 > 0.622, the

action rule a⋆
0 does not spread over the whole population and

the reputation distribution does not converge to x⋆
0. Therefore,

a⋆
0 is not stable in this case.

VI. CONCLUSIONS

In this paper, we propose a cooperation stimulation scheme

for cognitive networks using indirect reciprocity game mod-

elling. Different from the existing game theoretic approaches,

our proposed scheme does not rely on the assumption that the

number of interactions between a pair of players is infinite.
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Fig. 6. The evolution using WFM when g = 1 and c = 0.7: (a) the
percentage of the population with reputation L = 4; (b) the percentage of the
population using optimal action shown in (19) when L = 4.

From simulation results, we can see that with a proper cost-

to-gain ratio, the action rule of forwarding i packets to the

receiver with reputation level i is an ESS. Even starting with

only 60 percentage of population adopting the optimal strategy,

the optimal strategy will quickly spread over the whole pop-

ulation by natural selection. And once the whole population

use the optimal strategy, no one will deviate. Moreover, such

an ESS will lead to a “good” society where more than 90

percentage of the population have good reputation.
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