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Abstract—1In the big data era, it is vital to allocate the vast
amount of data to heterogeneous users with different interests. To
clinch this goal, various agents including data owners, collectors
and users should cooperate to trade data efficiently. However, the
data agents (data owners, collectors and users) are selfish and
seek to maximize their own utilities instead of the overall system
efficiency. As such, a sophisticated mechanism is imperative to
guide the agents to distribute data efficiently. In this paper,
the data trading problem of a data market with multiple data
owners, collectors and users is formulated and an iterative
auction mechanism is proposed to coordinate the trading. The
proposed mechanism guides the selfish data agents to trade data
efficiently in terms of social welfare and avoids direct access of
the agents’ private information. We theoretically prove that the
proposed mechanism can achieve the socially optimal operation
point. Moreover, we demonstrate that the mechanism satisfies
appealing economic properties such as individual rationality and
weakly balanced budget. Then, we expand the mechanism to non-
exclusive data trading, in which the same data can be dispensed
to multiple collectors and users. Simulations as well as real data
experiments validate the theoretical properties of the mechanism.

Index Terms—Iterative auction, optimization, data trading,
social welfare, individual rationality, budget balance

I. INTRODUCTION

In the big data era, vast amount of data are generated and
exploited by various agents. For example, numerous memes
such as Twitter hashtags are produced in online social net-
works and millions of videos are uploaded to Youtube. Many
software/APP developers may need certain online data (such
as the click-through rate of some advertisements or mention
count dynamics of some memes) to enhance the quality of
their products. As another example, with the development of
data procurement and storage capability, many organizations
own databases of the statistics of their fields, e.g., hospitals
may have data about the clinical performances of medicines.
In order to conduct research, researchers need to access
these data owned by organizations. In all these circumstances,
we face the problem of allotting/trading data from the data
owners (e.g., social networks/websites or organizations) to
the data users (e.g., software companies or researchers). In
fact, several data trading markets or companies have already
emerged recently, such as the Data Marketplace, Big Data
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Exchange and Microsoft Azure Marketplace. However, these
data markets are still at the incipient stage and lack appropriate
regulations. Economically, the data agents are selfish and seek
to maximize their own utilities instead of the overall system
efficiency. As such, a sophisticated mechanism is imperative
to guide the agents to distribute or trade data efficiently.

The problem of coordinating data trading in a data market
falls into the general topic of resource trading/allocation in
networks, for which abundant works have been done in the past
decades. For communication networks, by using optimization
and game theoretic techniques, researchers propose various
algorithms to allocate power [1], [2] or channels [3], [4] to
communication nodes or access points. For cognitive radio
networks, spectrum resources are allotted among primary users
and secondary users [5], [6]. For power networks or smart
grids, power or voltage resources are distributed to devices
and apparatuses in order to maintain high-performance and
stable power systems [7]–[9]. The most relevant resource
allocation/trading problem to this paper is the privacy trading
problem [10]. In most privacy trading problems investigated
in the current literature, a single data collector is aimed at
collecting binary data from multiple data owners in order
to estimate some statistics. From example, each data owner
may have a binary answer (yes/no) to some problem and
the data collector wants to estimate the proportion of data
owners with the answer yes. The involved data are private
and leakage of them to the data collector compromises the
security of data owners. The loss from this compromising of
privacy can be quantified by the differential privacy [11]. As
such, data owners should be somehow compensated by the
data collector. Additionally, data owners are selfish and may
not report their true data to the data collector. Therefore, from
the perspective of the data collector, a mechanism is needed to
collect accurate data at a low cost from the data owners. To this
end, Ghosh and Roth proposed an auction mechanism for a
single data collector to collect data from multiple data owners
[12]. Along this line, Fleischer and Lyu extended the auction
mechanism to the scenario where individual data owner’s
valuation of the data privacy was correlated with the data
themselves [13]. Furthermore, Xu et al. proposed a contract-
theoretic mechanism to collect general private data which are
not necessarily binary [14].

However, there are two limitations of existing models of
data trading in the aforementioned works [12]–[14]. First, in
the existing models, there is only one single data collector.
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This is not the case in most real-world data market, where
multiple data collectors (such as many companies or groups
like Big Data Exchange) often coexist and compete with each
other. Second, in most data markets, the data collectors usually
do not exploit the data by themselves. Instead, they often sell
the data to data users, who are not capable of collecting and
storing massive datasets but need data to develop projects
or conduct research. For example, many APP developers
are small companies who cannot afford collecting necessary
data to develop APPs and thus need to purchase data from
professional data collecting companies. In other words, in
data markets, besides data owners and collectors, there are
data users who can make use of the data but are not able to
collect data by themselves. In this paper, we take the above
mentioned two limitations of existing works into consideration
and investigate the data trading problem in a market with
multiple data owners, collectors and users (in the following,
we use the term data agents to refer to data owners, collectors
and users).

Due to the existence of multiple collectors and users, the
problem in this paper is significantly different from the data
trading in [12]–[14]. Instead of maximizing the profit of a
single collector as in previous works, we consider from a
system designer’s perspective and are aimed at maximizing the
overall social welfare, which quantifies the operation efficiency
of the data market. However, in practice, the data agents are
usually selfish and seek to maximize their own utilities instead
of the overall system performance. In order to coordinate
the data trading among multiple selfish agents, we resort to
the iterative auction mechanism, which is initially proposed
in [15]. In iterative auction, the auctioneer announces the
resource allocation and payment rules to the bidders. Then, the
selfish bidders submit appropriate bids to the auctioneer with
the goal of maximizing their own utilities. Based on the sub-
mitted bids, the auctioneer adjusts the resource allocation and
payment rules and another round of auction starts. Through
careful design of the mechanism, the iterative auction may
converge to an operation point with satisfactory properties.
The iterative auction has already been successfully applied to
resource allocation in communication networks [16]–[19].

The contribution of this paper is epitomized in the follow-
ing.
• We present a data market model with multiple data

owners, collectors and users who have heterogeneous
utility functions. Considering from the perspective of
the system designer, we formulate corresponding social
welfare maximization problem.

• An iterative auction mechanism is proposed to coordinate
the data trading among the data agents. The mechanism
avoids direct access to the data agents’ utility functions,
which are private information unknown to the system
designer. The selfish nature of individual data agents is
also respected in the mechanism.

• We theoretically show that the proposed mechanism con-
verges to the socially optimal operation point. We also
analytically substantiate that the mechanism possesses
appealing economic properties including individual ratio-
nality and weakly balanced budget.

Fig. 1: A data market with multiple data owners, collectors
and users

• We also extend the mechanism to the non-exclusive data
trading scenario, where the same data can be used by
multiple data users repeatedly.

• Simulations as well as real data experiments are imple-
mented to validate the theoretical results of the mecha-
nism.

The roadmap of this paper is as follows. In Section II, our
model of the data market is presented and the social wel-
fare maximization problem is formulated. In Section III, we
design an iterative auction mechanism to coordinate the data
trading. The convergence analysis and economic properties of
the proposed mechanism are presented in Section IV. Then,
we extend the mechanism to the non-exclusive data trading
scenario in Section V. In Section VI, simulation results and
real data experiments are shown. Lastly, we conclude the paper
in Section VII.

II. MODEL

In this section, we describe the model of a data market with
multiple data owners, collectors and users in detail. Then, we
formulate the associated social welfare maximization problem
and motivate the iterative auction mechanism.

Consider a data market with M data owners, N data
collectors and L data users as shown in Fig. 1. In real world,
the data owners correspond to those sources or producers of
the data such as websites with online user data or organizations
with certain statistics. The data users can be any companies
or individuals who either consume the data or exploit data to
develop projects and to make profits. For example, a software
company may need certain user record data to develop an
APP. Often, in a data market, data users do not interact with
the data owners directly due to the limited data collection,
storage and processing capability of many data users. Instead,
between data owners and users, there may exist data collectors
who are able to collect, store and process massive datasets.

The collectors collect data from the owners through var-
ious methods such as web scraping for websites or direct
inquiries to organizations with certain statistics. The specific
data collection manner depends on the form of the data. After
obtaining the (massive) data, the collectors store them and
further process them to be more sanitary and user-friendly.
Lastly, the collectors sell the data to users according to the
different demands of users.
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Different from prior works [12]–[14], we assume the exis-
tence of multiple data owners, collectors and users competing
with each other, which is the case in reality as explained in
Section I. This makes the problem more challenging because
of the conflicting interests and selfishness of the data agents,
which necessitates a framework different from the traditional
auction theoretic approach in [12], [13] and contract theoretic
approach in [14]. Next, we describe the data trading among
the data agents and their utility functions in detail.

A. Data Owners

Suppose owner m (there are M data owners in total) entitles
collector n to collect xmn amount of data, which is the
maximum amount of data that collector n can get from owner
m. For instance, a website may give a data collector (e.g., a
web scraper) access to a certain part of data in that website;
an organization may allow a data collector to access certain
records or statistics of the organization. Due to the exposure
of its data, the owner m suffers a loss of Um(xm), where
xm = [xm1, ..., xmN ]. This loss may stem from compromise
of privacy or leakage of lucrative information/technologies.
For example, if a social network allows some of its users’
data to be accessed by companies or researchers, its users’
privacy will be compromised and the social network may lose
popularity among online users.

We assume that the data here are exclusive, i.e., the same
data can only be assigned to one collector and one user. For
example, software companies (data users) may need tailored
data (e.g., click-through rate of specific web pages or adver-
tisements in order to monitor the users’ feedback) to develop
their own softwares or APPs. These data are useful only to this
user and are useless for others, i.e., these data are exclusive.
In Section V, we extend the proposed mechanism to non-
exclusive data trading scenario, where the same data can be
used by multiple users.

We assume that owner m has Cm amount of data in total.
In real world, when the data exposure or leakage is tiny, the
data owner may hardly suffer any loss. However, if the data
exposure is severe, e.g., larger than a certain threshold, the
privacy loss will increase faster and faster with the amount of
data exposure. In order to capture this second order property of
loss function of data owners, we assume that the loss function
Um is a convex function.

B. Data Collectors

Suppose collector n (there are N data collectors in total)
collects ymn data from owner m. Clearly, ymn is no larger
than xmn. When it is strictly smaller than xmn, the collector
n does not collect all the authorized data from owner m
due to the loss from collection efforts. We assume that the
collecting procedure incurs a loss of Vn(yn) for collector n,
where yn = [y1n, ..., yMn]

T . In real world, the collecting
procedure can be data scraping from websites or direct inquiry
to organizations etc., depending on the form and availability
of the data. The collection and basic trimming/processing of
the massive data need significant efforts of the collectors. In
addition, the storage of the massive datasets also necessitate

lots of apparatuses and devices. All of these contribute to
the loss of the data collectors. Often, with the increase of
the data to be collected, the difficulty (and hence efforts) of
data collection increases faster and faster due to reasons such
as the limitations on the internet connections and computers’
processing speed (if the data amount is huge, collectors need
to greatly enhance their internet connections or computer
devices, which is costly). Therefore, we assume Vn is a convex
function.

C. Data Users

Lastly, data user l (there are L data users in total) buys znl
amount of data from collector n. The gain of user l is Wl(zl),
where zl = [z1l, ..., zNl]

T . For instance, by exploiting the
user feedback data such as click-through rate, a software/APP
developer can enhance its product and makes more profits. As
per conventions of the resource allocation literature, the gain
function Wl is assumed to be a concave function.

D. Social Welfare Maximization

As the interests of the data agents conflict with each other
(e.g., the data owners want to sell the data with high price
while the data collector wants to gain the data at low cost)
and the data agents are selfish, a system designer is needed to
coordinate the agents’ behaviors to maximize overall system
efficiency or social welfare, which is defined as the difference
between the total gain of users and total loss of owners
and collectors. The corresponding social welfare maximization
problem SWM can be formulated as follows.

MaximizeX,Y,Z −
M∑
m=1

Um(xm)−
N∑
n=1

Vn(yn) +
L∑
l=1

Wl(zl)

(1)

s.t.
N∑
n=1

xmn ≤ Cm, ∀m, (2)

L∑
l=1

znl ≤
M∑
m=1

ymn, ∀n, (3)

ymn ≤ xmn, ∀m,n. (4)

The first constraint is the total data constraint at each data
owner. The second constraint is the data constraint at each
collector where the total amount of sold data is no larger than
the amount of total collected data. The third constraint means
that the data collected by a collector n from an owner m is
no bigger than the data that owner m entitles collector n to
collect.

SWM is a convex optimization problem and can be solved
in a centralized manner by using state-of-the-art optimization
toolbox such as CVX [20]. However, in real-world applications,
we cannot directly solve the SWM to coordinate the data
trading due to the following reasons.
• First, data agents (data owners, collectors and users) are

selfish and seek to maximize their own utilities instead of
the social welfare. As a result, even if the system designer
computes the socially optimal point by solving SWM, the
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optimal solution cannot be enforced given the selfishness
of the data agents.

• Second, the utility functions U, V,W are private infor-
mation of the agents which is unknown to the system
designer. Thereby, SWM cannot be solved at the system
designer’s side in a centralized fashion.

In order to elicit the private information of the agents
and guide the selfish agents to cooperate to achieve social
optimum, we resort to iterative auction mechanism [15]. The
presumption of this mechanism is that the agents are price-
takers, meaning that the each agent takes the announced prices
as fixed and does not expect any impact of its action on the
prices. This hypothesis holds when either (1) the agents have
limited computational capability and thus limited rationality so
that they do not consider the effects of their actions on pricing;
or (2) the number of agents is large so that each agent has little
influence on the prices.

III. MECHANISM DESIGN

In this section, we design an iterative auction mechanism
for the data trading problem formulated in Section II. Our
design goal is to guide the selfish agents to trade data at a
socially optimal point while respecting each agent’s private
information, i.e., avoiding direct inquiry of the agents’ utility
functions. The proposed iterative auction mechanism is illus-
trated in Fig. 2. The system designer serves as the auctioneer
and the data agents are the bidders. Analogous to many auction
mechanisms in the literature [21], the agents submit bids to
signal their valuations of the resources, or data in this context.
The first step of the mechanism is that the system designer
announces the data allocation and pricing/reimbursement rules
to the agents. In the second step, based on these rules, each
agent calculates and submits an appropriate bid in order to
maximize her own utility in accordance with her selfishness. In
the third step, the system designer computes the data allocation
result according to the submitted bids and the data allocation
rule. The aforementioned three steps are common in auction
theory. The unique feature of iterative auction lies in the
fourth step, in which the system designer adjusts the data
allocation and pricing/reimbursement rules based on the data
allocation results. Then, the system designer announces these
new rules and another auction begins. This iterative process
continues until the system designer observes convergence.
In the following subsections, we describe each step of the
mechanism in more detail.

A. The System Designer’s Problem

As explained in Section II, a difficulty for the system
designer to solve the SWM is that the she is unaware of
the loss and gain functions U, V,W , which are private in-
formation of the agents. Thus, the system designer has to
replace these unknown functions with some known functions.
In addition, denote the bid that owner m submits to the
system designer by sm = [sm1, ..., smN ] � 0, where �
means componentwise inequality. Similarly, denote the bid of
collector n by tn = [t1n, ..., tMn]

T � 0 and the bid of user
l by rl = [r1l, ..., rNl]

T � 0. The bids signal the agents’

1 2

3 4

Bidders (Data Agents)

     Auctioneer
(System Designer)

Fig. 2: An illustration of the proposed iterative auction
mechanism, which iterates the four steps depicted in the
figure.

valuations of the data and should be incorporated into the loss
and gain functions in the system designer’s perspective. In the
iterative auction mechanism, the system designer makes the
following utility function replacements to avoid direct access
of the private information of the agents:

Um(xm)←
N∑
n=1

smn
2
x2mn, (5)

Vn(yn)←
M∑
m=1

tmn
2
y2mn, (6)

Wl(zl)←
N∑
n=1

rnl log znl. (7)

Note that through these replacements, the convexity/concavity
of the functions U, V,W are preserved. Then, the SWM is
transformed into the following designer’s allocation problem
DAP.

MaximizeX,Y,Z

L∑
l=1

N∑
n=1

rnl log znl −
M∑
m=1

N∑
n=1

smn
2
x2mn

−
N∑
n=1

M∑
m=1

tmn
2
y2mn

s.t. the constraints (2), (3) and (4)

Denote the dual variables associated with constraints (2),
(3) and (4) by λ ∈ RM ,µ ∈ RN ,η ∈ RM×N , respectively.
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The Lagrangian of DAP is:

L(X,Y,Z,λ,µ,η) =
M∑
m=1

N∑
n=1

smn
2
x2mn +

N∑
n=1

M∑
m=1

tmn
2
y2mn

−
L∑
l=1

N∑
n=1

rnl log znl +
M∑
m=1

λm

(
N∑
n=1

xmn − Cm

)

+
N∑
n=1

µn

(
L∑
l=1

znl −
M∑
m=1

ymn

)
+

M∑
m=1

N∑
n=1

ηmn(ymn − xmn).

Thus, the Karush-Kuhn-Tucker (KKT) conditions of DAP
can be written as follows.

Primal Feasibility:
N∑
n=1

xmn ≤ Cm,∀m, (8)

L∑
l=1

znl ≤
M∑
m=1

ymn, ∀n, (9)

ymn ≤ xmn, ∀m,n, (10)

Dual Feasibility: λ � 0, µ � 0, η � 0, (11)

Complementary Slackness: (12)

λm

(
N∑
n=1

xmn − Cm

)
= 0,∀m, (13)

µn

(
L∑
l=1

znl −
M∑
m=1

ymn

)
= 0,∀n, (14)

ηmn(ymn − xmn) = 0, (15)

Stationarity: smnxmn + λm − ηmn = 0,∀m,n, (16)
tmnymn − µn + ηmn = 0,∀m,n, (17)

−rnl
znl

+ µn = 0,∀n, l. (18)

From equations (16), (17) and (18), we obtain the data
allocation rule:

xmn =
ηmn − λm
smn

, ymn =
µn − ηmn
tmn

, znl =
rnl
µn

, ∀m,n, l.
(19)

The data allocation rule prescribes how the data are al-
located given the submitted bids S = [smn]M×N ,T =
[tmn]M×N ,R = [rnl]N×L. The allocation rule is parame-
terized by the Lagrangian multipliers λ,µ,η. Given a set
of {λ,µ,η}, an allocation rule is defined according to Eq.
(19), i.e., a relationship between the data allocation and the
bids is specified. As stated in the first step of the mechanism
in Fig. 2, besides data allocation rule, the system designer
also needs to specify the data pricing/reimbursement rule,
i.e., the price and reimbursement of data as functions of
the bids of the agents. In other words, for owner m, given
its bid sm, the system designer needs to reimburse fm(sm)
amount of money to compensate her loss due to privacy
compromise. Similarly, the system designer will reimburse
gn(tn) amount of money to collector n given her bid tn.
Furthermore, the system designer will charge user l hl(rl)

amount of money given her bid rl. As a mechanism designer,
we need to appropriately design the pricing/reimbursement
functions fm, gn, hl so that the data allocation will gradually
converge to the socially optimal point, i.e., the optimal point
of SWM. In the following subsections, we specify how to
design these pricing/reimbursement functions in detail.

B. Owners’ Problems
For owner m, if she bids sm, she will get an reimbursement

of fm(sm) as well as a loss of Um
(
ηm1−λm

sm1
, ..., ηmN−λm

smN

)
,

according to the data allocation rule in Eq. (19). Hence, the
utility maximization problem of owner m can be written as:

Maximizesm�0 fm(sm)− Um

(
ηm1 − λm
sm1

, ...,
ηmN − λm
smN

)
.

(20)
The first order optimality condition of owner m’s problem is:

∂fm(sm)

∂smn
+

∂Um
∂xmn

ηmn − λm
s2mn

= 0,∀n. (21)

In order to design a suitable fm such that the data allocation
will converge to the socially optimal point, we need to compare
Eq. (21) with the optimality condition of SWM. To this end,
we write the Lagrangian of SWM as follows:

L̃(X,Y,Z,λ,µ,η) =

M∑
m=1

Um(xm) +

N∑
n=1

Vn(yn)−
L∑
l=1

Wl(zl)

+

M∑
m=1

λm

(
N∑
n=1

xmn − Cm

)
+

N∑
n=1

µn

(
L∑
l=1

znl −
M∑
m=1

ymn

)

+

M∑
m=1

N∑
n=1

ηmn(ymn − xmn).

The constraints of SWM and DAP are the same and the
only difference is the objective function. Thus, in the KKT
conditions of SWM, the primal feasibility, dual feasibility and
complementary slackness conditions are the same as those of
DAP, i.e., equations (8)-(15), while stationarity condition of
SWM is:

∂Um(xm)

∂xmn
+ λm − ηmn = 0, ∀m,n, (22)

Vn(yn)

∂ymn
− µn + ηmn = 0, ∀m,n, (23)

−Wl(zl)

znl
+ µn = 0, ∀n, l. (24)

Combining equations (21) and (22), we derive:

∂fm(sm)

∂smn
=
λm − ηmn
s2mn

∂Um
∂xmn

= − (λm − ηmn)2

s2mn
. (25)

Therefore, we set the reimbursement rule of owner m to be
fm(sm) =

∑N
n=1

(λm−ηmn)
2

smn
.

C. Collectors’ Problems

For collector n, if she bids tn, she will get a reimbursement
of gn(tn) and a loss of Vn

(
µn−η1n
t1n

, ..., µn−ηMn

tMn

)
. Thereby,

the utility maximization problem of collector n is:

Maximizetn�0 gn(tn)− Vn
(
µn − η1n
t1n

, ...,
µn − ηMn

tMn

)
.

(26)
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The optimality condition of collector n’s problem is:

∂gn(tn)

∂tmn
+

∂Vn
∂ymn

µn − ηmn
t2mn

= 0, ∀m. (27)

Combining equations (23) and (27) yields:

∂gn(tn)

∂tmn
=
ηmn −mun

t2mn

∂Vn
∂ymn

= − (µn − ηmn)2

t2mn
. (28)

So, the reimbursement function of collector n should be
gn(tn) =

∑M
m=1

(µn−ηmn)
2

tmn
.

D. Users’ Problems
For user l, if she bids rl, she will be charged hl(rl) and

has a gain of Wl

(
r1l
µ1
, ..., rNl

µN

)
. Thus, the utility maximization

problem of user l is:

Maximizerl�0 − hl(rl) +Wl

(
r1l
µ1
, ...,

rNl
µN

)
. (29)

The optimality condition of user l’s problem is:

−∂hl(rl)
∂rnl

+
∂Wl

∂znl

1

µn
= 0,∀n. (30)

Combining equations (24) and (30) yields:

∂h(rl)

∂rnl
=

1

µn

∂Wl

∂znl
=

1

µn
· µn = 1. (31)

Thus, we design the price function of user l to be hl(rl) =∑N
n=1 rnl.

E. Summary of Algorithm
The owners’ problem (20), the collectors’ problem (26)

and the users’ problem (29) together specify how the bids
are chosen in the second stage of the mechanism in Fig. 2.
Then, in the third stage, the system designer computes the
new data allocation result based on these submitted bids and
the data allocation rule in Eq. (19). In the fourth stage, we
update the dual variables λ,µ,η (or equivalently, update the
data allocation rule and data pricing/reimbursement rule) by
invoking the subgradient method:

λm ←

(
λm + α

(
N∑
n=1

xmn − Cm

))+

, ∀m (32)

µn ←

(
µn + α

(
L∑
l=1

znl −
M∑
m=1

ymn

))+

, ∀n (33)

ηmn ← (µmn + α(ymn − xmn))+,∀m,n, (34)

where α > 0 is the step length and x+ = max{x, 0}.
The proposed iterative auction mechanism is summarized in
Algorithm 1. We remark that Algorithm 1 is a distributed
algorithm: each data agent solves its own utility maximization
problem in a parallel manner and the interactions between
the agents. Algorithm 1 clearly resolves the two difficulties
for directly solving SWM in Subsection II-D: (i) each agent
maximizes her own utility in accordance with her selfishness;
(ii) the system designer does not direct access the private
information of the agents, i.e., the loss/gain functions U, V,W .
Instead the system designer gradually and implicitly elicits this
information through iterative auctions.

Algorithm 1 The proposed iterative auction mechanism

1: Initialize X(0),Y(0),Z(0),λ(0),µ(0),η(0) to be non-
negative. Set the time index τ to be 0.

2: Repeat the following until convergence:
3: The system designer announces λ(τ),µ(τ),η(τ).
4: τ ← τ + 1.
5: Each owner m solves its problem (20) to get s(τ)m .
6: Each collector n solves its problem (26) to get t(τ)n .
7: Each user l solves its problem (29) to get r(τ)l .
8: The system designer computes the new X(τ),Y(τ),Z(τ)

according to the current allocation rule (19) and the
submitted bids S(τ), T(τ) and R(τ).

9: The system designer updates the dual variables:

λ(τ)m =

(
λ(τ−1)m + α

(
N∑
n=1

x(τ)mn − Cm

))+

,∀m (35)

µ(τ)
n =

(
µ(τ−1)
n + α

(
L∑
l=1

z
(τ)
nl −

M∑
m=1

y(τ)mn

))+

,∀n (36)

η(τ)mn =
(
η(τ−1)mn + α

(
y(τ)mn − x(τ)mn

))+
,∀m,n. (37)

IV. CONVERGENCE AND ECONOMIC PROPERTIES OF THE
MECHANISM

In this section, we theoretically show that the proposed
iterative auction mechanism for data trading can indeed con-
verge to the socially optimal operating point, i.e., the optimal
point of SWM. Moreover, we prove that the mechanism has
two appealing economic properties, i.e., individual rationality
and weakly balanced budget, which makes the mechanism
economically viable.

A. Convergence Analysis

When designing the mechanism in Section III, we make
a connection between the data allocation rule, the optimality
condition of each agent’s utility maximization problem and the
KKT conditions of SWM. Intuitively, the mechanism should
guide the data allocation towards the solution of SWM. In
this subsection, we rigorously demonstrate this convergence
result. To make the analysis tractable, we assume that the step
size α in the update of dual variables (35), (36) and (37) is
very small, which is a reasonable assumption in the literature
of subgradient method in optimization theory [22] and LMS
algorithm in adaptive signal processing [23]. Thus, we can
approximate Algorithm 1 with a continuous-time version by
taking the time slot to be α. From Eq. (35), we know that λm
is always non-negative. If λ(τ−1)m > 0, since α is very small,
the quantity inside the parenthesis of Eq. (35) is still positive.
Thus, λ(τ)m = λ

(τ−1)
m + α

(∑N
n=1 x

(τ)
mn − Cm

)
. Noting that

the time slot length is α, a small positive number, we have
dλm

dτ =
∑N
n=1 xmn − Cm. If λ(τ−1)m = 0, we can similarly

derive that dλm

dτ =
(∑N

n=1 xmn − Cm
)+

. Define the notation
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(for x, y ∈ R and y ≥ 0):

(x)+y =

{
x, if y > 0,

x+, if y = 0.
(38)

Then, we have:

dλm
dτ

=

(
N∑
n=1

xmn − Cm

)+

λm

. (39)

Similarly, we have:

dµn
dτ

=

(
L∑
l=1

znl −
M∑
m=1

ymn

)+

µn

, (40)

dηmn
dτ

= (ymn − xmn)+ηmn
. (41)

Now, we are ready to state the convergence result.

Theorem 1. Suppose the step size α in Algorithm 1 is small
enough. Then, the data allocation (X,Y,Z) of Algorithm
1 converges to the optimal point of SWM. Moreover, the
dual variables (λ,µ,η) of Algorithm 1 converge to the dual
optimal point of SWM.

Proof. Denote the dual optimal point of SWM by
(λ∗,µ∗,η∗). Define the Lyapunov function:

H(λ,µ,η) =
1

2

M∑
m=1

(λm − λ∗m)2 +
1

2

N∑
n=1

(µn − µ∗n)2 (42)

+
1

2

M∑
m=1

N∑
n=1

(ηmn − η∗mn)2. (43)

Taking derivative of Z with respect to the (continuous) time
τ yields:

dH

dτ
=

M∑
m=1

(λm − λ∗m)
dλm
dτ

+
N∑
n=1

(µn − µ∗n)
dµn
dτ

+
M∑
m=1

N∑
n=1

(ηmn − η∗mn)
dηmn
dτ

(44)

=
M∑
m=1

(λm − λ∗m)

(
N∑
n=1

xmn − Cm

)+

λm

+
N∑
n=1

(µn − µ∗n)

(
L∑
l=1

znl −
M∑
m=1

ymn

)+

µn

+
M∑
m=1

N∑
n=1

(ηmn − η∗mn)(ymn − xmn)+ηmn
(45)

≤
M∑
m=1

(λm − λ∗m)

(
N∑
n=1

xmn − Cm

)

+
N∑
n=1

(µn − µ∗n)

(
L∑
l=1

znl −
M∑
m=1

ymn

)

+
M∑
m=1

N∑
n=1

(ηmn − η∗mn)(ymn − xmn), (46)

where we use equations (39), (40) and (41) to get Eq. (45).
The reason of inequality (46) is as follows. If λm = 0,

then
(∑N

n=1 xmn − Cm
)+
λm

=
(∑N

n=1 xmn − Cm
)+

≥∑N
n=1 xmn − Cm. Since λm − λ∗m = −λ∗m ≤ 0,

we have (λm − λ∗m)
(∑N

n=1 xmn − Cm
)+
λm

≤

(λm − λ∗m)
(∑N

n=1 xmn − Cm
)

. If If λm > 0, we

evidently have (λm − λ∗m)
(∑N

n=1 xmn − Cm
)+
λm

=

(λm − λ∗m)
(∑N

n=1 xmn − Cm
)

. In all, we always

have (λm − λ∗m)
(∑N

n=1 xmn − Cm
)+
λm

≤ (λm −

λ∗m)
(∑N

n=1 xmn − Cm
)

and similar inequalities hold
for the other two terms in (45), leading to inequality (46).
In Step 5, the optimal point of the problem (20) should
satisfy the optimality condition (21). Noting the form of the
reimbursement function f we design in Subsection III-B, we
have:

− (λm − ηmn)2

s2mn
+
∂Um(xm)

∂xmn

ηmn − λm
s2mn

= 0, (47)

which leads to:

λm = ηmn −
∂Um(xm)

∂xmn
. (48)

Similarly, from the optimality condition (27), we get

µn = ηmn +
∂Vn(yn)

∂ymn
. (49)

And from the optimality condition (30), we obtain:

µn =
∂Wl(zl)

∂znl
. (50)

Denote the optimal point of SWM by (X∗,Y∗,Z∗). Since
SWM is a convex optimization problem, KKT condition is
necessary and sufficient for optimality. Hence, the primal
optimal point (X∗,Y∗,Z∗) together with dual optimal point
(λ∗,µ∗,η∗) should satisfy the stationarity condition (22), (23)
and (24), which can be further rewritten as:

λ∗m = η∗mn −
∂Um(x∗m)

∂xmn
, (51)

µ∗n = η∗mn +
∂Vn(y

∗
n)

∂ymn
, (52)

µ∗n =
∂Wl(z

∗
l )

∂znl
. (53)

Hence, according to equations (48) and (51), we have:

M∑
m=1

(λm − λ∗m)

(
N∑
n=1

xmn −
N∑
n=1

x∗mn

)

=
M∑
m=1

N∑
n=1

(
ηmn −

∂Um(xm)

∂xmn
− η∗mn +

∂Um(x∗m)

∂xmn

)
× (xmn − x∗mn),

(54)
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which can be further rewritten as:
M∑
m=1

(λm − λ∗m)

(
N∑
n=1

xmn −
N∑
n=1

x∗mn

)

+
M∑
m=1

N∑
n=1

(ηmn − η∗mn)(x∗mn − xmn)

=
M∑
m=1

N∑
n=1

(
∂Um(x∗m)

∂xmn
− ∂Um(xm)

∂xmn

)
(xmn − x∗mn).

(55)

Similarly, from equations (50) and (53), we obtain:
N∑
n=1

(µn − µ∗n)

(
L∑
l=1

znl −
L∑
l=1

z∗nl

)

=
N∑
n=1

L∑
l=1

(
∂Wl(zl)

∂znl
− ∂Wl(z

∗
l )

∂znl

)
(znl − z∗nl).

(56)

And combining equations (49) and (52) yields:
N∑
n=1

(µn − µ∗n)

(
M∑
m=1

y∗mn −
M∑
m=1

ymn

)

=
M∑
m=1

N∑
n=1

(
ηmn +

∂Vn(yn)

∂ymn
− η∗mn −

∂Vn(y
∗
n)

∂ymn

)
× (y∗mn − ymn),

(57)

which can be rewritten as:
N∑
n=1

(µn − µ∗n)

(
M∑
m=1

y∗mn −
M∑
m=1

ymn

)

+
M∑
m=1

N∑
n=1

(ηmn − η∗mn)(ymn − y∗mn)

=

M∑
m=1

N∑
n=1

(
∂Vn(yn)

∂ymn
− ∂Vn(y

∗
n)

∂ymn

)
(y∗mn − ymn).

(58)

Moreover, since the primal optimal point (X∗,Y∗,Z∗) to-
gether with dual optimal point (λ∗,µ∗,η∗) should satisfy the
KKT conditions of SWM, including conditions (8)-(15) (this
part of KKT conditions coincides with that of DAP), from the
complimentary slackness conditions, we have:

λ∗m

(
N∑
n=1

x∗mn − Cm

)
= 0, (59)

µ∗n

(
L∑
l=1

z∗nl −
M∑
m=1

y∗mn

)
= 0, (60)

η∗mn(y
∗
mn − x∗mn) = 0. (61)

Further notice that λm, µn, ηmn ≥ 0 and
∑N
n=1 x

∗
mn ≤

Cm,
∑L
l=1 z

∗
nl ≤

∑M
m=1 y

∗
mn. Thus, we get:

(λm − λ∗m)

(
N∑
n=1

x∗mn − Cm

)
≤ 0, (62)

(µn − µ∗n)

(
L∑
l=1

z∗nl −
M∑
m=1

y∗mn

)
≤ 0, (63)

(ηmn − η∗mn)(y∗mn − x∗mn) ≤ 0. (64)

Adding the six equations and inequalities (55), (56), (58), (62),
(63) and (64) gives:

M∑
m=1

(λm − λ∗m)

(
N∑
n=1

xmn − Cm

)

+
N∑
n=1

(µn − µ∗n)

(
L∑
l=1

znl −
M∑
m=1

ymn

)

+
M∑
m=1

N∑
n=1

(ηmn − η∗mn)(ymn − xmn),

≤
M∑
m=1

N∑
n=1

(
∂Um(x∗m)

∂xmn
− ∂Um(xm)

∂xmn

)
(xmn − x∗mn)

+
N∑
n=1

L∑
l=1

(
∂Wl(zl)

∂znl
− ∂Wl(z

∗
l )

∂znl

)
(znl − z∗nl)

+
M∑
m=1

N∑
n=1

(
∂Vn(yn)

∂ymn
− ∂Vn(y

∗
n)

∂ymn

)
(y∗mn − ymn)

≤ 0

(65)

The last inequality of (65) is due to the convexity/concavity of
the functions U, V,W . Specifically, since Um, Vn are convex
functions and Wl is concave function, we have:

(∇Um(x∗m)−∇Um(xm))
T
(x∗m − xm) ≥ 0, ∀m, (66)

(∇Wl(zl)−∇Wl(z
∗
l ))

T
(zl − z∗l ) ≤ 0, ∀l, (67)

(∇Vn(yn)−∇Vn(y∗n))
T
(yn − y∗n) ≥ 0,∀n. (68)

Adding inequalities (66), (67) and (68) together over all m,n, l
yields the last inequality of (65). Combining the inequalities
(46) and (65), we obtain dH

dτ ≤ 0. Thus, according to LaSalle’s
invariance principle [24], (λ,µ,η) converges to (λ∗,µ∗,η∗).
Comparing equations (48), (49) and (50) with equations (51),
(52) and (53), we conclude that (X,Y,Z) converges to
(X∗,Y∗,Z∗).

B. Economic Properties

Implementation of the proposed iterative auction mecha-
nism in real-world data trading market necessitates brilliant
economic properties of the mechanism. In this subsection, we
show that the proposed mechanism has appealing economic
properties. First, the proposed mechanism is clearly efficient
since it converges to the socially optimal point. Second, the
proposed mechanism possesses the incentive compatibility
property because in each auction iteration, each agent is
maximizing her own utility selfishly. To ensure that each agent
complies to the mechanism voluntarily, the mechanism needs
to guarantee that every agent has non-negative utility, i.e., the
mechanism should be individually rational. This is shown in
the following proposition.

Proposition 1. Assume that Um(0) = 0, Vn(0) = 0,Wl(0) =
0,∀m,n, l. Then, when Algorithm 1 converges, every data
agent has non-negative utility, i.e., the proposed mechanism
is individually rational.

Proof. As shown in Theorem 1, when Algorithm 1 converges,
(X,Y,Z) becomes (X∗,Y∗,Z∗) and (λ,µ,η) becomes
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(λ∗,µ∗,η∗). Thus, according to the allocation rule (19), the
bids (S,T,R) become (S∗,T∗,R∗) defined as follows:

s∗mn =
η∗mn − λ∗m
x∗mn

, (69)

t∗mn =
µ∗n − η∗mn
y∗mn

, (70)

r∗nl = z∗nlµ
∗
n. (71)

Since Um is convex, we have:

0 = Um(0) ≥ Um(x∗m) +∇Um(x∗m)T (0− x∗m), (72)

which can be rewritten as:
N∑
n=1

∂Um(x∗m)

∂xmn
x∗mn − Um(x∗m) ≥ 0. (73)

By Eq. (51), we further derive:
N∑
n=1

(η∗mn − λ∗m)x∗mn − Um(x∗m) ≥ 0, (74)

which by Eq. (69) can be written as:
N∑
n=1

(λ∗m − η∗mn)2

s∗mn
− Um(x∗m) ≥ 0. (75)

Note that the left hand side is exactly the utility of owner m
when Algorithm 1 converges. So, owner m has non-negative
utility. Similarly, from the convexity of Vn, we have:

Vn(y
∗
n) ≤

M∑
m=1

y∗mn
∂Vn(y

∗
n)

∂ymn
, (76)

which by equations (52) and (70) can be rewritten as:
M∑
m=1

(µ∗n − η∗mn)
t∗mn

− Vn(y∗n) ≥ 0. (77)

Notice that the left hand side is just the utility of collector
n when Algorithm 1 converges. We thus assert that each
collector has non-negative utility. From the concavity of Wl,
we obtain:

Wl(z
∗
l ) ≥

N∑
n=1

z∗nl
∂Wl(z

∗
l )

∂znl
, (78)

which by equations (53) and (71) is be written as:

−
N∑
n=1

r∗nl +Wl(z
∗
l ) ≥ 0. (79)

Hence, each user has non-negative utility. Overall, we con-
clude that the mechanism is individually rational.

We can further show that the system designer has weakly
balanced budget, i.e., the income (through the data reimburse-
ment/pricing) of the system designer in the mechanism is non-
negative when Algorithm 1 converges. In other words, the
system designer does not need to inject any money into the
data market in order to implement the mechanism.

Proposition 2. When Algorithm 1 converges, the income of
the system designer through data reimbursement/pricing in the

mechanism is non-negative. In other words, the mechanism has
weakly balanced budget.

Proof. The income of the system designer through data reim-
bursement/pricing is:

L∑
l=1

hl(r
∗
l )−

M∑
m=1

fm(sm
∗)−

N∑
n=1

gn(t
∗
n) (80)

=
L∑
l=1

N∑
n=1

r∗nl −
M∑
m=1

N∑
n=1

(λ∗m − η∗mn)
s∗mn

−
N∑
n=1

M∑
m=1

(µ∗n − η∗mn)2

t∗mn
(81)

=
L∑
l=1

N∑
n=1

z∗nlµ
∗
n −

M∑
m=1

N∑
n=1

x∗mn(η
∗
mn − λ∗m)

−
N∑
n=1

M∑
m=1

y∗mn(µ
∗
n − η∗mn) (82)

=
M∑
m=1

N∑
n=1

η∗mn(y
∗
mn − x∗mn)

+

N∑
n=1

µ∗n

(
L∑
l=1

z∗nl −
M∑
m=1

y∗mn

)
+

M∑
m=1

N∑
n=1

x∗mnλ
∗
m (83)

≥ 0 (84)

where Eq. (82) comes from equations (69), (70) and (71).
The reason of the last step is: η∗mn(y

∗
mn − x∗mn) =

0, µ∗n

(∑L
l=1 z

∗
nl −

∑M
m=1 y

∗
mn

)
= 0 due to complimentary

slackness (60) and (61) and x∗mn ≥ 0, λ∗m ≥ 0.

V. EXTENSION TO NON-EXCLUSIVE DATA TRADING

In previous sections, we assume that the data are exclusive,
i.e., the same data can be dispensed to only one user and
one collector. However, in many real-world data markets,
the data can be non-exclusive, i.e., the same data can be
allotted to multiple collectors and users. For example, many
software/APP developers (data users) may want to access the
same online data of some social network (data owner); or many
researchers (data users) may want to use the same data from an
organization (data owner) to conduct research. In this section,
we formulate the data trading problem with non-exclusive data
and extend the proposed mechanism in Section III to this
scenario.

Since the same data can be distributed to multiple collectors,
different collectors’ data can overlap each other. To avoid
purchasing the same data from different collectors, we assume
that each user buys data from only one single collector.
Equivalently, from the collectors’ perspective, each collector
n serves a set of users Ln and users in Ln only purchase data
from collector n. For example, in real world, a data collection
company may occupy the most of the share of the local market
in some region and becomes the monopoly in the local region.
Basically all data users in this region will purchase data only
from this data collector. Note that the sets Ln, n = 1, ..., N
are mutually exclusive and

⋃N
n=1 Ln = {1, ..., L}. Each user

l purchases from its designated collector zml amount owner
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m’s data. Other notations are the same as the exclusive data
trading model in Section II. The social welfare maximization
problem for non-exclusive data trading can be formulated as
follows.

MaximizeX,Y,Z −
M∑
m=1

Um(xm)−
N∑
n=1

Vn(yn) +
L∑
l=1

Wl(zl)

(85)
s.t.ymn ≤ xmn, ∀m,n, (86)

xmn ≤ Cm, ∀m,n, (87)
zml ≤ ymn, ∀m,n, l ∈ Ln. (88)

The first constraint means that the data collected by collec-
tors should be no more than the data authorized by the owners.
The second constraint is the data constraint at each owner.
Instead of total data constraint in the exclusive data trading
scenario, the data constraint becomes individual data constraint
in the non-exclusive data trading scenario. The third constraint
indicates that the data purchased by users are no greater than
the data collected by collectors. Similar to the exclusive data
trading scenario, it is inviable to directly solve this social
welfare maximization problem and enforce the solution for
the data agents. Hence, we go through similar procedures
as in Section III to obtain an iterative auction mechanism
which can achieve the social optimum while respecting agents’
private information (their loss/gain functions) and selfishness.
The mechanism is summarized in Algorithm 2 and the design
details are omitted. In Algorithm 2, we denote the Lagrangian
multipliers corresponding to constraints (86), (87) and (88) by
µ ∈ RM×N ,λ ∈ RM×N and η ∈ RM×L, respectively.

VI. SIMULATIONS AND REAL DATA EXPERIMENTS

In this section, we present simulations as well as real data
experiments to validate the theoretical results for the proposed
iterative auction mechanism. We consider both exclusive data
trading and non-exclusive data trading.

A. Simulations

Consider a data market with M = 2 data owners, N = 2
data collectors and L = 4 data users. The total data amount
of owners 1 and 2 are set to be 2 and 4, respectively. The
owners’ convex loss functions are defined as follows:

Um(xm) = am

(
2∑

n=1

exmn − 2

)
, m = 1, 2, (98)

where a1 = 0.1, a2 = 0.3. The collectors’ convex loss
functions are defined as:

Vn(yn) = bn

2∑
m=1

y2mn, n = 1, 2, (99)

where b1 = 0.5, b2 = 1. The users’ concave gain functions
are:

Wl(zl) = cl

2∑
n=1

log(1 + znl), l = 1, 2, 3, 4, (100)

Algorithm 2 The iterative auction mechanism for non-
exclusive data trading

1: Initialize X(0),Y(0),Z(0),λ(0),µ(0),η(0) to be non-
negative. Set the time index τ to be 0.

2: Repeat the following until convergence:
3: The system designer announces λ(τ),µ(τ),η(τ).
4: τ ← τ + 1.
5: Each owner m solves the following problem to get r(τ)m :

Maximizerm�0

N∑
n=1

(
λ
(τ)
mn − µ

(τ)
mn

)2
rmn

− Um

(
µ
(τ)
m1 − λ

(τ)
m1

rm1
, ...,

µ
(τ)
mN − λ

(τ)
mN

rmN

)
.

(89)

6: Each collector n solves the following problem to get s(τ)n :

Maximizesn�0

M∑
m=1

(∑
l∈Ln

η
(τ)
ml − µmn

)2
smn

− Vn

(∑
l∈Ln

η
(τ)
1l − µ

(τ)
1n

s1n
, ...,

∑
l∈Ln

η
(τ)
Ml − µ

(τ)
Mn

sMn

)
.

(90)

7: Each user l solves the following problem to get t(τ)l :

Maximizetl�0 −
M∑
m=1

tml +Wl

(
t1l

η
(τ)
1l

, ...,
tMl

η
(τ)
Ml

)
.

(91)

8: The system designer computes the new X(τ),Y(τ),Z(τ)

according to:

x(τ)mn =
µ
(τ)
mn − λ(τ)mn

r
(τ)
mn

, (92)

y(τ)mn =

∑
l∈Ln

η
(τ)
ml − µ

(τ)
mn

s
(τ)
mn

, (93)

z
(τ)
ml =

t
(τ)
ml

η
(τ)
ml

. (94)

9: The system designer updates the dual variables:

λ(τ)mn =
(
λ(τ−1)mn + α

(
x(τ)mn − Cm

))+
,∀m,n, (95)

µ(τ)
mn =

(
µ(τ−1)
mn + α

(
y(τ)mn − x(τ)mn

))+
,∀m,n, (96)

η
(τ)
ml =

(
η
(τ−1)
ml + α

(
z
(τ)
ml − y

(τ)
mn

))+
,∀m,n, l ∈ Ln. (97)
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Fig. 3: Convergence of the iterative auction mechanism to
the socially optimal point, i.e., the optimal point of SWM.
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Fig. 4: The utilities of owner 1, collector 1 and user 1 and
the budget balance (income) of the system designer.

where c1 = 3
2 , c2 = 7

6 , c3 = 5
6 , c4 = 1

2 .
We first consider the exclusive data trading scenario. We

simulate the proposed iterative auction mechanism in Al-
gorithm 1. In Fig. 3, we validate the convergence behav-
ior of the mechanism. The relative error used in Fig. 3 is
max

{
||X−X∗||F
||X∗||F , ||Y−Y

∗||F
||Y ∗||F , ||Z−Z

∗||F
||Z∗||F

}
, where || · ||F means

the Frobenius norm. As guaranteed by Theorem 1, the
mechanism converges to the socially optimal point, i.e., the
mechanism is efficient. We further investigate the economic
properties of the mechanism through simulations in Fig. 4. We
report the utilities of the owner 1, collector 1 and user 1 as
the algorithm gradually converges. As asserted in Proposition
1, the mechanism is individually rational: the three data
agents in Fig. 4 have non-negative utilities when the algorithm
converges. Furthermore, we show the budget balance (income)
of the system designer and find that as assured by Proposition
2, the budget balance is non-negative when the algorithm
converges. Next, we turn to the non-exclusive data trading
scenario. We set L1 = {1, 2},L2 = {3, 4}. Other simulation
setup remains unchanged and we simulate the iterative auc-
tion mechanism in Algorithm 2. As exhibited in Fig. 5, the
mechanism still converges to the socially optimal point.

B. Real Data Experiments

In this subsection, we use real data to get the loss/gain
functions of the data agents and investigate the performance
of the proposed mechanism on them. We still consider a
data market with M = 2 owners, N = 2 collectors and
L = 4 users. We first use real data prices to estimate the
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Fig. 5: Convergence of the iterative auction mechanism to
the socially optimal point: non-exclusive data trading.
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1.267x0.5329

Fig. 6: Fitting the real-world data price

users’ gain functions. To this end, we fit the prices of the
two datasets, namely the wealth score dataset and the text
analytics dataset, in the Microsoft Azure Marketplace [25] (a
data trading platform) with the function y = axb. The fitting
results are shown in Fig. 6, which are very accurate. The sum
of these two price functions can be regarded as the mean
user gain function. To introduce heterogeneity into users’ gain
functions, we multiple a coefficient onto this mean user gain
to get individual users’ gains as follows:

Wl(zl) = c′l

2∑
n=1

αnz
βn

nl , l = 1, 2, 3, 4 (101)

where α1 = 0.821, α2 = 1.267, β1 = 0.9131, β2 =
0.5329, c′1 = 1/2, c′2 = 5/6, c′3 = 7/6, c′4 = 3/2.

Next, we estimate the owners’ loss functions. In [14], a
relationship between the information loss and the privacy
breach level in anonymization is obtained from real data
[26]. Specifically, the privacy leakage is quantified by the k-
anonymity, which means that the probability that an individual
item being re-identified by an attacker is no higher than 1/k.
Thus, 1/k can be regarded as the loss of the data owner.
(total data amount − IL) can be regarded as the effective
amount of data obtained by a collector, where IL means the in-
formation loss. The relationship between k and IL is estimated
to be IL = −0.4804k−0.2789+0.7883, which can be rewritten
as 1/k = (2.0816(0.7883 − IL))3.5855. We set 0.7883 to be
the total amount of data and thus y = (2.0816x)3.5855 can be
regarded as the average owners’ loss function. By varying the
coefficients, we introduce heterogeneity to the loss function
and finally set:

Um(xm) = a′m

2∑
n=1

(θnxmn)
3.5855, m = 1, 2, (102)
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Fig. 7: Convergence of the iterative auction mechanism to
the socially optimal point in real data experiment.
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Fig. 8: The utilities of owner 1, collector 1 and user 1 and
the budget balance (income) of the system designer in real
data experiment.

where θ1 = 1.5816, θ2 = 2.5816, a′1 = 5, a′2 = 15. As for the
collectors’ loss functions Vn, it is hard to find corresponding
real data and we directly use quadratic functions in simulation
setups for them. Other experiment setups are the same as those
of simulations.

With the loss/gain functions estimated from real data, we
test the performance of the proposed iterative auction mech-
anism. We first consider the exclusive data trading. The total
data amounts of owner 1 and owner 2 are 0.25 and 0.5,
respectively. As shown in Fig. 7, the mechanism still converges
to the socially optimal point. In Fig. 8, we further observe that
the individual rationality and weakly balanced budget still hold
as the utilities of owner 1, collector 1 and user 1 as well as
the budget balance of the system designer are all non-negative.
Then, we change to the non-exclusive data trading and alter the
total data amounts of owner 1 and owner 2 to be 0.2 and 0.4,
respectively. We remark that the mechanism still converges to
the socially optimal point, as illustrated in Fig. 9.

Lastly, we endeavor to compare the proposed iterative
auction mechanism with the contract-theoretic approach in
[14]. The model of [14] consists of multiple data owners and
one single data collector without the notion of data users. To
accommodate to this, we consider M = 4 owners, N = 1
collector and L = 1 user in our model. As per setups of real
data experiments, we set the loss function of owners to be:

Um(xm) = a′′m(2.0816xm)3.5855, m = 1, 2, 3, 4, (103)

where a′′1 = 5, a′′2 = 25
3 , a

′′
3 = 35

3 , a
′′
4 = 15. The total data

amount of each owner is 0.08. Moreover, we set the gain
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Fig. 9: Convergence of the iterative auction mechanism to
the socially optimal point in real data experiment:
non-exclusive data trading.
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Fig. 10: Convergence of the iterative auction mechanism to
the socially optimal point in the comparison experiment.

function of the single user to be:

W1(z1) = 0.82105z0.53291 . (104)

The loss function of the single data collector still takes the
quadratic form previously used, i.e., V1(y1) =

1
2y1

Ty1. Since
the model in [14] only considers linear owner loss, we use
Ũm(xm) = 2.0816a′′mxm for [14]. Besides, the model in [14]
sets the collector’s gain to be a square root function. Hence,
we use W̃1(z1) = 0.82105z0.51 for [14]. Note that the collector
in [14] plays the role of end user and we translates that into
the user in our model. In the model of [14], we need to specify
a required total amount of data, i.e., qreq =

∑M
m=1 xm, which

we set to be 0.16, i.e., the half of the sum of total data amounts
of all the owners. We first simulate the proposed iterative
auction mechanism, which still converges to the socially
optimal point, as illustrated in Fig. 10. The socially optimal
point is X = Y = [0.08, 0.08, 0.074, 0.074]T , Z = 0.3015
and the optimal social welfare (which is obtained by the
proposed mechanism) is 0.373. Then, we simulate the contract-
theoretic approach of [14], which gives the data allocation
X = Y = [0.080.0800]T , Z = 0.16 and a social welfare of
0.2812. Thus, we observe that the proposed mechanism can
achieve a higher social welfare than [14].

According to the experiments and simulations, a practical
issue of the proposed iterative auction mechanism is that it
may need hundreds of iterations to converge. This requires
the bidders (agents) to bid for hundreds of times. A common
solution to this issue is to equip each bidder with some bidding
software, which can automatically bid for the agent according
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to some preset bidding rule such as the one specified in the
proposed iterative auction mechanism. With the help of such
bidding softwares, the bidding processes can be very fast
and accomplish hundreds of iterations quickly, making the
proposed mechanism practical. In fact, fast iterative bidding
with the assist of bidding softwares is already used in practice
such as the eBay auction.

VII. CONCLUSION

In this paper, we study the data trading problem with
multiple data owners, collectors and users. We present an
iterative auction mechanism to guide the selfish agents to
behave in a socially optimal way without direct access of their
private information. We theoretically prove the convergence
as well as economic properties (individual rationality and
weakly balanced budget) of the mechanism. Simulations and
real data experiments are carried out to confirm the theoretical
properties of the proposed mechanism.
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