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Evolutionary Information Diffusion Over
Heterogeneous Social Networks

Xuanyu Cao, Yan Chen, Chunxiao Jiang, and K. J. Ray Liu

Abstract—A huge amount of information, created and for-
warded by millions of people with various characteristics, is
propagating through the online social networks every day.
Understanding the mechanisms of the information diffusion over
the social networks is critical to various applications including
online advertisement and website management. Different from
most of the existing works, we investigate the information diffusion
from an evolutionary game-theoretic perspective and try to reveal
the underlying principles dominating the complex informa-
tion diffusion process over the heterogeneous social networks.
Modeling the interactions among the heterogeneous users as a
graphical evolutionary game, we derive the evolutionary dynamics
and the evolutionarily stable states (ESSs) of the diffusion. The
different payoffs of the heterogeneous users lead to different
diffusion dynamics and ESSs among them, in accordance with
the heterogeneity observed in real-world datasets. The theoretical
results are confirmed by simulations. We also test the theory on
Twitter hashtag dataset. We observe that the derived evolutionary
dynamics fit the data well and can predict the future diffusion data.

Index Terms—Information diffusion, heterogeneous social
networks, evolutionary game theory.

I. INTRODUCTION

ONLINE social networks such as Twitter, Facebook and
Youtube are ubiquitous in daily life. Billions of people

with different characteristics interact on the social networks,
not only receiving a lot of information but also creating numer-
ous amount of information. For example, about 500 millions of
tweets are sent from Twitter every day [1] while around 300
thousand statuses are updated every minute on Facebook [2].
Each piece of information can either go viral, i.e., become very
popular, or disappear quickly with few impact. When the user-
generated information such as memes [3] and Twitter hashtags
[4] propagates through the social networks, a variety of in-
formation diffusion dynamics are observed [5]. The diffusion
dynamics or the popularity of the information are determined
by the complicated interaction and decision-making of lots of
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users, which involves users’ heterogeneous interests and influ-
ences. For instance, a football fan has a higher probability of
retweeting a tweet about football and a user tends to post a
piece of news if many of his friends have posted it. In practice,
many applications are related to the information diffusion over
social networks: online advertisements, political statements, ru-
mor detection and control. All these applications call for a bet-
ter understanding of the information diffusion process over the
social networks composed of heterogeneous individuals. Con-
sequently, great efforts have been devoted to studying how the
information diffuses in the recent decade.

Existing works on information diffusion can be mainly clas-
sified into two categories: i) using machine learning (ML) or
data mining approaches to make inference and prediction; ii)
devising microscopic mechanisms to explain the information
diffusion from the perspective of the individual users’ interac-
tions. Among the first category, Pinto et al. used early diffu-
sion data to predict future diffusion [6] while the community
structure is further exploited to improve the performance of pre-
diction of viral memes in [7]. Yang and Leskovec proposed a
clustering algorithm to identify the patterns of the diffusion dy-
namics of online contents [5]. Given the information diffusion
data, efficient algorithms are developed to infer the underlying
information diffusion network in [8]–[10]. Alternatively, the
authors in [11] estimated the global influence of individuals in
the information diffusion process. The interactions between the
diffusions of multiple pieces of information are investigated in
[12] while the impact of external sources on the information
diffusion is considered in [13]. Cheng et al. tried to predict
the cascades of the information diffusion [14]. Using the data
from a real-world experiment, the authors in [15] studied the
impact of cluster structure of the social network on the diffu-
sion of behaviors. Similarly, taking an experimental approach,
Bakshy et al. investigated the role of social ties on the infor-
mation diffusion [16]. A common limitation of these ML or
data mining based approaches is the lack of understanding of
the underlying microscopic mechanisms of the individuals’ de-
cision making that dominate the information diffusion process,
which is the focus of the papers in the second category. In this
category, authors in [17] and [18] developed game-theoretic
mechanisms to analyze the competitive contagions in networks,
such as firms’ competing for users’ purchase. Under a thresh-
old model, Granovetter studied the diffusion of the collective
behaviors, which are defined to be the adoption of one of two
alternatives [19]. Assuming each user played the best response
to the population’s strategies, Morris studied the conditions for
global contagion of behaviors [20]. The impact of the network
structure on virus propagation was investigated in [21]. More-
over, in [22], algorithms for finding initial targets to maximize
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the future contagions over the networks are presented. The im-
pact of the community structure on information diffusion was
studied in a model-based approach in [23].

Recently, the authors of [26], [27] proposed to use an evo-
lutionary game-theoretic framework to model the users’ inter-
actions during the information diffusion process. Evolutionary
game theory, originating from the evolutionary biology [28],
was used as a promising modeling tool in various areas of sig-
nal processing such as communication networking and image
processing [29]–[33]. In [26], [27], it was found that the dy-
namics derived under the evolutionary game framework fit the
real-world information diffusion dynamics well and could even
make predictions on the future diffusion dynamics, suggesting a
suitable and tractable paradigm for analyzing the information
diffusion.

Most of the existing works treat the network users as homoge-
neous individuals and do not take the heterogeneity of the users
into consideration. However, real-world social networks often
exhibit significant heterogeneity. For example, heterogeneous
aspects of the Twitter network include: (a) A variety of different
topics coexist due to the heterogeneous interests of users; (b)
Different users have very different follower counts, indicating
different influences [34]; (c) The distribution of tweet counts is
highly heterogeneous: the top 15% users account for the 85% of
the tweets, suggesting that the user activity strength is heteroge-
neous [35]. The heterogeneity of the users’ interests, influences
and activities can have huge impact on information diffusion.
For example, when a piece of information related to football
reaches a user, whether the user is a football fan or not has huge
impact on the decision-making (forwarding or not forwarding
that information) of the user.

In this paper, we study the information diffusion over the het-
erogeneous social networks using a graphical evolutionary game
approach. Modeling users’ decision making as an evolutionary
game, we analyze the information diffusion dynamics. Through
the study in this work, we provide a microeconomic framework
by using a few utility parameters to describe the mechanisms of
the users’ decision making in the information diffusion process
over the real-world heterogeneous social networks. The main
contributions of this work can be epitomized as follows.

1) We propose two mathematically tractable evolutionary
game-theoretic models to characterize the impact of users’
heterogeneity on the information diffusion over social net-
works. The two models differ in whether the user type1

is a private information unknown to others or a publicly
known information.

2) For the unknown user type model, we theoretically derive
the evolutionary dynamics as well as the evolutionarily
stable states (ESSs). The relation between the heteroge-
neous payoff parameters and the heterogeneous informa-
tion diffusion dynamics among different types of users
is observed. In contrast, the homogeneous model in [26],
[27] has to treat all types the same and can only give a
mean evolutionary dynamics averaged over all types.

1The type of a user will be explicitly defined later in Section 2.

3) For the known user type model, the evolutionary dynam-
ics are derived and a relation between the dynamics is
observed, which can be used to further simplify the dy-
namics. When the users manage to know the types of their
neighbors through repeated interactions, the known user
type model characterizes the users’ decision making pro-
cess more accurately than the unknown user type model.

4) Using both synthetic data based simulations and real data
based experiments, we validate the theoretical results. The
good fitting and prediction performance on real-world
datasets indicate the effectiveness of the evolutionary
game modeling. In particular, our results outperform the
homogeneous model in [26], [27] when characterizing the
heterogeneous behaviors of different types of users.

The rest of this paper is organized as follows. In Section II,
we formally state the evolutionary game-theoretic model for
information diffusion. In Section III, we theoretically derive
the evolutionary dynamics and the ESSs for the unknown user
type model. Then, the evolutionary dynamics of the known user
type model are analyzed in Section IV. The experiments on
synthetic data and real data are presented in Section V. WE
conclude this paper in Section VI.

II. HETEROGENEOUS SYSTEM MODEL

In this section, we first give a brief introduction to the pre-
liminary concepts of evolutionary game theory. Then, we elab-
orate the proposed evolutionary game theoretic formulations of
the information diffusion problem over heterogeneous social
networks.

A. Basics of Evolutionary Game

The focus of traditional game theory is a game with static
players and the solution concept is static Nash equilibrium
(NE). On the contrary, evolutionary game theory [28] is con-
centrated on investigating the dynamics and stable states of
a large population of evolving agents who interact with each
other. Evolutionary game, as the name suggests, originates from
the study of the evolution of species in biology, where ani-
mals or plants are modeled as players interacting with each
other. Recent works [26], [27] show that it is also a very suit-
able model to analyze the social interactions among users of
social networks.

A very important solution concept of evolutionary game the-
ory is evolutionarily stable state (ESS), which predicts the ulti-
mate equilibrium of the evolutionary dynamics in a evolutionary
game. Consider an evolutionary game with a large population
of players. Suppose we have m strategies {1, . . . , m} an m by
m payoff matrix U whose (i, j)-th entry uij is the payoff for
strategy i verse strategy j (i.e., when a player with strategy i
interacts with a player with strategy j, he will get a payoff of
uij ). Denote pi the proportion of players adopting strategy i and
p = [p1 , p2 , . . . , pm ]T is the system state of the evolutionary
game. Thus, the payoff of any sub-population with state q when
interacting the whole population with state p is qT Up. We call a
state p∗ an ESS if for any q �= p∗, the following two conditions
hold [28]:
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1) qT Up∗ ≤ p∗
T
Up∗,

2) if qT Up∗ = p∗
T
Up∗, then p∗

T
Uq > qT Uq.

The first condition is an NE condition, stating that any mutant
(deviation from the ESS p∗) of any sub-population cannot make
the payoff better off. The second condition guarantees that if
deviation remains the payoff unchanged, then within the mutated
sub-population (i.e., interacting with the sub-population state
q), the ESS is strictly better than the deviated state q. This
further ensures the stability of the state p∗. An important issue
of evolutionary game theory is to compute the ESSs. A prevalent
approach is to find the locally stable state of the evolutionary
dynamics as a dynamical system ṗ = f(p), where f is some
function.

Classical evolutionary game assumes that every two players
can interact with each other, implicitly making the hypothesis
that the underlying interaction network is a complete graph. A
useful generalization of the classical evolutionary game is the
graphical evolutionary game, in which the interaction network
is possibly incomplete. In graphical evolutionary game theory
[38], [39], the player strategy update rule directly depends on
the fitness of the users, which can be defined as a convex com-
bination of the baseline fitness B and the payoff U , i.e.,

π = (1 − α)B + αU, (1)

where π is the fitness. Here 0 < α < 1 is the selection strength,
controlling the impact of the payoff on the fitness. In the lit-
erature of graphical evolutionary game theory [24]–[27], α is
generally assumed to be very small and we also make this as-
sumption in the rest of the paper. The reason of assuming a small
α is that we expect evolutions/adaptations to occur gradually and
slowly. For instance, in biology, the evolution of species takes
place very slowly; in adaptive signal processing (e.g., LMS al-
gorithm), we usually adopt a small step size to inhibit abrupt
intense change or instability. A small α limits the impact of
payoff differences on the values of fitness, and thus reduces the
gaps between the fitness of different players, which slows down
the evolution. In fact, later we will see that the evolution dynam-
ics are often proportional to α. After defining fitness, we can
introduce three most prevalent strategy update rules in the liter-
ature of graphical evolutionary game theory, namely birth-death
(BD), death-birth (DB) and imitation (IM).

1) BD update rule: one player is chosen for reproduction with
probability proportional to fitness. The chosen player’s
strategy replaces one of its neighbor’s strategy with uni-
form probability.

2) DB update rule: one player is chosen to abandon its strat-
egy with uniform probability. He/she will adopt one of
its neighbors’ strategies with probability proportional to
their fitness.

3) IM update rule: one player is chosen to update its strategy
with uniform probability. He/she may maintain his/her
current strategy or adopt one of his/her neighbors’ strate-
gies, with probability proportional to fitness.

In this paper, we adopt the DB update rule. The other update
rules can be similarly analyzed under our framework. In the
following, we elaborate how to model the information diffusion

over heterogeneous social networks by using evolutionary game
theory.

A social network can be generally modeled as a graph, with
nodes representing users and edges representing relationships.
We assume there are N nodes (users) in the network and each
node has some neighbors with whom it interacts. The number
of neighbors k exhibits certain distributions λ(k) (the fraction
of nodes whose degree is k) in real social networks, e.g. Poisson
distribution in Erdos-Renyi networks [36] and power law distri-
bution in Barabasi-Albert scale-free networks [37]. In addition,
real-world social networks usually consist of groups of users
with different interests, influences and activities. To capture this
heterogeneity, we categorize the users into M types, whereas the
proportion of type-i users is q(i), i = 1, 2, . . . ,M . In the game-
theoretic formulation, the N users are regarded as players. When
a piece of information (e.g., a hashtag, a status or a meme) is
generated, each user has two possible strategies: forwarding the
information (Sf ) or not forwarding it (Sn ). We denote pf (i) the
proportion of users adopting Sf among all the type-i users and
pf the proportion of users adopting Sf among users of all types.
We shall call pf (i) and pf population dynamics or popularity
dynamics in the rest of the paper.

B. Unknown User Type Model

In real-world social networks, users often do not know the
types of their neighbors/friends. For example, a user may not
know whether his friend is fan of a singer or not. In this subsec-
tion, we present a model where the user type is private informa-
tion that is unknown to others. Consider one social interaction
where a type-i user A is interacting with one of its neighbors,
a type-j user B. Because A does not know the type of B, the
payoff of A should not depend on the type of B in this social
interaction. Specifically, the payoff matrix of the type-i node A
is:

Sf Sn

Sf

Sn

(
ruf f (i) uf n (i)

uf n (i) unn (i)

)
.

When A and B both adopt Sf , the payoff of A is uf f (i)
regardless of the type of B. Both uf n (i) and unn (i) are similarly
defined. Here, a symmetric payoff structure is considered as in
[26], [27]. In other words, when a type-i user with strategy
Sf (Sn ) meets a user with strategy Sn (Sf ), its payoff is uf n (i).
The reason of this symmetric payoff assumption is that often
disagreement (one with strategySf while the other with strategy
Sn ) leads to the same payoff to both sides. For instance, if a user
mentions a hashtag while another user does not, then when they
interact none of them can find common topic to discuss and
both get the same payoff. The physical meaning of the payoff
depends on the applications: if the social network nodes are
social network users, then their payoffs may be their popularity;
if the social network nodes are websites, then their payoffs may
be their hit rates. The values of the payoff matrix depend on both
the content of the information and the types of the users. For
example, if the information is a recent hot topic (e.g., world cup
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in the summer of 2014) and forwarding it can increase users’
popularity, then uf f (i) is big and unn (i) is small. And if a
group of users are very interested in that hot topic (e.g., football
fans), then they may have even larger uf f (i) and smaller unn (i)
compared to other groups of users. By taking the baseline fitness
to be 1 in Eq. (1), we can write the fitness as π = 1 − α + αU
(π is the fitness and U is the payoff). Here 0 < α < 1 is the
selection strength, which is assumed very small conventionally.
We note that different from payoff, fitness represents the level of
fitting of a user in the social network. This fitting level contains
not only the payoff obtained from extrinsic interactions but also a
baseline fitness which encompasses intrinsic attributes of users,
such as the satisfaction of the social network/website. Suppose
A has kf neighbors adopting Sf , then the fitness of A is:

πf (i, kf ) = 1 − α + α[kf uf f (i) + (k − kf )uf n (i)]. (2)

One can similarly obtain πn (i, kf ), the fitness of A when A
adopts Sn as follows:

πn (i, kf ) = 1 − α + α[kf uf n (i) + (k − kf )unn (i)]. (3)

Furthermore, since A only knows the strategies of its neigh-
bors but not the types of its neighbors, it regards the type of all
of its neighbors the same as itself, i.e., type i. In other words, if
one neighbor is adopting strategy Sf , A consider its fitness to
be πf (i, kf ). Otherwise, A considers its fitness to be πn (i, kf ).

C. Known User Type Model

Sometimes, through repeated interactions, users may some-
how manage to know its neighbors’ types. For instance, when
a user observes that one of his friends frequently post news
about football match, he may gradually know that this friend is
a football fan. In this subsection, we present a model where the
user types are publicly known information. Consider a social
interaction where a Type-i user A is interacting with one of its
neighbors, Type-j user B. Here, different from the unknown
user type model, A knows the type of B. Hence the payoff of A
should depend on the type of B in this social interaction. Specif-
ically, if both A and B adopt Sf , A gets a payoff uf f (i, j). If
A,B adopt strategy Sf and Sn respectively, then the payoff of
A is uf n (i, j). Similarly, we can define unf (i, j) and unn (i, j).

Take the baseline fitness to be 1 in Eq. (1) and thus the fitness
of a user with strategy Sf or Sn is respectively given by:

πf (i) = 1 − α + α

M∑
j=1

[kf (j)uf f (i, j) + kn (j)uf n (i, j)],

(4)

πn (i) = 1 − α + α
M∑

j=1

[kf (j)unf (i, j) + kn (j)unn (i, j)],

(5)

where kf (j) (kn (j)) denotes the number of type-j neighbors
with strategy Sf (Sn ). The update rule is still the death-birth
(DB), as described previously for the unknown type model. The
difference is that now the player knows the types of his neigh-
bors, hence can learn strategies only from those neighbors with

TABLE I
NOTATIONS

N Number of nodes in the network
k Degree of a given node
M Number of user types in the network
q(i) The proportion of Type-i users in the network
pf (i) Proportion of users adopting Sf among all the type-i users
pf Proportion of users adopting Sf among users of all types
uf f (i), uf n (i),
un n (i)

Payoffs of Type-i users in the unknown user type model.
For details, see Subsection II-B.

πf (i), πn (i) Fitness of a Type-i user with strategy Sf or Sn , respectively
kf Number of neighbors (of a given user) adopting strategy Sf

πf (i, kf ), πn (i, kf ) Fitness of a Type-i with kf neighbors adopting strategy Sf

while itself adopts strategy Sf or Sn , respectively.
pf f (i, j ), pf n (i, j ),
pn n (i, j )

Relationship states of Type-i users in the known user type
model. For details, see Section IV.

pf |f (i, j ), pf |n (i, j ),
pn |f (i, j ), pn |n (i, j )

Influence states of Type-i users in the known user type
model. For details, see Section IV.

uf f (i, j ), uf n (i, j ),
un f (i, j ), un n (i, j )

Payoffs of Type-i users in the known user type model. For
details, see Subsection II-C.

kf (j ) Number of neighbors (of a given Type-j user) adopting
strategy Sf

the same type as his. The notations of this paper are summarized
in Table I, in which some of the notations will be introduced in
Section IV.

III. THEORETICAL ANALYSIS FOR THE UNKNOWN USER

TYPE MODEL

In this section, we derive the evolutionary dynamics of the net-
work states pf (i), pf and the corresponding evolutionarily sta-
ble states (ESSs) for the unknown user type model. The derived
dynamics and ESSs connect the information diffusion process
and the final steady states with the heterogeneous users’ payoff
matrices explicitly. We are able to give simple explanations on
the ESSs of the information diffusion from the perspective of
the payoff matrix.

Let’s consider a type-i user with strategySf (in the following,
we will call this user as the center user). Suppose among its k
neighbors, there are kf users adopting strategy Sf and (k − kf )
users adopting strategy Sn . The fitness πf (i, kf ) of the center
user is given in Eq. (2). If the center user changes its strategy to
Sn , its fitness πn (i, kf ) becomes Eq. (3). From the perspective
of the center user, a neighbor adopting strategy Sf (or Sn ) has
fitness πf (i, kf ) (or πn (i, kf ), respectively). According to the
DB update rule, the center user will adopt one of its neighbors’
strategy with probability proportional to their fitness. Hence,
the probability that the center user changes its strategy from Sf

to Sn is given by: Eq. (7)-(9) as shown at the bottom of the
next page

Pf→n (i, kf ) =
(k − kf )πn (i, kf )

kf πf (i, kf ) + (k − kf )πn (i, kf )
. (6)

Substituting the expressions of πf (i, kf ) and πn (i, kf ) in Eq.
(2) and Eq. (3) into Eq. (6) yields Eq. (9): Eq. (7)–(9) shown
at the bottom of next page, where Δ(i) := 2uf n (i) − uf f (i) −
unn (i), Δn (i) := unn (i) − uf n (i) and in the last equation we
invoke the fact that 1+ax

1+bx = 1 + (a − b)x + O(x2) for small x.
Because α is a small quantity, we will omit the O(α2) term in
the following. Since the proportion of users with strategy Sf is
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pf over the entire network, each neighbor has probability pf of
adopting strategy Sf . Thus kf is binomially distributed random
variable with probability mass function:

θ(k, kf ) =
(

k
kf

)
p

kf

f (1 − pf )k−kf . (10)

Hence, taking expectation of Eq. (9) (note that k is also a r.v.
and we need to take expectation of it further) gives:

E[Pf→n (i, kf )]

= 1 − pf + αΔ(i)
[ (

−k + 3 − 2k−1
)

p3
f

+
(
k − 4 + 3k−1

)
p2

f +
(
1 − k−1

)
pf

]
+ αΔn (i)

[
−

(
k − 1

)
p2

f + (k − 1)pf

]
, (11)

where k and k−1 denote the expectation of k and k−1 , respec-
tively. In the derivation of Eq. (11), we utilize the moments of bi-
nomial distribution: E[kf |k] = kpf , E[k2

f |k] = k2p2
f − kp2

f +
kpf , E[k3

f |k] = k(k − 1)(k − 2)p3
f + 2(k − 1)kp2

f + kpf . In
each round of the DB update, one of the N users will be selected
to update its strategy randomly. The proportion of type-i users
with strategy Sf among all the users is pf (i)q(i). According to
DB update rule, in order to have one Type-i user changes its
strategy from Sf to Sn , i.e., for pf (i) to decrease by 1

N q(i) , the
chosen user in the death process should be a Type-i user with
strategy Sf , which happens with probability q(i)pf (i). After
that, the user needs to change its strategy from Sf to Sn , which
happens with probabilityE[Pf→n (i, kf )], where the expectation
is with respect to the node degree k. Thus, we have:

P

(
δpf (i) = − 1

Nq(i)

)
= pf (i)q(i)E[Pf→n (i, kf )], (12)

where δ denotes increment. With a similar argument as above,
one can compute the probability that a type-i user changes its
strategy from Sn to Sf . We thus obtain:

P

(
δpf (i) =

1
Nq(i)

)
= pn (i)q(i)(1 − E[Pf→n (i, kf )]).

(13)

Combining Eq. (11), Eq. (12) and Eq. (13), we deduce the
expected change of pf (i):

ṗf (i) = − 1
Nq(i)

P

(
δpf (i) = − 1

Nq(i)

)

+
1

Nq(i)
P

(
δpf (i) =

1
Nq(i)

)

=
1
N

pf − 1
N

pf (i) +
α

N
pf (pf − 1)

×
[
Δ(i)

((
k − 3 + 2k−1

)
pf + 1 − k−1

)
+ Δn (i)(k − 1)

]
, (14)

which is the dynamic of pf (i). Hence, from Eq. (14), the
dynamic of pf can be written as:

ṗf =
M∑
i=1

q(i)ṗf (i)

=
α

N
pf (pf − 1)

[
Δ

((
k − 3 + 2k−1

)
pf + 1 − k−1

)
+ Δn (k − 1)

]
, (15)

where Δ :=
∑M

i=1 q(i)Δ(i) and Δn :=
∑M

i=1 q(i)Δn (i). We
summarize the theoretical evolutionary dynamics results as the
following theorem, Theorem 1.

Theorem 1: (Evolutionary Dynamics) In the unknown user
type model, the evolutionary dynamics for the network states
pf (i) and pf are given in Eqs. (14) and (15), respectively.

From Theorem 1, we observe that the population dynamics
pf (i) in Eq. (14) depend on both the global population dynamics
pf and the type-specific utility-related parameters Δ(i),Δn (i).
Consequently, a connection between the heterogeneous type-
specific payoff matrix and the heterogeneous information
diffusion dynamics of each time is established explicitly. Addi-
tionally, comparing Eq. (15) with the evolutionary population
dynamics of a homogeneous social network given in [26] and
[27], we note that the global population dynamics pf evolve as if
the network is homogeneous with corresponding payoff matrix
being the weighted average (with weights q(i)) of those among
all the types.

Given the dynamical system described in Theorem 1, we
want to identify its ESSs. This is accomplished by the following
theorem, Theorem 2.

Pf→n (i, kf ) (7)

=
k − kf

k

1 + α[kf uf n (i) + (k − kf )unn (i) − 1]

1 + α
[

kf

k (kf uf f (i) + (k − kf )uf n (i) − 1) + (1 − kf

k )(kf uf f (i) + (k − kf )uf n (i) − 1)
] (8)

=
k − kf

k
+ α(k − kf )

[
k2

f

k2 Δ(i) +
kf

k
Δn (i)

]
+ O(α2), (9)
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Theorem 2: (ESSs) In the unknown user type model, the
ESSs of the network are as follows:

p∗f =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, if unn > uf n ,

1, if uf f > uf n ,

Δn (1 − k) + Δ(k−1 − 1)
Δ(k − 3 + 2k−1)

, if max{uf f , unn}

< uf n ,

(16)

p∗f (i) = p∗f + αp∗f (p∗f − 1)
[
Δ(i)

( (
k − 3 + 2k−1

)
p∗f

+ 1 − k−1
)

+ Δn (i)(k − 1)
]
, (17)

where uf f =
∑M

i=1 q(i)uf f (i) and uf n , unn are sim-
ilarly defined. Recall that Δ(i) = 2uf n (i) − uf f (i) −
unn (i),Δn (i) = unn (i) − uf n (i) and Δ =

∑M
i=1 q(i)Δ(i),

Δn =
∑M

i=1 q(i)Δn (i). Note that it is possible that the system
has more than one ESS.

Proof: Letting the R.H.S. of Eq. (14) be zero, we obtain the
three equilibrium points for the dynamic of pf :

p∗f = 0, 1,
Δn (1 − k) + Δ(k−1 − 1)

Δ(k − 3 + 2k−1)
. (18)

Given p∗f , the equilibrium state of pf (i) can be derived from
Eq. (14) as stated in Eq. (17).

For an equilibrium point to be an ESS, it needs to be locally
asymptotically stable for the underlying dynamical system. Note
that for each i, pf (i) and pf can be regarded as a dynamical sys-
tem consisting of two states as indicated by Eq. (14) and Eq. (15).
The Jacobian matrix of the system is given by:

J =

⎡
⎢⎢⎢⎣

∂ṗf (i)
∂pf (i)

∂ṗf (i)
∂pf

∂ṗf

∂pf (i)
∂ṗf

∂pf

⎤
⎥⎥⎥⎦ , (19)

where

∂ṗf (i)
∂pf (i)

= − 1
N

,

∂ṗf (i)
∂pf

=
1
N

+
α

N
(2pf − 1)

[
Δ(i)

(
k − 3 + 2k−1

)
pf

+ Δ(i)(1 − k−1) + Δn (i)(k − 1)
]

+
αΔ(i)

N
(p2

f − pf )(k − 3 + 2k−1),
∂ṗf

∂pf (i)
= 0,

∂ṗf

∂pf
=

α

N
(2pf − 1)

[
Δ

(
k − 3 + 2k−1

)
pf + Δ(1 − k−1)

+ Δn (k − 1)
]

+
αΔ
N

(
p2

f − pf

) (
k − 3 + 2k−1

)
.

(20)

Fig. 1. Evolutionary dynamics under different parameter setups. Parameter
setup 1: uf f (1) = 0.4, uf f (2) = 0.2, uf n = 0.6, uf n (2) = 0.4, un n (1) =
0.3, un n (2) = 0.5; Parameter setup 2: uf f (1) = 0.4, uf f (2) = 0.2, uf n =
0.3, uf n (2) = 0.5, un n (1) = 0.6, un n (2) = 0.4; uf f (1) = 0.6, uf f (2) =
0.4, uf n = 0.3, uf n (2) = 0.5, un n (1) = 0.4, un n (2) = 0.2. In every
setup, we have q(1) = q(2) = 0.5, N = 1000, k = 20. The ESSs match the
assertions in Theorem 2: some dynamics decrease to 0 (subfigure b) or increase
to 1 (subfigure c) while some will stay at some stable state between 0 and 1
(subfigure a). (a) Parameter setup 1. (b) Parameter setup 2. (c) Parameter setup 3.

Since J is an upper triangular matrix and ∂ ṗf (i)
∂pf (i) is always

negative, the condition for stability is simply ∂ ˙pf

∂pf
< 0. Substi-

tuting the three equilibrium points in Eq. (18) into it yields the
conditions for the three possible ESSs given in Eq. (16), where
we make use of the fact that the node degree k is generally much
larger than 1 in practice. �

The ESS results Eq. (16) in Theorem 2 can be interpreted eas-
ily as follows. If uf f is large enough (larger than uf n ), i.e., on av-
erage the players favor forwarding the information, then p∗f = 1
is an ESS of the network. The ESS p∗f = 0 can be similarly
interpreted. On the contrary, if neither uf f nor unn is not large
enough (both smaller than uf n ), an ESS between 0 and 1 is in
presence. As shown in Fig. 1, for different parameter setups, we
have different evolutionary dynamics. Some dynamics decrease
to 0 (Fig. 1-b) or increase to 1 (Fig. 1-c) while some will stay at
some stable state between 0 and 1 (Fig. 1-a). The corresponding
ESSs are correctly predicted by Theorem 2. We observe that
the population dynamics pf (i) always vary quickly at first and
gradually slow down the varying speed until finally converge
to a stable state. This can be explained by Eq. (15). As pf gets
closer and closer to the ESS (be it 0, 1, or some number between
0 and 1), the absolute value of R.H.S. of Eq. (15) gets smaller
and hence the varying speed of pf slows down until it finally
equals to the ESS. Meanwhile, when pf is stable, according to
Eq. (14), all the type specific population dynamics pf (i) will
also converge to their respective ESSs.

IV. THEORETICAL ANALYSIS FOR KNOWN USER TYPE MODEL

In this section, the evolutionary dynamics for the known user
type model are derived. It is observed that the influence states
(which we will define later) always keep track of the corre-
sponding population states, which can be exploited to further
simplify the dynamics.

Since a user’s type and strategy affect its neighbors’ pay-
offs, they may also influence the neighbors’ strategies. Thus,
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the edge information is also required to fully characterize the
network state. Specifically, we define network edge states as
pf f (i, j), pf n (i, j), pnn (i, j), where pf f (i, j) (pnn (i, j)) de-
notes the proportion of edges connecting a type-i user with
strategy Sf (Sn ) and a type-j user with strategy Sf (Sn ), and
pf n (i, j) denotes the proportion of edges connecting a type-i
user with strategy Sf and a type-j user with strategy Sn . More-
over, we denote pf |f (i, j) the percentage of type-i neighbors
adopting strategy Sf , given a center type-j user using strategy
Sf . Similarly, we can define pf |n (i, j), pn |f (i, j), pn |n (i, j). In
summary, we have population states (e.g. pf (i)), relationship
states (e.g. pf f (i, j)) and influence states (e.g. pf |f (i, j)) as the
network states. Because these states are related to each other,
we only need a subset of them to characterize the entire net-
work state. For example, we can use pf (i), 1 ≤ i ≤ M and
pf f (i, j), 1 ≤ i ≤ j ≤ M to compute all the other states.

Consider a type-i user using strategy Sf . Rigorously speak-
ing, kf (j) and kn (j) are random variables with expectation
kq(j)pf |f (j, i) and kq(j)pn |f (j, i) respectively. Since in real
world social networks, k is relatively large (more than 100 for
typical online social networks such as Facebook) and a small
number of types (i.e., M ) is enough to capture the user be-
haviors, we approximate kf (j), kn (j) with their expectations
for ease of analysis in the following. This approximation can
be justified as follows. Recall the Chernoff bound: Suppose
X1 ,X2 , . . . , Xn are independent random variables taking val-
ues in [0, 1], X =

∑n
i=1 Xi and μ = E(X). Then, for any

0 < δ < 1, we have: (i) P (X ≥ (1 + δ)μ) ≤ exp(− δ 2 μ
3 ); (ii)

P (X ≤ (1 − δ)μ) ≤ exp(− δ 2 μ
2 ). In our case, for a Type-i user

with strategy Sf and k neighbors, each one of its neighbors is
a Type-j user with strategy Sf with probability q(j)pf |f (j, i)
independently. Let the random variable Xl(l = 1, . . . , k) be 1 if
the l-th neighbor is a Type-j with strategySf and be 0 otherwise.
Thus, Xl’s are i.i.d. random variables. Denote X =

∑k
l=1 Xi

the total number of Type-j neighbors with strategy Sf , which
is kf (j) in our context. Because M is small, usually each
q(j), j = 1, 2, . . . ,M (altogether sum to 1) is not too small.
Furthermore k is large and pf |f (j, i) is generally not too small.
Hence, μ = E(X) = kq(j)pf |f (j, i) is large. Applying the mul-
tiplicative form of Chernoff bound, we can assert that X is close
to its expectation with high probability. Thus, it is reasonable to
replace kf (j) with its expectation. Similar arguments hold for
kn (j). With this approximation, Eq. (4) becomes

πf (i) = 1 − α + αk
M∑

j=1

q(j)[pf |f (j, i)uf f (i, j)

+ pn |f (j, i)uf n (i, j)]. (21)

Similarly, if a type-i user is adopting strategy Sn , its fitness
Eq. (5) can be approximated as:

πn (i) = 1 − α + αk

M∑
j=1

q(j)[pf |n (j, i)unf (i, j)

+ pn |n (j, i)unn (i, j)]. (22)

Now, consider a type-i center user using strategy Sf , who is
selected to update its strategy. On average, there are kpf |f (i, i)
type-i neighbors using strategy Sf and kpn |f (i, i) type-i neigh-
bors using strategy Sn . Thereby, according to the DB update
rule, the probability that the center user will update its strategy
to be Sn is:

Pf→n (i) =
πn (i)pn |f (i, i)

πf (i)pf |f (i, i) + πn (i)pn |f (i, i)
. (23)

The probability that a type-i user with strategy Sf is chosen
to update its strategy is q(i)pf (i). Hence, we have:

P

(
δpf (i) = − 1

Nq(i)

)
= q(i)pf (i)E[Pf→n (i)]. (24)

Similarly, we can analyze the situation where a type-i user
with strategySn is selected to update its strategy. And we obtain:

Pn→f (i) =
πf (i)pf |n (i, i)

pf |n (i, i)πf (i) + pn |n (i, i)πn (i)
.

(25)

P

(
δpf (i) =

1
Nq(i)

)
= q(i)pn (i)E[Pn→f (i)]. (26)

We know that:

ṗf (i) = − 1
Nq(i)

P

(
δpf (i) = − 1

Nq(i)

)

+
1

Nq(i)
P

(
δpf (i) =

1
Nq(i)

)
. (27)

For ease of notation, we temporarily denote that a = k∑M
j=1 q(j)[pf |n (j, i)unf (i, j) + pn |n (j, i)unn (i, j)] and b = k∑M
j=1 q(j)[pf |f (j, i)uf f (i, j) + pn |f (j, i)uf n (i, j)]. Thus, the

first term in Eq. (27) can be rewritten as:

− 1
Nq(i)

P

(
δpf (i) = − 1

Nq(i)

)
(28)

= −
pf (i)pn |f (i, i)

N
(29)

× E

{
1 + α(a − 1)

1 + α[(b − 1)pf |f (i, i) + (a − 1)pn |f (i, i)]

}
(30)

= −
pf (i)pn |f (i, i)

N
E[1 + pf |f (i, i)(a − b)α] + O(α2), (31)

where we make use of the fact that pf |f (i, i) + pn |f (i, i) = 1,
which can be easily seen from the definition. The expectation
is taken over k. Similarly, we can derive the second term in
Eq. (27) as:

1
Nq(i)

P

(
δpf (i) =

1
Nq(i)

)

=
pn (i)pf |n (i, i)

N
E[1 + αpn |n (i, i)(b − a)] + O(α2). (32)
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Noticing the fact that pf (i)pn |f (i, i) = pn (i)pf |n (i, i),
we obtain:

ṗf (i) ≈ αk

N
pf (i)pn |f (i, i)(pn |n (i, i) + pf |f (i, i))

×
M∑

j=1

q(j)[pf |f (j, i)uf f (i, j) + pn |f (j, i)uf n (i, j)

− pf |n (j, i)unf (i, j) − pn |n (j, i)unn (i, j)], (33)

where k denotes the average degree of the network and we omit
the O(α2) terms. Next, we compute the dynamics of pf f (i, l) (or
equivalently, pf |f (i, l)). To change the value of pf f (i, l), either
a type-i user or a type-l user changes its strategy. If i �= l, there
are totally four situations: i) a type-i user changes its strategy
from Sf to Sn ; ii) a type-i user changes its strategy from Sn to
Sf ; iii) a type-l user changes its strategy from Sf to Sn ; iv) a
type-l user changes its strategy from Sn to Sf . They correspond
to the following four equations:

P

(
δpf f (i, l) = − 2

N
q(l)pf |f (l, i)

)

= q(i)pf (i)Pf→n (i) ≈ q(i)pf (i)pn |f (i, i),

P

(
δpf f (i, l) = − 2

N
q(i)pf |f (i, l)

)

= q(l)pf (l)Pf→n (l) ≈ q(l)pf (l)pn |f (l, l),

P

(
δpf f (i, l) =

2
N

q(l)pf |n (l, i)
)

= q(i)pn (i)Pn→f (i) ≈ q(i)pn (i)pf |n (i, i),

P

(
δpf f (i, l) =

2
N

q(i)pf |n (i, l)
)

= q(l)pn (l)Pn→f (l) ≈ q(l)pn (l)pf |n (l, l), (34)

where in the last step we omit O(α) terms, i.e., treating α as 0.
The reason that we omit O(α) terms instead of O(α2) terms as
before is that we have nonzero O(1) terms here. Combining the
four equations in Eq. (34), we get (for i �= l):

ṗf f (i, l)

= − 2
N

q(l)pf |f (l, i)P
(

δpf f (i, l) = − 2
N

q(l)pf |f (l, i)
)

− 2
N

q(i)pf |f (i, l)P
(

δpf f (i, l) = − 2
N

q(i)pf |f (i, l)
)

+
2
N

q(l)pf |n (l, i)P
(

δpf f (i, l) =
2
N

q(l)pf |n (l, i)
)

+
2
N

q(i)pf |n (i, l)P
(

δpf f (i, l) =
2
N

q(i)pf |n (i, l)
)

=
2
N

q(i)q(l)pf (i)pn |f (i, i)(pf |n (l, i) − pf |f (l, i))

+
2
N

q(i)q(l)pf (l)pn |f (l, l)(pf |n (i, l) − pf |f (i, l))

=
2
N

q(i)q(l)pf (i)(1 − pf |f (i, i))

×
[

pf (l)
pn (i)

(1 − pf |f (i, l)) − pf |f (l, i)
]

+
2
N

q(i)q(l)pf (l)(1 − pf |f (l, l))

×
[
pf (i)
pn (l)

(1 − pf |f (l, i)) − pf |f (i, l)
]

, (35)

where we have used the equalities pn |f (i, i) = 1 − pf |f (i, i)
and pf |n (l, i) = pf (l)

pn (i) (1 − pf |f (i, l)) in the last step so as to
substitute all the influence states by pf |f (·, ·). Similarly we can
derive the dynamics of pf f (i, i) as follows:

ṗf f (i, i) =
2

Npn (i)
q2(i)pf (i)(1 − pf |f (i, i))(pf (i)

− pf |f (i, i)). (36)

Recall Eq. (33), where we note that the population dynam-
ics pf (·) evolves at the speed of O(α). From Eq. (35) and
Eq. (36), we observe that the relationship dynamics pf f (·, ·)
(hence the influence dynamics pf |f (·, ·)) evolve at the speed
of O(1). Due to the assumption that α is very small, the rela-
tionship dynamics and influence dynamics change at a much
faster speed than population dynamics do. This implies that
we can select a time window with an appropriate length such
that the population dynamics pf (·) basically remain unchanged
while the relationship dynamics pf f (·, ·) and influence dynam-
ics pf |f (·, ·) vary a lot. In the following, we focus on such a time
period in which the population dynamics pf (·) remains a con-
stant and only relationship dynamics and influence dynamics
vary with time. Taking derivative w.r.t time on both sides of the
equation pf f (i, l) = 2q(i)q(l)pf (i)pf |f (l, i), i �= l, we obtain:

ṗf f (i, l) = 2q(i)q(l)pf (i)ṗf |f (l, i). (37)

Combining Eq. (35) and Eq. (37) yields the dynamics of
pf |f (l, i), l �= i:

ṗf |f (l, i)

=
1
N

(1 − pf |f (i, i))
[

pf (l)
pn (i)

(1 − pf |f (i, l)) − pf |f (l, i)
]

+
1
N

(1 − pf |f (l, l))

×
[
pf (l)
pn (l)

(1 − pf |f (l, i)) − pf (l)
pf (i)

pf |f (i, l)
]

. (38)
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Leveraging the equation pf (i)pf |f (l, i) = pf (l)pf |f (i, l), we
can further simplify Eq. (38) as follows:

ṗf |f (l, i)

=
1
N

(pf (l) − pf |f (l, i))

×
[
1 − pf |f (i, i)

pn (i)
+

1 − pf |f (l, l)
pn (l)

]
, ∀l �= i. (39)

On the other hand, if l = i, then ṗf f (i, i) =
q2(i)pf (i)ṗf |f (i, i). Thus, from Eq. (36), we obtain:

ṗf |f (i, i) =
2

Npn (i)
(1 − pf |f (i, i))(pf (i) − pf |f (i, i)),∀i.

(40)
Since Eq. (40) is equivalent to letting i = l in Eq. (39),

we know that Eq. (39) applies to any i, l (not necessarily un-
equal). Recall that in Eq. (39), we treat the population dynamics
pf (i), pn (i) as constants. In other words, we are considering a
small time period where the population dynamics do not vary
with time while the influence dynamics pf |f (·, ·) vary accord-
ing to the deduced dynamics Eq. (39). Next, we show that in
this small time period, the influence dynamics pf |f (·, ·) will
converge to the corresponding population dynamics pf (·).

We first solve the ODE Eq. (40) with single variable pf |f (i, i).
Without loss of generality, we assume the initial value of
pf |f (i, i) is less than pf (i). Thus, by solving Eq. (40), we have:

pf |f (i, i) = pf (i) − pn (i)
e

4 t
N +Ci − 1

, (41)

where Ci := ln(1−pf |f (i, i)|t=0) − ln(pf (i)−pf |f (i, i)|t=0)
is a constant. From Eq. (41), we see that limt→+∞ pf |f (i, i) =
pf (i). Substituting Eq. (41) into Eq. (39), we obtain:

ṗf |f (l, i)

=
1
N

(pf (l) − pf |f (l, i))

[
e

4 t
N +Ci

e
4 t
N +Ci − 1

+
e

4 t
N +Cl

e
4 t
N +Cl − 1

]
.

(42)

Hence, by solving for pf |f (l, i), we have:

ln
∣∣∣∣pf (l) − pf |f (l, i)

∣∣∣∣ − ln
∣∣∣∣pf (l) − pf |f (l, i)

∣∣
t=0

∣∣∣∣ +
2t

N

= − 1
N

∫ t

0

(
1

e
4 σ
N +Ci − 1

+
1

e
4 σ
N +Cl − 1

)
dσ. (43)

The R.H.S. of Eq. (43) is clearly a bounded quantity as
t goes to infinity. Hence, from the L.H.S., we observe that
ln

∣∣pf (l) − pf |f (l, i)
∣∣ → −∞ as t → +∞. In other words,

limt→+∞ pf |f (l, i) = pf (l),∀l �= i. We summarize the results
obtained for the evolutionary dynamics in the known user type
model as the following theorem, Theorem 3.

Theorem 3: In the known user type model, the population
dynamics pf (i) are given in Eq. (33) while the relationship
dynamics pf f (i, l) are given in Eq. (35) (for i �= l) and Eq. (36)
(for i = l).

The population dynamics evolve at a much slower speed than
the influence dynamics and the relationship dynamics. In a small

time period such that the population states pf (·) remain con-
stants, the influence dynamics pf |f (l, i) are given by Eq. (39)
(for any l, i). In such a small time period, each influence state
pf |f (l, i) will converge to the corresponding fixed population
state pf (l).

According to Theorem 3, since the influence state will keep
track of the corresponding population state, we can make the ap-
proximation that pf |f (l, i) = pf (l),∀l, i. Thus, the population
dynamics can be further simplified into the following form.

Corollary 1: In the known user type model, the popula-
tion dynamics pf (i) for each type i = 1, 2, are (approximately)
given by:

ṗf (i) =
αk

N
pf (i)pn (i)

M∑
j=1

q(j)[pf (j)(uf f (i, j)

− unf (i, j)) + pn (j)(uf n (i, j) − unn (i, j))]. (44)

V. EXPERIMENTS

In this section, we implement synthetic data as well as real
data experiments to verify the theoretical results on information
diffusion dynamics and ESSs. First, using synthetic data, we
show that the simulations match the theoretical findings well.
Then, using real data, we find that the theoretical dynamics also
fit the real-world information diffusion dynamics well and can
even make predictions for the future diffusion dynamics.

A. Synthetic Data Experiments

In this subsection, we conduct simulations to validate the the-
oretical evolutionary dynamics and ESSs. We set M = 2, i.e.,
the network consists of two types of users. We synthesize a con-
stant degree network, i.e., all the nodes have the same degree (k
is a deterministic constant). We first consider the unknown user
type model. The payoff parameters of the two types of play-
ers are set as following: uf f (1) = 0.4, uf f (2) = 0.2, uf n (1) =
0.6, uf n (2) = 0.4, unn (1) = 0.3, unn (2) = 0.5. Other param-
eters are N = 1000, k = 20, q(1) = q(2) = 0.5, α = 0.05. The
result is reported in Fig 2. The theoretical dynamics match
the simulation dynamics well and the theoretical ESSs are near
the simulated ESSs with average relative ESS error2 3.54%. If
we model the heterogeneous network as a homogeneous one
like in [26], [27], i.e., all the payoffs are set to be the average
over all types, then the average relative ESS error is 6.83%, in-
dicating the advantage of the proposed heterogeneous model. In
addition, we simulate the evolutionary dynamics under another
utility parameter setup in Fig. 3 and observe that the simulated
dynamics still match well with the theoretical ones. Further-
more, to manifest the extreme ESSs highlighted in Theorem 2,
i.e., ESSs of 0 and 1, we alter the utility parameters to simulate
and the results are shown in Fig. 4, where population dynamics

2The average relative ESS error is calculated as follows. We denote these two
simulated ESSs (for two different types, respectively) as x1 and x2 . We denote
the two theoretical ESSs as y1 and y2 . Then the average relative ESS error is
1
2 (|y1 − x1 |/x1 + |y2 − x2 |/x2 ). If we use homogeneous network to model,
we only have one global theoretical ESS z. In such a case, the average relative
ESS error is computed as 1

2 (|z − x1 |/x1 + |z − x2 |/x2 ).
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Fig. 2. Simulation results of the evolution dynamics for the unknown user type
model. The theoretical dynamics fit the simulation dynamics well and the ESSs
are predicted accurately. The average relative ESS error of the heterogeneous
model is 3.54%. If we model the entire network as a homogeneous one as in
[26], [27], the average relative ESS error becomes 6.83%, indicating the advan-
tage of the heterogeneous model in this paper.

Fig. 3. Simulation results of evolution dynamics for the unknown user type
model with another utility parameter setup: uf f (1) = 0.5, uf f (2) = 0.1,
uf n (1) = 0.8, uf n (2) = 0.5, un n (1) = 0.1, un n (2) = 0.3. We observe that
the simulated dynamics still match well with the theoretical ones.

Fig. 4. Simulations for unknown user type model: population dynamics wit
ESSs of 0 and 1, respectively. In (a), the utility parameters are: uf f (1) = 0.4,
uf f (2) = 0.2, uf n (1) = 0.3, uf n (2) = 0.5, un n (1) = 0.6, un n (2) = 0.4.
In (b), the utility parameters are: uf f (1) = 0.6, uf f (2) = 0.4, uf n (1) = 0.3,
uf n (2) = 0.5, un n (1) = 0.4, un n (2) = 0.2.

Fig. 5. More simulations of the evolutionary dynamics for the unknown
user type model with different networks. (a) Erdos-Renyi network.
(b) Barabasi-Albert network.

Fig. 6. Simulation results for unknown user type model with three types
of users. We observe that the theoretical dynamics still match well with the
simulated ones.

with ESSs of 0 and 1 are exhibited, respectively. We observe
that the theoretical dynamics again match well with the simu-
lated ones. Simulation results for Erdos-Renyi network [36] and
Barabasi-Albert network [37] with the same parameter setup are
shown in Fig. 5-(a), (b) respectively. The population dynamics
is very similar to that of the constant degree network, and the
theoretical dynamics still fit the simulated one well. In Fig. 6,
we simulate the information diffusion of a heterogeneous net-
work with three types of users. We observe that the theoretical
dynamics still match well with the simulated ones. All of the
above results demonstrate the effectiveness and accuracy of the
proposed heterogeneous network theory.

Next, we implement a simulation for the known user type
model with payoff parameters randomly chosen as follows:

uf f =

[
0.5882 0.0116

0.8688 0.1590

]
, uf n =

[
0.9619 0.7370

0.5595 0.7180

]
,

unf =

[
0.9339 0.9864

0.3288 0.4593

]
, unn =

[
0.2479 0.3385

0.6570 0.2437

]
.

(45)

The other parameters are N = 1000, k = 20, q(1) =
0.5518, q(2) = 0.4482, α = 0.05. The simulated and theoret-
ical population dynamics are shown in Fig. 7, where the known
user type model based theoretical dynamics and the simulated
dynamics match well. In Fig. 7, we also plot the evolutionary
dynamics given by the theory of the unknown user type model.
This does not match the simulated evolutionary dynamics under
the known user type model, indicating the necessity of the theory
of the known user type model. Simulations under two different
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Fig. 7. Simulation of evolutionary dynamics: the known user type model.

Fig. 8. Known user type model: more simulations of the evolutionary dynam-
ics with different parameter setups. (a) Parameter setup 1. (b) Parameter setup 2.

parameter setups are shown in Fig. 8, where the theoretical dy-
namics and the simulated dynamics match. In Fig. 8-(a), the
utility parameters are set as follows:

uf f =

[
0.4228 0.1052

0.9184 0.5182

]
, uf n =

[
0.9641 0.9865

0.3008 0.7058

]
,

unf =

[
0.7453 0.7104

0.8943 0.9505

]
, unn =

[
0.3199 0.6119

0.3162 0.4556

]
.

(46)

And in Fig. 8-(b), the utility parameters are set as follows:

uf f =

[
0.6673 0.1855

0.0703 0.2549

]
, uf n =

[
0.7964 0.1144

0.9288 0.9262

]
,

unf =

[
0.7979 0.1071

0.8047 0.4854

]
, unn =

[
0.2721 0.7794

0.7564 0.0574

]
.

(47)

In Fig. 8-(b), we observe some oscillations of the simulated
dynamics. The reason may be that the number of parameters in
the known user type model is relatively large and the strategy
update rule is more complicated than the unknown user type
model, which may lead to unstable behaviors of the users.

B. Real Data Experiments

In this subsection, we use the Twitter hashtag dataset in [7]
to validate the theory. The dataset, comprising sequences of
adopters and timestamps for the observed hashtags, is based on
sampled public tweets from March 24, 2012 to April 25, 2012.
To characterize the heterogeneity of the users, we classify the
users into two types. The classification is based on the users’

activity. Specifically, we compute the number of hashtags each
user has mentioned. Then, the top 10% users with highest num-
ber of hashtag mentioning are categorized as Type-1 users while
the remaining users are categorized as Type-2 ones. After clas-
sification, the number of type-1 users is 62757 while that of
type-2 users is 533262. We set k to be 100, a typical number
of neighbors/friends in social networks. Since the dataset does
not contain the network structure of the users, we postulate the
network to be a constant degree network where each user has
the same degree k = 100. The selection strength α is not im-
portant in the curve fitting/prediction process, since it can be
absorbed into the payoff parameters as it always multiplies with
all the payoff parameters. In our dataset, the physical unit of
time indices is not specified. In the following experiments, we
choose appropriate time slot length so that (i) the data dynamics
are smooth (so the time slot length cannot be too small), (ii) the
data dynamics vary continuously and can correctly reflect the
variation of the diffusion dynamics of real data (so the time slot
length cannot be too large).

We first fit the theoretical dynamics for the unknown user
type model in Eq. (14) and Eq. (15) with the real data. We use
the real data to estimate the parameters (i.e., Δ(i) and Δn (i)) in
Eq. (14) and Eq. (15), and then calculate the theoretical dy-
namics based on the estimated parameters. We invoke the Mat-
lab function lsqcurvefit to implement the curve fitting,
or in other words, to estimate the payoff parameters. The pa-
rameter estimation process is built inside this MATLAB func-
tion. Given data and a function to be fit, lsqcurvefit
selects the optimal parameters in order to minimize the
squared fitting error. The fitting results for four popular hash-
tags are reported in Fig. 9. Type-1 users are more active
than type-2 users since the population state pf (1) is always
larger than pf (2). We observe that the proposed theoretical
dynamics fit the real-world information diffusion dynamics
well, indicating the effectiveness of taking the heterogeneous
users’ interactions and decision making into account. In the
curve fitting of the dynamics of the hashtag #Thoughts-
DuringSchool, the utility parameters are estimated to sat-
isfy: uf f (1) − uf n (1) = −3.32, unn (1) − uf n (1) = −0.578,
uf f (2) − uf n (2) = −0.64, unn (2) − uf n (2) = −0.004. From
these relationships, we see that for real-world information diffu-
sion data, the estimated utility parameters satisfy the condition
ūf n > max{ūf f , ūnn}. From Theorem 2, we see that this con-
dition leads to an ESS between 0 and 1, which is clearly the
case in most real-world applications. In the previous subsection
on simulations, the utility parameters are also chosen in compli-
ance with this condition (e.g., Fig. 3 and Fig. 4) and are hence
justified by the real data. Furthermore, we see that unn (1) is
much smaller than uf n (1) while unn (2) is basically the same
as uf n (2). To some extent, this explains why Type-1 users are
more active than Type-2 users. Furthermore, we fit two less pop-
ular hashtags #ididnttextback and #imhappywhen (with peak
mention counts about 1/6 of that of the hashtag #ThougtsDur-
ingSchool). The results are reported in Fig. 10 from which we
observe that the fitting is still accurate though the data become
more noisy as these two hashtags are less popular, indicating
the robustness of our approach.



606 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 2, NO. 4, DECEMBER 2016

Fig. 9. Fitting results for the unknown user type model. Type-1 users are always more active than type-2 users because pf (1) is always larger than pf (2). The
proposed theoretical dynamics fit the information diffusion dynamics of the real-world heterogeneous social networks well, which validates the effectiveness of
considering the individuals’ interactions. The theory suggests that the heterogeneous behavior dynamics of online users are consequences of their heterogeneous
payoff structures. (a) #ThoughtsDuringSchool. (b) #WhenIwasLittle. (c) #DearOOMF. (d) #YouGetMajorPointsIf.

Fig. 10. Fitting results for the unknown user type model. Two less popular hashtags, #ididnttextback and #imhappywhen, are fitted. The fitting is still accurate
though the data become more noisy as these two hashtags are less popular. (a) #ididnttextback. (b) #imhappywhen.

Fig. 11. Predictions. The heterogeneous game-theoretic model can predict future diffusion dynamics. The predictions made by the heterogeneous model
outperforms that of the homogeneous one in [27]. (a) Using data up to time 22. (b) Using data up to time 41.
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Fig. 12. Predictions for Twitter hashtag #ThoughtsDuringSchool. (a) Using data up to time 26. (b) Using data up to time 28. (c) Using data up to time 30.

Fig. 13. Predictions for Twitter hashtag #YouGetMajorPointsIf. (a) Using data up to time 36. (b) Using data up to time 38. (c) Using data up to time 40.

Fig. 14. Prediction results of [40] and [3]. Comparisons subfigures (a)(b) with Fig. 12-(b) and subfigures (c)(d) with Fig. 13-(b) highlight the advantage of the
proposed game-theoretic approach. In particular, the results in subfigures (b)(c)(d) fail to give meaningful predictions. (a) [40], #ThoughtsDuringSchool, using data
up to time 28. (b) [3], #ThoughtsDuringSchool, using data up to time 28. (c) [40], #YouGetMajorPointsIf, using data up to time 38. (d) [3], #YouGetMajorPointsIf,
using data up to time 38.

In addition, we conduct experiments on the prediction of fu-
ture diffusion dynamics. Specifically, we only use part of the
data to train the payoff parameters in Eqs. (14), Eq. (15), and
use the trained parameters to predict future diffusion dynamics.
To compare with the homogeneous model in [26], [27], we also
model the heterogeneous network as a homogeneous one and use
the homogeneous network theory in [27] to make predictions,
which serve as benchmarks. The prediction results for one popu-
lar hashtag #WhenIwasLittle are shown in Fig. 11. Two different

training data lengths are investigated. The heterogeneous game-
theoretic model can predict the future diffusion dynamics well.
In contrast, by modeling the network as a homogeneous one,
the prediction does not match the real data well, especially for
type-1 users. The reason is that the prediction made by the homo-
geneous model can be thought of as a prediction of the overall
diffusion dynamics averaged over the two types. But, type-1
users are active minority (10% of all the users). So, its diffusion
dynamic is far from the average one and is poorly predicted.
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Fig. 15. Fitting results of the known user type model for the four popular Twitter hashtags. (a) #ThoughtsDuringSchool. (b) #WhenIwasLittle. (c) #DearOOMF.
(d) #YouGetMajorPointsIf.

Fig. 16. Known user type model: prediction results for various Twitter hashtags. The prediction performance of the known user type model is not stable.
Sometimes, it is accurate (subfigures (a) and (b)) while sometimes not (subfigures (c) and (d)). (a) #ThoughtsDuringSchool. (b) #WhenIwasLittle. (c) #DearOOMF.
(d) #YouGetMajorPointsIf.

The prediction results of two other Twitter hashtags #Thoughts-
DuringSchool and #YouGetMajorPointsIf are shown in Fig. 12
and Fig. 13, respectively. For both hashtags, the prediction
performance of our heterogeneous model is good. In addition,
we perform predictions for future 10 time slots immediately

after the peak of the diffusion dynamics is observed for the 8
most popular hashtags in the dataset. The average relative er-
ror of the heterogeneous game model is 23% while that of the
homogeneous game model in [27] is 47%. Furthermore, predic-
tion results of the existing methods in [40] and [3] are reported in
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Fig. 14. Comparison with the corresponding prediction results
of the proposed approach in Fig. 12-(b) and Fig. 13-(b) demon-
strate the advantage of the proposed game-theoretic approach.

Lastly, we fit the theoretical dynamics of the known user type
model with the real data of the four popular Twitter hashtags.
As shown in Fig. 15, the theoretical dynamics fit the real data
well. However, the prediction performance of the known user
type model is not stable, as shown in Fig. 16. The reason may be
that the known user type model involves more parameters and
the observed data quality is not high enough to estimate them
accurately.

VI. DISCUSSION AND CONCLUSION

From the real data experiments, we see that sometimes the
known user type model cannot predict the future dynamics of
information diffusion well. We ascribe this to the quality of the
data, i.e., the time resolution of the data is not good enough
or equivalently the data is not smooth enough when we narrow
the time window, since the known user type model involves
more parameters than the unknown user type model and needs
better data to estimate all the parameters accurately. Another
reason is that unlike Facebook, in Twitter network (from which
the data are collected), users often follow celebrities rather than
acquaintances, which implies that Twitter users may not know
their friends’ types very well. Hence, the known user type model
may not fit the Twitter network well. But, in the corresponding
simulations, since the setup is just the known user type model,
the theoretical dynamics still match the simulated ones well,
demonstrating the theory itself is accurate.

Overall, we present an evolutionary game-theoretic frame-
work to analyze the information diffusion over the heteroge-
neous social networks. The theoretical results fit and predict the
information diffusion data generated by real-world social net-
works well, confirming the effectiveness of the heterogeneous
game-theoretic modeling approach. The derived evolutionary
dynamics can be absorbed to improve the state-of-art machine
learning based method in the literature of information diffusion.
More importantly, with a few parameters, our model gives a
game-theoretic interpretation to the mechanism of the individu-
als’ decision-making in the information diffusion process over
the heterogeneous social networks.
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