
0018-9286 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2020.2989266, IEEE
Transactions on Automatic Control

1

Distributed Newton’s Method for Network Cost Minimization
Xuanyu Cao and K. J. Ray Liu, Fellow, IEEE

Abstract—In this work, we examine a novel generic network cost
minimization problem, in which every node has a local decision vector
to optimize. Each node incurs a cost associated with its decision vector
while each link incurs a cost related to the decision vectors of its two end
nodes. All nodes collaborate to minimize the overall network cost. The
formulated network cost minimization problem has broad applications
in distributed signal processing and control, in which the notion of link
costs often arises. To solve this problem in a decentralized manner, we
develop a distributed variant of the Newton’s method, which possesses
faster convergence than alternative first order optimization methods such
as gradient descent and alternating direction method of multipliers. The
proposed method is based on an appropriate splitting of the Hessian
matrix and an approximation of its inverse, which is used to determine
the Newton step. Global linear convergence of the proposed algorithm
is established under several standard technical assumptions on the local
cost functions. Furthermore, analogous to classical centralized Newton’s
method, a quadratic convergence phase of the algorithm over a certain
time interval is identified. Finally, numerical simulations are conducted to
validate the effectiveness of the proposed algorithm and its superiority
over other first order methods, especially when the cost functions are
ill-conditioned. Complexity issues of the proposed distributed Newton’s
method and alternative first order methods are also discussed.

Index Terms—Decentralized optimization, Newton’s method, network
optimization, network cost minimization, linear convergence, quadratic
convergence

I. INTRODUCTION

The advancement of decentralized signal processing and control in
multi-agent systems relies on the development of various distributed
optimization methods. Multi-agent optimization problems arise in
many applications in networked systems such as adaptive signal
processing over networks [1], distributed estimation over sensor
networks [2], [3], and wireless communication networks [4], [5].
In these scenarios, data are inherently distributed over individual
nodes across the network. Centralized data processing relying on
some central entity suffers from prohibitively high communication
overhead and are vulnerable to link failures and network congestions.
Therefore, optimizing and processing data in a decentralized manner
with only local information exchanges between neighbors are more
favorable due to their robustness to failures, scalability to large
networks and efficiency in communications.

Owing to its importance, distributed optimization over networks
has been extensively studied in the literature. One major class
of distributed optimization problems is distributed network utility
maximization (NUM), in which each agent has some utility related
to its local decision variable. Agents cooperatively maximize the
total utilities of the entire network subject to some coupling re-
source constraints such as the link capacity constraints in the flow
scheduling problems of communication networks. Various optimiza-
tion decomposition techniques have been employed to solve NUM
in communication networks in a decentralized fashion and these
decompositions lead to elegant architectural modularity and layering
of communication systems [6]–[9]. In addition, Wei et al. propose
and analyze a distributed Newton’s method in [10], while the effect
of noisy information exchange has been studied in [11]. Recently, Niu

X. Cao is with the Coordinated Science Lab, University of Illinois at
Urbana-Champaign, IL. (email: xyc@illinois.edu)

K. J. R. Liu is with the Department of Electrical and Computer Engineering,
University of Maryland, College Park, MD. (email: kjrliu@umd.edu)

and Li present an asynchronous decentralized algorithm with pricing
interpretations for NUM [12].

Another category of distributed optimization problems more related
to this work is consensus optimization, in which all agents share
the same decision variables but have different local cost functions.
The goal of consensus optimization is to maximize the total costs of
the whole network collaboratively. To this end, Nedic and Ozdaglar
propose a decentralized subgradient method for consensus optimiza-
tion in their seminal work [13] while a dual averaging method is
presented in [14]. Convergence analysis of the decentralized gradient
descent algorithm for consensus optimization is provided in [15].
Moreover, consensus optimization has been studied by using the
distributed Nesterov gradient algorithm in [16] and the distributed
alternating direction method of multipliers (ADMM) in [17]. Later,
variants of the distributed ADMM have been proposed for consensus
optimization, including the quadratically approximated ADMM [18],
the inexact ADMM [19], the asynchronous ADMM [20]–[22], and
the proximal dual ADMM [23]. Moreover, second order optimization
algorithm based on Newton’s method is proposed for consensus
optimization in [24], and is further extended to an asynchronous
setting in [25]. Distributed quasi-Newton method (BFGS) has also
been proposed in [26], where second-order information is not readily
available. There, first-order information (gradient) is exploited to
approximate Newton’s method in a decentralized manner.

In the aforementioned works, only costs or utilities at nodes are
taken into account while the costs or gains of links are ignored.
For instance, in consensus optimization, the network cost, i.e., the
objective function, is only comprised of local cost at each node
while the effect of the link is not incorporated. Nevertheless, the
notion of link costs or link utilities may arise in many practical
signal processing and control problems. For example, in distributed
multitask adaptive learning [27], each node i aims at estimating
its own weight vector wi, which, unlike consensus optimization, is
different from other nodes’ weight vectors. In most cases, neighboring
nodes incline to have similar weight vectors. To incorporate this prior
information into the estimator, the objective function to be minimized
should include terms promoting proximity between neighbors such
as ‖wi −wj‖22, where i, j are connected by an edge. This term is
tantamount to a link cost of the link (i, j).

Despite its usefulness, the notion of link costs (or utilities) is not
well studied except for some specific applications such as multitask
adaptive estimation [27]. The generic form of network cost mini-
mization problem incorporating link costs has been examined in [28]
recently and a distributed (linearized) ADMM algorithm has been
proposed and analyzed. However, as observed in centralized setting
[29], first order optimization methods such as ADMM, gradient de-
scent and their variants often suffer from slow convergence, especially
when the problem data are ill-conditioned, i.e., when the objective
function has large condition number. We are thus motivated to invoke
Newton’s method for the network cost minimization problem in
which both node costs and link costs take place. Inspired by the recent
work on network Newton algorithm for decentralized consensus
optimization [24], we develop a distributed variant of Newton’s
method for the generic network cost minimization problem in this
paper. Since the formulated network cost minimization problem
encompasses consensus optimization as a special case, the proposed

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 30,2020 at 19:36:43 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2020.2989266, IEEE
Transactions on Automatic Control

2

distributed Newton’s method in this paper can be viewed as an
extension of the network Newton algorithm in [24] to optimization
problems with link costs. Our contributions are summarized in the
following.

• A distributed Newton’s method (Algorithm 1) is developed for a
novel generic network cost minimization problem, which takes
both node costs and link costs into consideration. The proposed
algorithm is based on appropriate splitting of the Hessian matrix
and a corresponding approximation of its inverse so that the
computation of the Newton step can be distributed to each node
in parallel.

• Performance analysis of the proposed distributed Newton’s
method is presented. In particular, global linear convergence of
the algorithm is guaranteed under some standard assumptions
on the local cost functions (Theorem 1). Moreover, analogous
to the classical centralized Newton’s method [29], a quadratic
convergence phase of the algorithm over a certain time interval
is identified (Theorem 2).

• Numerical experiments on quadratic programming are imple-
mented to corroborate the effectiveness of the proposed algo-
rithm, which outperforms alternative first order optimization
methods (namely, the distributed ADMM and the distributed
gradient descent) significantly in terms of both convergence time
and number of per-node information exchanges. Impact of the
condition number of the cost functions and the network topology
is also investigated empirically through simulations.

The key difference between this paper and existing literature is the
joint optimization of the general node/link cost functions, which
necessitate new analysis of Newton-type algorithms. We note that the
matrix splitting based Newton-type methods have been proposed to
solve different problems in prior works, e.g., [10] for NUM, [30] for
network flow optimization, [24] for consensus optimization. Yet none
of these existing works considers the joint optimization of generic
node/link cost functions, which are of interest in this paper. The
organization of the rest of this paper is as follows. In Section II,
the network cost minimization problem is formally formulated and
a distributed Newton’s method is developed to solve it. Convergence
analysis of the proposed algorithm is conducted in Section III while
numerical results are presented in Section IV. Complexity issues
of the proposed algorithm and alternative first order methods are
discussed in Section V and we conclude this work in Section VI.

Notations: Denote {1, 2, ..., n} as [n]. ‖x‖2 means the Euclidean
norm of vector x while ‖A‖2 means the spectral norm (maximum
singular value) of matrix A. ρ(A) is the spectral radius of A ∈
Rn×n, i.e., ρ(A) = maxi∈[n] |λi(A)|, where λi(A)’s are the eigen-
values of A. Denote the sets of n× n symmetric matrices, positive
semidefinite matrices and positive definite matrices as Sn, Sn+ and
Sn++, respectively. For two symmetric matrices A,B ∈ Sn, A � B
means B−A is positive semidefinite. For a twice differentiable
function φ : Ra × Rb 7→ R and x ∈ Ra,y ∈ Rb, we define matrix
∇2

x,yφ(x,y) ∈ Ra×b according to
[
∇2

x,yφ(x,y)
]
ij

= ∂2φ(x,y)
∂xi∂yj

and matrix ∇2
y,xφ(x,y) ∈ Rb×a according to

[
∇2

y,xφ(x,y)
]
ij

=
∂2φ(x,y)
∂yi∂xj

. Thus, we have ∇2
x,yφ(x,y) = ∇2

y,xφ(x,y)T. Define

∇2
xφ(x,y) ∈ Ra×a as

[
∇2

xφ(x,y)
]
ij

= ∂2φ(x,y)
∂xi∂xj

. Analogous

definition applies to ∇2
yφ(x,y). Define ∇2φ(x,y) ∈ R(a+b)×(a+b)

to be the complete Hessian matrix with respect to the joint vector
[xT,yT]T:

∇2φ(x,y) =

[
∇2

xφ(x,y) ∇2
x,yφ(x,y)

∇2
y,xφ(x,y) ∇2

yφ(x,y)

]
. (1)

II. PROBLEM FORMULATION AND ALGORITHM DEVELOPMENT

In this section, the network cost minimization problem is for-
mulated formally and its applications are discussed. Afterwards, by
appropriate splitting and approximation of the Hessian matrix of
the objective function, we develop a distributed variant of Newton’s
method for the formulated network cost minimization problem.

A. Problem Formulation

Consider a network of n nodes. Assume the network is a simple
graph, i.e., the network is undirected with no self-loop and there is at
most one edge between any pair of nodes. Denote the set of neighbors
of node i (those who are linked with node i with an edge) as Ωi.
The network can be either connected or disconnected (there does not
necessarily exist a path connecting every pair of nodes). Each node
i has a p-dimensional local decision variable xi ∈ Rp. Given xi, the
cost of node i is fi(xi), where fi is the node cost function of node i.
Furthermore, for two linked nodes i and j and their decision variables
xi and xj , there is a cost of gij(xi,xj) associated with the link (i, j),
where gij is the link cost function of the link (i, j). The goal of the
network is to solve the following network cost minimization problem
in a decentralized manner:

Minimize
n∑
i=1

fi(xi) +

n∑
i=1

∑
j∈Ωi

gij(xi,xj). (2)

We note that the consensus optimization problems in [13]–[24], [31]
are special cases of the network cost minimization problem (2) here.
In fact, by setting the link costs gij(xi,xj) to be the weighted dis-
tance between xi and xj and letting the weights of link costs go to in-
finity, we recover the consensus constraints provided that the network
is connected. Additionally, in [24], [25], the consensus optimization
problem is transformed into min

x
α
∑n
i=1 fi(xi) + 1

2
xT(I − Z)x,

where α is some positive constant; x is the concatenation of all
xi’s; and Z is the block weight matrix specifying the combination
weights of neighbors. The second term will enforce consensus and the
parameter α can adjust the consensus level. A prominent difference
between this problem and problem (2) is that the second term of
the former problem is quadratic with a particular coefficient matrix
structure (identity minus block weight matrix) to enforce consensus.
In contrast, the link cost functions gij’s in problem (2) can be general
as long as they satisfy the standard assumptions to be specified later.
Further, an average consensus based distributed Newton’s method
has been proposed in [32] to solve consensus optimization problems
with asynchronous and lossy communications. The approach in [32]
is tailored to consensus optimization and cannot be readily applied to
the network cost minimization problem (2) in this paper. Instead, we
take an alternative approach and approximate the Newton step in a
distributed manner by computing a truncation of the Taylor expansion
of the inverse Hessian matrix. The problem formulation (2) has broad
applications, among which we name two in the following.
• In distributed estimation over (sensor) networks, each node i has

a local unknown vector xi to be estimated. The cost at node i,
i.e., fi(xi), may be some squared error or more generally the
negative log-likelihood with respect to the local data observed by
node i. The link cost gij(xi,xj) for a link (i, j) can be used to
enforce proximity between neighboring nodes, e.g., ‖xi−xj‖22
in multitask adaptive networks in [27].

• In resource allocation over networks, xi corresponds to some
resources consumed by node i and the node cost fi(xi) is the
negative of node i’s utility. The link cost gij(xi,xj) for a link
(i, j) may quantify the negative effect of the consumption of the
resources xi and xj . For instance, in wireless networks, xi may
be the transmission power of node i and two nodes are linked if

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 30,2020 at 19:36:43 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2020.2989266, IEEE
Transactions on Automatic Control

3

they are within the wireless interference range. In such a case,
the link cost gij(xi,xj) for a link (i, j) represents the cost
incurred by mutual interference in wireless communications.

Recently, a distributed linearized ADMM algorithm has been pro-
posed to solve the network cost minimization problem (2) in a decen-
tralized and computationally efficient manner [28]. We note that first
order methods such as variants of ADMM and subgradient methods
generally have slower convergence than second order methods (e.g.,
Newton’s method or quasi-Newton methods) do, especially when the
objective function is ill-conditioned [29]. Motivated by this fact and
inspired by the recent work [24] on network Newton algorithm for
consensus optimization, we develop a distributed variant of Newton’s
method for the generic network cost minimization problem (2),
which takes link costs into account and encompasses consensus
optimization as a special case. Moreover, we make the following
two technical assumptions which are standard in the literature of
numerical optimization [29].

Assumption 1. There exist two positive constants 0 < m < M such
that, for any i ∈ [n], j ∈ Ωi and xi,xj ∈ Rp:

mI � ∇2fi(xi) �MI, (3)

mI � ∇2gij(xi,xj) �MI. (4)

Assumption 2. There exists a positive constant L > 0 such that the
Hessian matrices of all fi’s and gij’s are L-Lipschitz continuous,
i.e., for any i ∈ [n], j ∈ Ωi and xi,x

′
i,xj ,x

′
j:

‖∇2fi(xi)−∇2fi(x
′
i)‖2 ≤ L‖xi − x′i‖2,

‖∇2gij(xi,xj)−∇2gij(x
′
i,x
′
j)‖2 ≤ L

∥∥∥∥[xi
xj

]
−
[

x′i
x′j

]∥∥∥∥
2

.

We note that Assumption 1 is a bit strong and is not satisfied by all
applications, e.g., affine functions are not strongly convex and thus
do not satisfy Assumption 1. Without Assumption 1, ADMM can still
be shown to converge [20]. Nevertheless, to guarantee global linear
convergence of ADMM, Assumption 1 (i.e., strong convexity and
Lipschitz continuous gradient) is usually needed [17]. In this paper,
we will show global linear convergence of the proposed distributed
Newton’s method and thus we let Assumption 1 hold.

B. Algorithm Development

Define x ∈ Rnp as the concatenation of all the xi’s. De-
note the objective function of (2) as F (x) :=

∑n
i=1 fi(xi) +∑n

i=1

∑
j∈Ωi

gij(xi,xj). Denote the unique minimizer of F as x∗,
where the uniqueness results from the strong convexity assumption,
i.e., Assumption 1. In the rest of the paper, unless explicitly specified,
we use [·]i to denote the i-th p-dimensional subvector of a vector and
use [·]i,j to denote the (i, j)-th p × p block of a matrix. To apply
Newton’s method to (2), we compute the gradient of F as follows:

[∇F (x)]i = ∇fi(xi) +
∑
j∈Ωi

[∇xigij(xi,xj) +∇xigji(xj ,xi)].

Denote H(x) := ∇2F (x) the Hessian matrix of F , which can be
computed as:

[H(x)]ik =

∇2fi(xi) +

∑
j∈Ωi

[∇2
xi
gij(xi,xj) +∇2

xi
gji(xj ,xi)],

if i = k,

∇2
xi,xk

gik(xi,xk) +∇2
xi,xk

gki(xk,xi), if k ∈ Ωi,

0, otherwise.

We note that H(x) is positive definite (according to Assumption 1)
and block sparse with the sparsity pattern of the network. We further
define a block diagonal matrix D(x):

[D(x)]ik =

∇2fi(xi) + 2

∑
j∈Ωi

[∇2
xi
gij(xi,xj) +∇2

xi
gji(xj ,xi)],

if i = k,

0, otherwise,

and a block sparse matrix B(x):

[B(x)]ik =

∑
j∈Ωi

[∇2
xi
gij(xi,xj) +∇2

xi
gji(xj ,xi)], if i = k,

−∇2
xi,xk

gik(xi,xk)−∇2
xi,xk

gki(xk,xi), if k ∈ Ωi,

0, otherwise.

Thus, we obtain a splitting of the Hessian matrix as
H(x) = D(x)−B(x). According to Assumption 1, it is
easy to see that D(x) is positive definite. So, we can
write H(x) = D(x)

1
2

[
I−D(x)−

1
2B(x)D(x)−

1
2

]
D(x)

1
2 .

To invoke Newton’s method, we need to calculate
H(x)−1 = D(x)−

1
2

[
I−D(x)−

1
2B(x)D(x)−

1
2

]−1

D(x)−
1
2 .

Unfortunately, H(x)−1 is not necessarily block sparse so that the
exact Newton’s method for minimizing F (x) cannot be implemented
in a distributed fashion. Therefore, to obtain a distributed algorithm,
we resort to some approximated version of H(x)−1. To this end,
if ρ

(
D(x)−

1
2B(x)D(x)−

1
2

)
< 1 (which will be shown later in

Section III), we can rewrite H(x)−1 as:

H(x)−1 = D(x)−
1
2

∞∑
k=0

[
D(x)−

1
2B(x)D(x)−

1
2

]k
D(x)−

1
2 . (5)

Truncating the first K + 1 (K ≥ 0) terms of the summation in (5),

we note that D(x)−
1
2
∑K
k=0

[
D(x)−

1
2B(x)D(x)−

1
2

]k
D(x)−

1
2 is

still positive definite. As such, we can define a positive definite
approximated Hessian Ĥ(x):

Ĥ(x)

:=

{
D(x)−

1
2

K∑
k=0

[
D(x)−

1
2B(x)D(x)−

1
2

]k
D(x)−

1
2

}−1

. (6)

Denote the iterate at time t as xt. Define ht = ∇F (xt) and Ĥt =
Ĥ(xt). Thus, the approximated Newton direction is dt = −Ĥ−1

t ht
and the approximated Newton update is xt+1 = xt + εdt, where
ε > 0 is the step size. Next, we demonstrate that the approximated
Newton direction dt can be computed in a distributed and recursive
manner. To this end, define the k-th (k ≥ 0) order approximated
Hessian matrix Ĥk(x):

Ĥk(x) :=

{
D(x)−

1
2

k∑
l=0

[
D(x)−

1
2B(x)D(x)−

1
2

]l
D(x)−

1
2

}−1

.

Furthermore, define Dt = D(xt), Bt = B(xt), Ht = H(xt),
Ĥk,t = Ĥk(xt) and dk,t = −Ĥ−1

k,tht. Thus, dt = dK,t. The
approximated Newton direction can be calculated recursively as:

dk+1,t = −D−
1
2

t

[
I +

k+1∑
l=1

(
D
− 1

2
t BtD

− 1
2

t

)l]
D
− 1

2
t ht. (7)

= −D−1
t ht + D−1

t Btdk,t (8)

= D−1
t (Btdk,t − ht) (9)

Noting that Dt is block diagonal, we have:

dk+1,t,i = D−1
t,ii

 ∑
j∈Ωi∪{i}

Bt,ijdk,t,j − ht,i

 . (15)

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 30,2020 at 19:36:43 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2020.2989266, IEEE
Transactions on Automatic Control

4

Algorithm 1 Distributed Newton’s method for network cost mini-
mization: procedures at node i

1: Initialize x0,i and step size ε
2: for t = 0, 1, 2, ... do
3: Exchange the iterate xt,i with neighbors j ∈ Ωi.
4: Compute:

Dt,ii = ∇2fi(xt,i)

+ 2
∑
j∈Ωi

[
∇2

xi
gij(xt,i,xt,j) +∇2

xi
gji(xt,j ,xt,i)

]
,

Bt,ii =
∑
j∈Ωi

[∇2
xi
gij(xt,i,xt,j) +∇2

xi
gji(xt,j ,xt,i)], (10)

Bt,ij = −∇2
xi,xj

gij(xt,i,xt,j)−∇2
xi,xj

gji(xt,j ,xt,i),

∀j ∈ Ωi, (11)

ht,i = ∇fi(xt,i)

+
∑
j∈Ωi

[∇xigij(xt,i,xt,j) +∇xigji(xt,j ,xt,i)] , (12)

d0,t,i = −D−1
t,iiht,i. (13)

5: for k = 0, 1, ...,K − 1 do
6: Exchange the iterate dk,t,i with neighbors j ∈ Ωi.
7: Compute:

dk+1,t,i = D−1
t,ii

 ∑
j∈Ωi∪{i}

Bt,ijdk,t,j − ht,i

 . (14)

8: end for
9: Set dt,i = dK,t,i.

10: Update xt+1,i = xt,i + εdt,i.
11: end for

Equation (15) indicates that the approximated Newton direction
dt can be computed in a distributed and recursive way. Thus,
a distributed Newton’s method for the network cost minimization
problem (2) can be developed and the proposed algorithm is detailed
in Algorithm 1 from the perspective of node i.

The overall framework of the analysis of Algorithm 1 will follow a
path analogous to that of [24]. The main distinction of this paper is the
introduction of general link cost functions as opposed to the quadratic
link cost functions used in [24] to enforce consensus. Algorithmically,
the expressions of Dt,Bt,ht take more general forms in Algorithm
1 as they depend on the general link cost functions. Therefore,
some structural properties of the algorithm in [24] no longer hold
for Algorithm 1 in this paper. For instance, the submatrices Bt,ii

and Bt,ij (i, j are neighbors) are scalar multiples of identity matrix
in [24], while these submatrices can be general symmetric matrices
in Algorithm 1. These differences and generalizations in algorithms
require new analysis, which is nontrivial extension of the analysis
in [24] and leads to new features of the convergence results. For
instance, the proof of Proposition 2 in [24] has exploited the special
form of the quadratic link cost functions (the double stochasticity of
the combination weight matrix W in particular) and the Gershgorin
circle theorem (c.f. equations (58), (59) in [24]) to bound the
eigenvalues. Such a technique no longer works in the proof of Lemma
2 in this paper (the counterpart of Proposition 2 in [24]), since the
link cost functions are generally non-quadratic. To show Lemma 2,
we have to adopt other techniques to bound the eigenvalues of the
involved matrices and the details of the proof are different from that
of Proposition 2 in [24]. Further, the convergence results in [24]
do not depend on the network connectivity, while the convergence
results (e.g., the value of ξ in Theorem 1) in this paper depend on the

network connectivity explicitly through the maximum node degree C.
In [30], matrix splitting based Newton’s method has also been

proposed for network flow optimization problem, which only involves
link costs and the link rates need to satisfy the flow conservation
constraints. Though Algorithm 1 in this paper shares similar spirit
with that in [30], the specific algorithmic implementations are very
different due to the different optimization problems. As such, new
convergence analysis is required for the proposed Algorithm 1.

III. CONVERGENCE ANALYSIS

In this section, we analyze the convergence properties of the
proposed distributed Newton’s method for network cost minimiza-
tion, i.e., Algorithm 1. Specifically, we demonstrate global linear
convergence of the objective function value F (xt) to the optimal
value F (x∗). Furthermore, we show that Algorithm 1 possesses a
quadratic convergence phase, which is a generic theoretical advantage
of second order optimization methods over first order ones [29],
[33]. The proofs of all the lemmas and theorems are relegated to
the supplementary material due to space limitation.

A. The Global Linear Convergence

In this subsection, we demonstrate global linear conver-
gence of Algorithm 1. We first establish bounds on the ma-
trices B(x),H(x),D(x) in the following lemma. Define C =
maxi∈[n] |Ωi| to be the maximum node degree.

Lemma 1. For any x ∈ Rnp:

0 � B(x) � 2MCI, (16)

mI � H(x) �M(1 + 2C)I, (17)

mI � D(x) � (1 + 4C)MI. (18)

In order to ensure that the series in (5) are convergent, we need to
guarantee that the spectral radius of D(x)−

1
2B(x)D(x)−

1
2 is strictly

smaller than 1, as shown in the following lemma.

Lemma 2. For any x ∈ Rnp:

0 � D(x)−
1
2B(x)D(x)−

1
2 � ηI, (19)

where η = 1− m
M(1+4C)

∈ (0, 1) is a constant. Therefore, we have:

ρ
(
D(x)−

1
2B(x)D(x)−

1
2

)
≤ η < 1. (20)

Lemma 2 guarantees the convergence of the series in (5) and
justifies the truncated approximation of Hessian in (6). Then, a natural
question is about the approximation accuracy of the approximated
Hessian Ĥ(x). To quantify this accuracy, we define the error matrix
E(x) ∈ Snp as:

E(x) := I− Ĥ(x)
− 1

2H(x)Ĥ(x)
− 1

2 . (21)

Define Et = E(xt). Then, we have the following bound for the error
matrix E(x).

Lemma 3. For any x ∈ Rnp:

0 � E(x) � ηK+1I. (22)

In accordance with one’s intuition, Lemma 3 indicates that the
larger the order of approximation K, the smaller the approximation
error of the Hessian matrix. This benefit comes at the expense of
higher communication and computation overhead of Algorithm 1
when calculating the approximated Newton step dt recursively by
(14), i.e., there exists an accuracy-complexity tradeoff. Furthermore,
analogous to Lemma 1, we can also bound the inverse of the
approximated Hessian matrix Ĥ(x)

−1
as follows.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 30,2020 at 19:36:43 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2020.2989266, IEEE
Transactions on Automatic Control

5

Lemma 4. For any x ∈ Rnp:

γ1I � Ĥ(x)
−1 � γ2I, (23)

where the two positive constants γ1 and γ2 are given as γ1 =
1

(1+4C)M
and γ2 = 1−ηK+1

m(1−η)
.

Moreover, we can translate the Lipschitz continuity of the Hes-
sian matrices of the local functions in Assumption 2 to Lipschitz
continuity of the global Hessian matrix H(x).

Lemma 5. For any x,x′ ∈ Rnp:

‖H(x)−H(x′)‖2 ≤ L(1 + 2C)‖x− x′‖2., (24)

i.e., H(·) is Lipschitz continuous with modulus L(1 + 2C).

We are now ready to show the first main theorem regarding the
global linear convergence of Algorithm 1.

Theorem 1. If the stepsize ε > 0 of Algorithm 1 is chosen such that:

ε < min

{
1,

√
2mγ1

L(1 + 2C)γ3
2(2M(1 + 2C))

3
2

√
F (x0)− F (x∗)

}
,

(25)

then F (xt), i.e., the objective function values generated by Algorithm
1, converges linearly to the optimal objective function value F (x∗),
or more specifically, for any t ∈ N:

0 ≤ F (xt)− F (x∗) ≤ ξt[F (x0)− F (x∗)], (26)

where 0 < ξ < 1 is some constant specified as:

ξ = 1−mγ1(2ε− ε2)

+
ε3

2
L(1 + 2C)γ3

2(2M(1 + 2C))
3
2

√
F (x0)− F (x∗). (27)

In practice, we seldom use the upper bound in (25) to determine
the stepsize ε since this upper bound is difficult to compute in most
applications and satisfying this upper bound is only a sufficient (not
necessary) condition for linear convergence. In fact, a practically good
choice of ε can be larger than the theoretical bound in (25). What
this bound shows is that, as long as ε is sufficiently small, the global
linear convergence of the proposed distributed Newton’s method can
be guaranteed. In practice, we usually determine ε empirically by trial
and error so that it is neither too large (to avoid divergence) nor too
small (to avoid very slow convergence). We note that this empirical
choice of stepsize is common in many existing optimization methods.

Further, we note that the upper bound on ε in (25) depends on
the connectivity of the network. This dependence is through the
maximum node degree C and γ1, γ2 (γ1 relies on C; γ2 relies on η,
which further depends on C).

B. The Quadratic Convergence Phase

A classical theoretical explanation of the advantage of second order
optimization methods (e.g., Newton’s method) over first order alter-
natives (e.g., gradient descent method) is that the former possesses
a quadratic convergence region [29], [33], in which the algorithms
converge very fast. In this subsection, we also identify a quadratic
convergence phase of Algorithm 1 as a theoretical justification of
its superiority over other first order methods. To this end, we first
present a lemma regarding the Lipschitz continuity of D(x).

Lemma 6. For any x,x′ ∈ Rnp:

‖D(x)−D(x′)‖2 ≤ L(1 + 4C)‖x− x′‖2, (28)

i.e., D(·) is Lipschitz continuous with modulus L(1 + 4C).

Define two constants µ1 ≥ 0 and µ2 > 0:{
µ1 = 1

m
[εL(1 + 4C)γ1γ2]

1
2 (2M(1 + 2C))

1
4 [F (x0)− F (x∗)]

1
4 ,

µ2 =
ε2L(1+2C)γ1γ

2
2

2
√
m

.

Define a sequence ψt = (1− ε+ εηK+1)(1+µ1ξ
t−1
4). Suppose ε

satisfies the condition (25) in Theorem 1. Then, we have 0 < ξ < 1
and thus ψt is a decreasing sequence with limit limt→∞ ψt = 1 −
ε+ εηK+1 ∈ (0, 1). So, for t large enough, we have ψt < 1. Define
t0 := arg min{t|ψt < 1}. We state our main theorem regarding the
quadratic convergence phase of Algorithm 1 in the following.

Theorem 2. Let ε be chosen in accordance with the condition (25).
Suppose there exists a time interval [t1, t2] with t1 ≥ t0 such that,
for any t ∈ [t1, t2]:

√
ψt(1−

√
ψt)

µ2
≤
∥∥∥∥D− 1

2
t−1ht

∥∥∥∥
2

≤ 1−
√
ψt

µ2
. (29)

Then, for t ∈ [t1, t2 + 1], we have:

F (xt)− F (x∗) ≤ δ2t−t1

µ2
√
γ1
‖xt − x∗‖2, (30)

where δ := µ2

1−
√
ψt1

∥∥∥∥D− 1
2

t1−1ht1

∥∥∥∥
2

∈ [0, 1) and limτ→∞ ‖xτ −

x∗‖2 = 0. In other words, Algorithm 1 converges quadrati-
cally over the time interval [t1, t2 + 1]. Furthermore, we have

limτ→∞

∥∥∥∥D− 1
2

τ−1hτ

∥∥∥∥
2

= 0.

Remark 1. From limt→∞

∥∥∥∥D− 1
2

t−1ht

∥∥∥∥
2

= 0,

limt→∞
√
ψt(1−

√
ψt)

µ2
=

√
1−ε+εηK+1(1−

√
1−ε+εηK+1)

µ2
> 0

and limt→∞
1−
√
ψt

µ2
=

1−
√

1−ε+εηK+1

µ2
> 0, we know that∥∥∥∥D− 1

2
t−1ht

∥∥∥∥
2

will eventually be smaller than both bounds in (29)

for large enough t. Typically, as t increases,
∥∥∥∥D− 1

2
t−1ht

∥∥∥∥
2

will first

become smaller than the right bound of (29), but still remain larger
than the left bound of (29), i.e., (29) holds. Theorem (2) says, in
such a case, Algorithm 1 converges quadratically. After that, as

t further increases,
∥∥∥∥D− 1

2
t−1ht

∥∥∥∥
2

becomes even smaller than the

left bound of (29) so that (29) does not hold any more and the
quadratic convergence phase is terminated. In such a case, we can
only guarantee linear convergence rate, which is a global property
of Algorithm 1 (Theorem 1).

IV. NUMERICAL TESTS

In this section, we empirically investigate the performance of the
proposed distributed Newton’s method (DNM, i.e., Algorithm 1) on
the following quadratic program:

Min
x

n∑
i=1

(
xT
iAixi + 2bT

i xi
)

+

n∑
i=1

∑
j∈Ωi

βij‖xi − xj‖22, (31)

where Ai ∈ Sp++ is some positive definite matrix and bi ∈ Rp.
βij > 0 is some positive constant controlling the proximity between
neighbors’ variables. Problem (31) has broad applications in many
signal processing scenarios. For instance, consider a sensor network
in which each node i uses linear regression to estimate some unknown
vector xi. If we want to enforce the prior knowledge that neighboring
nodes have similar unknown vectors, the corresponding optimization
problem will be in the form of (31). In fact, as real-time dynamic

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 30,2020 at 19:36:43 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2020.2989266, IEEE
Transactions on Automatic Control

6

variants of problem (31), multitask adaptive learning has been studied
extensively in the recent literature [27].

Problem (31) is in the form of generic network cost minimization
problem (2) by setting fi(xi) = xT

iAixi+2bT
i xi and gij(xi,xj) =

βij‖xi−xj‖22,∀i, j ∈ Ωi. In the following experiments, we set Ai to
be a diagonal matrix with the first p

2
diagonal entries uniformly and

randomly chosen from {1, 10−1, ..., 10−d} and the last p
2

diagonal
entries uniformly and randomly chosen from {1, 10, ..., 10d}. Here,
d is a positive integer controlling the condition number of the node
cost function fi: the larger the d, the more ill-conditioned the cost
functions. In addition, entries of bi are uniformly and randomly
chosen from the interval [0, 1] while βij are uniformly and randomly
selected from the interval [0.5, 1.5]. We set the network topology
to be a random graph (links are uniformly and randomly generated)
with n = 100 nodes and average degree of 4. The dimension of the
decision variables is p = 20. The stepsize ε is chosen to be 1 unless
otherwise noted. This values of ε is chosen empirically to roughly
optimize the performance of the distributed Newton’s method. For
comparison purposes, we also apply the distributed gradient descent
(DGD) [13], [34] and the distributed alternating direction method
of multipliers (DADMM) [28], [35] to the quadratic program (31).
When implementing the DADMM for the quadratic program (31),
we use direct closed-form solutions to compute the iterates instead
of using numerical solvers. The ADMM parameter ρ is chosen to
be 9 to empirically optimize the performance of the DADMM. The
performance of the proposed DNM-K (K = 0, 1, 2), the DGD
and the DADMM is shown in Fig. 1 for d = 2. The relative
errors ‖xt−x∗‖2

‖x∗‖2
versus the number of iterations and the number of

per-node information exchanges are shown in Fig. 1-(a) and Fig.
1-(b), respectively. Here, one unit of information exchange is the
transmission of one p-dimensional vector. The numbers of per-node
(node i) information exchanges for the proposed DNM, the DGD
and the DADMM are K + 1, 1 and 2|Ωi| + 1, respectively. In our
network topology, the average node degree is 4 so that the average
number of per-node information exchanges for the DADMM is 9.

From the results in Fig. 1, we can first see the effect of K, i.e.,
the approximation order of the Hessian matrix, on the performance
of the DNM. From Fig. 1-(a), we observe that the DNM converges
faster with respect to the number of iterations for larger values of K.
This is reasonable as larger K implies more accurate approximation
of the Hessian matrix in the DNM (c.f. Lemma 3). From Fig. 1-
(b), an interesting observation is that DNM-K’s (K = 0, 1, 2) have
virtually the same convergence curve with respect to the number of
per-node information exchanges. This suggests that K does not affect
the performance of DNM much as far as communication complexity
is concerned. Second, we remark that the DNM outperforms the
DGD significantly in terms of both the number of iterations and
the number of information exchanges. Specifically, to achieve the
same relative error, the number of iterations and the number of
information exchanges needed by the DGD is larger than those
needed by the DNM-2 by an order of magnitude. Third, the DNM also
outperforms the DADMM remarkably, especially in terms of number
of information exchanges. In particular, to achieve the same relative
error, the number of per-node information exchanges needed by the
DADMM is larger than those needed by the DNM by almost two
orders of magnitude. These comparisons demonstrate the advantage
of the DNM, a second order optimization method, over other first
order primal or primal/dual optimization methods such as the DGD
and the DADMM.

Next, we examine the impact of the condition number (controlled
by d) on the performance of the DNM, the DGD and the DADMM.
The performance of these algorithms with respect to the number
of iterations and the number of per-node information exchanges are

0 200 400 600

Number of iterations

10
-15

10
-10

10
-5

10
0

R
e

la
ti
v
e

 e
rr

o
r

DNM-0

DNM-1

DNM-2

DGD

DADMM

(a) Relative error versus number of
iterations

0 500 1000 1500 2000

Number of per-node information exchanges

10-15

10-10

10-5

100

R
e

la
ti
v
e

 e
rr

o
r

DNM-0

DNM-1

DNM-2

DGD

DADMM

(b) Relative error versus number of
per-node information exchanges

Fig. 1: Comparison between the proposed distributed Newton’s
method (K = 0, 1, 2), the distributed gradient descent and the
distributed ADMM (d = 2).

0 100 200 300 400 500

Number of iterations

10
-20

10
-15

10
-10

10
-5

10
0

R
e

la
ti
v
e

 e
rr

o
r

DNM-0

DNM-1

DNM-2

DGD

DADMM

(a) Relative error versus number of
iterations for d = 1

0 500 1000 1500

Number of per-node information exchanges

10-15

10-10

10-5

100

R
e

la
ti
v
e

 e
rr

o
r

DNM-0

DNM-1

DNM-2

DGD

DADMM

(b) Relative error versus number of
per-node information exchanges for
d = 1

0 500 1000

Number of iterations

10
-15

10
-10

10
-5

10
0

R
e

la
ti
v
e

 e
rr

o
r

DNM-0

DNM-1

DNM-2

DGD

DADMM

(c) Relative error versus number of
iterations for d = 3

0 500 1000 1500 2000 2500

Number of per-node information exchanges

10-15

10-10

10-5

100

R
e

la
ti
v
e

 e
rr

o
r

DNM-0

DNM-1

DNM-2

DGD

DADMM

(d) Relative error versus number of
per-node information exchanges for
d = 3

Fig. 2: Impact of the condition number on the performance of the
proposed distributed Newton’s method (K = 0, 1, 2), the distributed
gradient descent and the distributed ADMM.

shown in Fig. 2 for both d = 1 and d = 3. First, we remark that
for either value of d, the DNM always remarkably outperforms the
DGD and the DADMM in terms of both the number of iterations
and the number of information exchanges. Second, we observe that
the DNM is much more robust to large condition number than the
DGD. In particular, when the condition number increases, i.e., when
d increases from 1 to 3, to achieve the same relative error, the number
of iterations or information exchanges needed by the DNM increases
by twice while that needed by the DGD increases by around 15
times. This obervation is analogous to the classical one for centralized
Newton’s method and gradient descent stating that the latter is much
more sensitive to the condition number of the objective function
than the former [29]. Our observation extends this property to the
distributed network cost minimization problem (2).

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 30,2020 at 19:36:43 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2020.2989266, IEEE
Transactions on Automatic Control

7

0 100 200 300 400 500
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

(a) Problem (32)

0 100 200 300 400 500
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

(b) Problem (33)

Fig. 3: Problems with non-quadratic cost functions

We further consider another network cost minimization problem
as follows:

Min
x
−

n∑
i=1

p∑
l=1

ail log(xil)

+

n∑
i=1

∑
j∈Ωi

log

(
p∑
l=1

(
ebilxil + ebjlxjl

))
, (32)

where xil is the l-th entry of xi, and {ail, bil} are nonnegative
constants. Problem (32) can be used to model the resource allocation
problem in a communication network, in which each user has p
types of resources (e.g., power and bandwidth) to consume. The
term log(xil) is the utility of user i if she consumes xil amount of
resource l and the link cost log

(∑p
l=1

(
ebilxil + ebjlxjl

))
can model

the cost of mutual interference between the neighbors i, j. Unlike
Problem (31), the node cost and link cost functions of Problem (32)
are not quadratic. The performance of distributed Newton’s method
(K = 2, ε = 0.5) on Problem (32) is shown in Fig. 3-(a), in which
the network is a random graph with average degree equal to 3. For
comparison, we also show the performance of DADMM and DGD. It
can be observed that the convergence for Problem (32) is slower than
that of the quadratic program (31). This is the consequence of the
more complicated objective function (logarithms and exponentials)
in (32) than the quadratic functions in (31). The proposed distributed
Newton’s method still outperforms DADMM and DGD for the non-
quadratic problem (32). Additionally, we consider another network
cost minimization problem with a different form of link cost functions
as follows:

Min
x
−

n∑
i=1

p∑
l=1

ail log(xil) +

n∑
i=1

∑
j∈Ωi

p∑
l=1

(bij,lxil + bji,lxjl)
α, (33)

where {ail, bij,l} are positive constants and α ≥ 1 is constant. The
link cost functions are not quadratic as long as α 6= 2 and can be
used to model the cost of mutual interference in different scenarios
by tuning α. For α = 1.5 and α = 3, we show the performance of the
distributed Newton’s method, DADMM and DGD in Fig. 3-(b). It can
be observed that the distributed Newton’s method still outperforms
DADMM and DGD consistently. These experiments corroborate the
advantage of distributed Newton’s method for problems with non-
quadratic cost functions.

V. COMMUNICATION AND COMPUTATIONAL COMPLEXITY

In this section, we discuss about the communication and com-
putational complexity of the proposed distributed Newton’s method
(DNM) and alternative first order optimization methods including
the distributed gradient descent (DGD), the distributed ADMM

(DADMM) and the distributed linearized ADMM (DLADMM) [28]
for solving the network cost minimization problem (2).

A. Communication Complexity

At each iteration of the DNM, each node i needs to broadcast
K + 1 vectors of p dimensional, namely xt,i,d0,t,i, ...,dK−1,t,i, to
its neighbors. Therefore, the per-iteration communication complexity
of the DNM increases linearly with the approximation order K.
This observation suggests a complexity-accuracy tradeoff for the
choice of K in the DNM. In particular, increasing the value of
K will enhance the approximation accuracy (and thus per-iteration
performance) of the DNM and incur higher communication burden
simultaneously. This tradeoff for choices of K has been studied
empirically through simulations in Section IV. It is observed that
though the per-iteration performance of the DNM enhances with
increasing K, its per-information-exchange performance is insensitive
to K for K = 0, 1, 2. As a comparison, in the DGD for problem
(2), each node only needs to broadcast one p-dimensional vector at
each iteration. Moreover, in DADMM or DLADMM for problem
(2), each node i broadcasts 2|Ωi|+ 1 p-dimensional vectors at each
iteration [28]. We note that the number of information exchanges
for the DADMM or DLADMM depends on the degree of the node
since there are primal/dual link variables in the reformulated problem
of (2) suitable for application of the ADMM (c.f. Algorithm 1 in
[28]). To achieve the same performance, the advantage of the DNM
over the aforementioned first order optimization methods (DGD
and DADMM) in terms of communication complexity has been
highlighted through numerical experiments in Section IV.

B. Computational Complexity

In the DNM, each node needs to evaluate not only the gradients
but also the Hessian matrices of the local node/link cost functions.
Besides, each node needs to compute the inversion of a p× p matrix
(i.e., D−1

t,ii in (13) and (14)) at each iteration. In contrast, in the DGD
and the DLADMM [28], every node only needs to evaluate the gra-
dients of the local cost functions and is free of any matrix inversion.
Furthermore, the computational burden of the DADMM can be very
high in general because, in each iteration, each node needs to solve a
nonlinear optimization problem numerically. In contrast, the proposed
distributed Newton’s method is free of solving any optimization
subproblems and thus enjoys lower computational complexity or
shorter execution time than DADMM generally. Nevertheless, in
some special cases such as the quadratic program (31), the DADMM
iterates can be computed in closed-form and do not need to resort to
numerical solvers. In such cases, the computational complexity or the
execution time of the DADMM is also low, similar to the distributed
Newton’s method. These comparisons suggest that, relative to the first
order optimization methods, the superior convergence performance
of the DNM comes at the expense of moderately high computational
complexity. This is analogous to the complexity-accuracy tradeoff
between classical Newton’s method and gradient descent algorithm
in the centralized setting [29].

VI. CONCLUSION

In this paper, a novel generic network cost minimization problem
incorporating both node costs and link costs is studied. A distributed
Newton’s method (Algorithm 1) is proposed to solve the network
cost minimization problem in a decentralized manner by splitting
and approximating the Hessian matrix of the objective function
appropriately. Under some standard technical assumptions, we theo-
retically establish the global linear convergence of Algorithm 1 to the
optimal point (Theorem 1). Furthermore, we show that Algorithm 1

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 30,2020 at 19:36:43 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2020.2989266, IEEE
Transactions on Automatic Control

8

possesses a quadratic convergence phase over a certain time interval
(Theorem 2). Numerical experiments are carried out to corroborate
the effectiveness of Algorithm 1, which outperforms other first order
primal or primal/dual optimization methods remarkably and is robust
to ill-conditioned cost functions. Complexity issues of the proposed
distributed Newton’s method and alternative first order methods are
also discussed.

REFERENCES

[1] A. H. Sayed, “Adaptive networks,” Proceedings of the IEEE, vol. 102,
no. 4, pp. 460–497, 2014.

[2] A. G. Dimakis, S. Kar, J. M. Moura, M. G. Rabbat, and A. Scaglione,
“Gossip algorithms for distributed signal processing,” Proceedings of the
IEEE, vol. 98, no. 11, pp. 1847–1864, 2010.

[3] J. B. Predd, S. R. Kulkarni, and H. V. Poor, “A collaborative training
algorithm for distributed learning,” IEEE Transactions on Information
Theory, vol. 55, no. 4, pp. 1856–1871, 2009.

[4] C. Shen, T.-H. Chang, K.-Y. Wang, Z. Qiu, and C.-Y. Chi, “Distributed
robust multicell coordinated beamforming with imperfect CSI: An
ADMM approach,” IEEE Transactions on signal processing, vol. 60,
no. 6, pp. 2988–3003, 2012.

[5] J. Huang, R. A. Berry, and M. L. Honig, “Distributed interference
compensation for wireless networks,” IEEE Journal on Selected Areas
in Communications, vol. 24, no. 5, pp. 1074–1084, 2006.

[6] M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle, “Layering
as optimization decomposition: A mathematical theory of network
architectures,” Proceedings of the IEEE, vol. 95, no. 1, pp. 255–312,
2007.

[7] D. P. Palomar and M. Chiang, “A tutorial on decomposition methods
for network utility maximization,” IEEE Journal on Selected Areas in
Communications, vol. 24, no. 8, pp. 1439–1451, 2006.

[8] M. Chiang, “Balancing transport and physical layers in wireless multihop
networks: Jointly optimal congestion control and power control,” IEEE
Journal on Selected Areas in Communications, vol. 23, no. 1, pp. 104–
116, 2005.

[9] D. P. Palomar and M. Chiang, “Alternative distributed algorithms
for network utility maximization: Framework and applications,” IEEE
Transactions on Automatic Control, vol. 52, no. 12, pp. 2254–2269,
2007.

[10] E. Wei, A. Ozdaglar, and A. Jadbabaie, “A distributed newton method
for network utility maximization–i: Algorithm,” IEEE Transactions on
Automatic Control, vol. 58, no. 9, pp. 2162–2175, 2013.

[11] J. Zhang, D. Zheng, and M. Chiang, “The impact of stochastic noisy
feedback on distributed network utility maximization,” IEEE Transac-
tions on Information Theory, vol. 54, no. 2, pp. 645–665, 2008.

[12] D. Niu and B. Li, “An asynchronous fixed-point algorithm for resource
sharing with coupled objectives,” IEEE/ACM Transactions on Network-
ing, vol. 24, no. 5, pp. 2593–2606, 2016.

[13] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Transactions on Automatic Control, vol. 54,
no. 1, pp. 48–61, 2009.

[14] J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual averaging for
distributed optimization: Convergence analysis and network scaling,”
IEEE Transactions on Automatic control, vol. 57, no. 3, pp. 592–606,
2012.

[15] K. Yuan, Q. Ling, and W. Yin, “On the convergence of decentralized
gradient descent,” SIAM Journal on Optimization, vol. 26, no. 3,
pp. 1835–1854, 2016.

[16] D. Jakovetic, J. Xavier, and J. M. Moura, “Fast distributed gradient
methods,” IEEE Transactions on Automatic Control, vol. 59, no. 5,
pp. 1131–1146, 2014.

[17] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, “On the linear
convergence of the ADMM in decentralized consensus optimization,”
IEEE Transactions on Signal Processing, vol. 62, no. 7, pp. 1750–1761,
2014.

[18] A. Mokhtari, W. Shi, Q. Ling, and A. Ribeiro, “DQM: Decentralized
quadratically approximated alternating direction method of multipliers,”
IEEE Transactions on Signal Processing, vol. 64, no. 19, pp. 5158–5173,
2016.

[19] T.-H. Chang, M. Hong, and X. Wang, “Multi-agent distributed opti-
mization via inexact consensus ADMM,” IEEE Transactions on Signal
Processing, vol. 63, no. 2, pp. 482–497, 2015.

[20] E. Wei and A. Ozdaglar, “On the O(1/k) convergence of asynchronous
distributed alternating direction method of multipliers,” in Global Con-
ference on Signal and Information Processing (GlobalSIP), 2013 IEEE,
pp. 551–554, IEEE, 2013.

[21] T.-H. Chang, M. Hong, W.-C. Liao, and X. Wang, “Asynchronous
distributed ADMM for large-scale optimization—part i: Algorithm and
convergence analysis,” IEEE Transactions on Signal Processing, vol. 64,
no. 12, pp. 3118–3130, 2016.

[22] T.-H. Chang, W.-C. Liao, M. Hong, and X. Wang, “Asynchronous
distributed ADMM for large-scale optimization—part ii: Linear con-
vergence analysis and numerical performance,” IEEE Transactions on
Signal Processing, vol. 64, no. 12, pp. 3131–3144, 2016.

[23] T.-H. Chang, “A proximal dual consensus ADMM method for multi-
agent constrained optimization,” IEEE Transactions on Signal Process-
ing, vol. 64, no. 14, pp. 3719–3734, 2014.

[24] A. Mokhtari, Q. Ling, and A. Ribeiro, “Network newton distributed
optimization methods,” IEEE Transactions on Signal Processing, vol. 65,
no. 1, pp. 146–161, 2017.

[25] F. Mansoori and E. Wei, “Superlinearly convergent asynchronous dis-
tributed network newton method,” in Decision and Control (CDC), IEEE
56th Annual Conference on, pp. 2874–2879, 2017.

[26] M. Eisen, A. Mokhtari, and A. Ribeiro, “Decentralized quasi-newton
methods,” IEEE Transactions on Signal Processing, vol. 65, no. 10,
pp. 2613–2628, 2017.

[27] J. Chen, C. Richard, and A. H. Sayed, “Multitask diffusion adaptation
over networks,” IEEE Transactions on Signal Processing, vol. 62, no. 16,
pp. 4129–4144, 2014.

[28] X. Cao and K. J. R. Liu, “Distributed linearized ADMM for network cost
minimization,” IEEE Transactions on Signal and Information Processing
over Networks, 2018.

[29] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge univer-
sity press, 2004.

[30] M. Zargham, A. Ribeiro, A. Ozdaglar, and A. Jadbabaie, “Accelerated
dual descent for network flow optimization,” IEEE Transactions on
Automatic Control, vol. 59, no. 4, pp. 905–920, 2014.

[31] M. Hong and T.-H. Chang, “Stochastic proximal gradient consensus over
random networks,” IEEE Transactions on Signal Processing, vol. 65,
no. 11, pp. 2933–2948, 2017.

[32] R. Carli, G. Notarstefano, L. Schenato, and D. Varagnolo, “Analysis of
Newton-Raphson consensus for multi-agent convex optimization under
asynchronous and lossy communications,” in 54th IEEE Conference on
Decision and Control (CDC), pp. 418–424, 2015.

[33] A. Mokhtari, W. Shi, Q. Ling, and A. Ribeiro, “A decentralized second-
order method with exact linear convergence rate for consensus optimiza-
tion,” IEEE Transactions on Signal and Information Processing over
Networks, vol. 2, no. 4, pp. 507–522, 2016.

[34] S. Boyd, L. Xiao, and A. Mutapcic, “Subgradient methods,” lecture notes
of EE392o, Stanford University, Autumn Quarter, vol. 2004, 2003.

[35] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends R© in Machine Learning, vol. 3,
no. 1, pp. 1–122, 2011.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 30,2020 at 19:36:43 UTC from IEEE Xplore. Restrictions apply.

