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ABSTRACT

Title of Dissertation: Signal Processing Techniques
for Increasing Channel Capacity
in Wireless Communications

Hongyi Wang, Doctor of Philosophy, 1996

Dissertation directed by: Professor K. J. Ray Liu
Department of Electrical Engineering

As the digital signal processing technology advances, the use of adaptive arrays
to combat multipath fading and to reduce interference becomes increasingly valu-
able as a means of adding capacity to mobile communications. This dissertation
addresses the major obstacles encountered in applying the two most applicable
adaptive array algorithms to time division multiple access(TDMA) wireless com-
munication systems.

We first investigated the reference signal based adaptive diversity combining
algorithm, which conventionally relies on feedback symbols in the absence of ref-
erence signals. Our computer simulation revealed that on a fast time varying
fading channel, error propagation in the decision directed tracking mode severely

degrades the performance. We developed a simultaneous diversity combining and




decoding technique which incorporates QR decomposition-based recursive least-
square parallel weights tracking and M-D decoding algorithms. In contrast to the
conventional system where only one set of array weights is kept and updated, in
our system, we update M sets of candidate weights. Thus we are able to make a
more reliable symbol decision based on D symbols without compromising weights
tracking speed. The M-D algorithm was first developed for the binary convo-
lutional codes and then extended to Trellis-coded modulation. This technique
significantly reduces error propagation. Simulation results showed that about 8 to
10dB improvement in the total interference suppression at low ISR and about 5dB
improvement at high ISR can be achieved with a moderate increase in complexity.

In the next part of the dissertation, we proposed and studied the use of the
constrained adaptive array algorithm for extracting signals from interferences at
separable directions. This algorithm requires direction-of-arrival(DOA) informa-
tion and does not need reference signals. However, most of the high resolution
DOAs estimation methods are only effective for noncoherent signals, while in mo-
bile radio channels, coherent signals are inevitable. We developed a general spatial
smoothing(SS) technique and a forward backward spatial smoothing technique for
two dimensional arrays to decorrelate coherent signals from arbitrary directions.
We found and proved the necessary and sufficient conditions on an array configu-
ration for applying SS. This array must have an orientational invariance structure
with an ambiguity free center array, and the number of subarrays must be larger
than or equal to the size of the largest group of coherent signals. We also stud-
ied the causes of ambiguities and found some ambiguity free array manifolds. We
expanded the application of our SS to several high resolution DOA estimation

and constrained adaptive beamforming algorithms. All the predicted results were




verified by simulations.

In the last part of the dissertation, we investigated the applications of adaptive
array technique in DS/CDMA systems. We applied reference-signal-based simulta-
neous diversity combining and decoding to reduce fading and suppress interference

caused by poor synchronization and power control.
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Chapter 1

Introduction

In recent years, there has been an explosive increase in the demand of radio chan-
nels in cellular communication systems. Since the frequency spectrum is limited,
the total number of available channels is bounded. To increase the number of
users in a given bandwidth becomes the dominant goal of much of today’s intense
research in wireless communication systems. Currently, digital speech transmis-
sion and Time Division Multiple Access (TDMA) [1] have been adopted in most
of the second generation cellular systems. Accordingly, efficient speech coding,
error-control coding, and bandwidth efficient modulation have been used. On the
other hand, Code Division Multiple Access (CDMA) has been proposed for the
third generation wireless information systems. It is believed that a substantial ad-
ditional gain in system capacity can be achieved by exploiting the space dimension
no matter which system is used.

The overall objectives of this thesis are in the framework of increasing wireless
channel capacity and improving the quality of transmitted speech. The basis of
our approaches is to suppress interferences in the space domain using array signal

processing techniques.




1.1 Previous Schemes to Increase Capacity in
Space Domain

To increase frequency efficiency by exploiting the space dimension, there are three
existing approaches based on the co-channel interference reduction factor (CIRF),
gs, which is defined as ¢, = % where R is the cell radius and D, is the minimum
required distance between any two co-channel cells in a cellular system correspond-

ing to the required carrier-to-interference ratio (C/I) received at both the cell site

and the mobile unit in a cell.

e Split the cells

Capacity can be increased by reducing R but keeping ¢, unchanged, that is,
by rescaling the system. A conventional microcell follows this approach. In
theory, the cell splitting process may be carried out infinitum. In practice,
however, there are some obvious constraints [2]: (1) With cells becoming
smaller and smaller, it is increasingly difficult to place base stations at the
locations that offer the necessary radio coverage. The problem of establishing
a new cell cite at an optimum location is particularly acute in large congested
cities where capacity requirements are most pressing. Finding a suitable
location for the base station may become a difficult task. (2) The total
cost of the system is increased because the number of required base stations
is increased. (3) The trunking efficiency is degraded. (4) As the distance
between cells reduces, the cochannel interference increases, although the same

repeat pattern is kept.

e Sectorization



This technique basically divides the cell into a number of sectors, each served
by a different set of channels and illuminated by a directional antenna. The
sector can therefore be considered as a new cell. The use of directional
antennas sqbstantially cuts down the cochannel interference, thus allowing
the cocells to be more closely spaced. The problem for the sectorization is
that it reduces the covered area (2], and the trunking efficiency of the utilized
channels decreases [3]. The hand-offs occur as the vehicle passes across the

sectors, same way as across cells.

¢ Reducing the required D/R by a multiple-zone microcell approach

Generally a new microcell [3] consists of three zones. Every zone site phys-
ically shares the same radio equipment installed at the base. To serve a
vehicle from a zone site, an 800-MHz cellular signal can be converted up to
a microwave or optical signal at the base and then converted down back to
the 800-MHz signal at the zone site to serve the vehicle in that zone as if the
vehicle were located at the base. In this case not only the cell radius is re-
duced, but also the CIRF is reduced and there is no degradation in trunking
efficiency. However, this method needs additional zone sites and additional

infrastructure. It also introduces additional noise and time delay.

In short, wireless communication industry has encountered practical limits on

reducing the cell size to increase spectral efliciency.




1.2 Adaptive Arrays in Wireless Communica-

tions — Background

To increase the capacity beyond the limits by cell size reduction, adaptive array
has been proposed for increasing the carrier to interference ratio (C/I) at both
the base station and the mobile terminal. If this can be achieved, then more RF
channels can be added to the base stations in the area without driving the C/I
ratio below an acceptable limit.

An adaptive array consists of an array of spatially distributed antennas and
a real time adaptive digital signal processor. By properly combining the antenna
outputs with adaptive array signal processing algorithms, the array beam pat-
tern can be automatically adjusted to extract the individual signal waveform from
received signals corrupted by cochannel interference and noise. Compared to a
conventional array with fixed beam, an adaptive array is more flexible and more
accurate. The continued decrease in the cost of digital signal processors makes
adaptive arrays even more attractive now.

There are many optimum adaptive array combining algorithms. Two of them
are most applicable in TDMA wireless communications and have attracted a lot
of attention recently. They are briefly introduced in the following and will be

discussed in depth in the later chapters.

1.2.1 Optimum Diversity Combining

A significant increase in system capacity can be achieved by the use of reference
signal based optimum spatial diversity array combining [5]-[9]. In a spatial di-

versity array combining system, multiple antennas are spaced at least one half




of a wavelength apart, and the array weights are chosen to minimize the mean
square error between the reference signals and array output. Optimum diversity
combining is capable of cancelling the interference produced by users who are oc-
cupying the same frequency band and time slots. Theoretically, for independent
flat-Rayleigh fading wireless systems with /N mutually interfering users and K + N
antennas, N —1 interferers can be nulled out and K +1 path diversity improvement
can be achieved by each of the N users [9]. The interferers can also be users in
other radio systems, or even other types of radiating devices. Thus interference
cancellation also allows radio systems to operate in high interference environments.
These theoretical results provide a solid basis for assessing the improvement that
can be achieved by antenna diversity with optimum combining.

In practice, a mobile radio environment is characterized by (i) path loss, (ii)
long-term log-normal shadowing determined by the terrain, (iii) short-term Rayleigh
fading caused by local structures and obstacles in the immediate vicinity and (iv)
Doppler shift caused by vehicle mobility. The average duration of fades, as well
as the rate of level crossings are functions of vehicle speed and wavelength. The
power of the interfering signal fluctuates. Hence the adaptive array signal process-
ing algorithm should be able to track the variation in the signals. In IS-136 digital
cellular standard, we have only 14 symbols at the begining of each time slot that
can be used as reference signals. A numerically stable and fast converging adaptive
array signal processing algorithm has to be chosen to get an initial estimate of ar-
ray weights in the training mode. After training mode, we have to make a symbol
by symbol decision, and feedback the decided symbol every time to update the
array weights. To track a fast time-varying fading channel, the updating window

size has to be small. If we make a decision error, this error weights heavily in the



estimation of the next weights and will result in an erroneous weights estimation
and next decision error. This error will further propagate and cause subsequent
decision errors.

We conducted simulations to evaluate the performance of an adaptive array

under different situations: ideal case, training mode and tracking mode.

e In the ideal case when we perfectly know the channel interfering and fading
conditions, our simulation results show that interference that is 50dB stronger
than the desired signal can be suppressed at all vehicle speeds with optimum

combining of four antenna elements.

e In the training mode, reference signals are available. We observe some loss in
tracking at high vehicle speed. But, still, interference about 40dB stronger

than the desired signals can be suppressed at vehicle speed of 60miles/hr.

e In the tracking mode, we feed back currently decided symbol to further up-
date the array weights. This results in error propagation. We observed severe

degradation in BER performance.

Therefore, the effectiveness of optimum diversity combining on a fast time-
varying fading channel depends on the tracking speed of the adaptive algorithms

and on the level of a decision error propagation.

1.2.2 Constrained Adaptive Beamforming

The other suitable adaptive array combining scheme is based on high resolution
direction finding followed by constrained adaptive beamforming. The array re-
sponse is constrained so that signals from the direction of interest are passed with

specified gain. The array weights are chosen to minimize array output power under




these constraints. By actively tracking mobile units and directionally transmitting
information to and receiving information from these units, a significant increase in
channel capacity of current wireless communication system is possible [10]- [13].
The key to making this technique effective in multipath fading mobile environment
is accurate DOA’s estimation.

There are several DOA estimation methods. The classical Fourier-based low
resolution approach basically searches for those array response vectors that have
the highest correlations with the received array vector. High resolution DOA es-
timation methods, both multiple signal classification (MUSIC) and estimation of
signal parameters via rotational invariance techniques (ESPRIT), are based on
the fact that the received signal spans the two disjoint spaces: signal plus noise
space and noise space. The space spanned by the array response corresponding
to the incoming signals is the same as the signal plus noise space. Angles are
identified by searching for those array response vectors that are orthogonal to the
noise subspace. These approaches can exceed the conventional Rayleigh resolution
limit. So they are called high resolution methods. However, these methods are
valid only when there are no coherent signals in the incoming signals, i.e., the
correlation matrix of the signal is full rank, whereas in reality, coherent signals are
inevitable in wireless communications. When there are coherent signals, a prepro-
cessing 5SS can be used to decorrelate coherent signals. However, such a scheme was
only applicable to uniformly spaced linear arrays. For two dimensional arrays, no
computationally efficient method was available in the published literature. Multi-
dimensional subspace fitting algorithms such as deterministic maximum likelihood
(DML) [14], multidimensional (MD)-MUSIC [15], and recently proposed weighted

subspace fitting (WSF) [16], [17], are effective in both coherent and noncoherent



environment and can be applied to arrays of nonlinear geometry. However, all these
algorithms involve some searching procedures used to solve nonlinear equations.
They are computationally intensive and are impractical in real-time applications.
The direction finding techniques using spatial smoothing with interpolated arrays
[13] [18] map the signal received by the array to a virtual array, but these methods

all need approximations and have limited applications.

1.3 Motivation

As the demand for radio spectrum grows and DSP technology advances, the ability
of using sophisticated adaptive array algorithms to combat multipath fading and
to reduce interference becomes increasingly valuable as means of adding capacity
to mobile communication systems. This motivates us to solve or alleviate the
major problems we identified in the applications of adaptive array to mobile radio
communications.

The most difficult problem in realizing optimum diversity combining on a fading
channel is error propagation in the decision directed tracking mode. There are

several possible solutions to eliminate or reduce error propagations.

e Blind equalization avoids the use of reference signals, and therefore has no
error propagation problem. However, generally speaking, blind equalizers
converge too slowly. Recently, various enhancements of the CMA have been
investigated. They offer improved convergence rates with increased complex-
ity, but the convergence rates are still slower than that can be achieved by

RLS algorithms.

e Delayed decision feedback. Instead of make instantaneous premature de-



cision, we may use convolutional code and feedback more reliable delayed
tentative decision from a convolutional decoder. This was used in the slowly
time-varying channel. However, in a fast time-varying channel, a decision

delay results in poor tracking performance.

To reduce error propagation on a fast fading channel, the challenge is to delay
symbol decision without losing tracking speed. Our approach is to use simultaneous
weights tracking and decoding.

The diversity optimum combining technique is applicable to both mobile hand-
set and base station, located in a metropolitan area as well as rural and suburban
area.

In rural or suburban areas, or in the metropolitan areas with high rise an-
tennas, we have the option of using constrained adaptive array based on DOA’s
information at a base station. This technique does not require reference signals.
Error propagation is avoided.

In a DOA based constrained adaptive array combining system, the presence of
coherent signals renders accurate DOA estimation difficult. To make constrained
adaptive array beamforming effective in a coherent interference mobile channel en-
vironment, and to achieve robustness in DOA estimation, we developed techniques
to apply SS to two dimensional arrays to decorrelate the coherent signals and to
make high resolution DOA estimation methods MUSIC and ESPRIT operative in

a coherent interference environment.



1.4 Major Contributions

To examine the feasibility of diversity combining based adaptive arrays in different
wireless systems, we investigate their performance under various fading rates, vari-
ous SNR and ISR environment, under both training mode and tracking mode. We
found that the error propagation in the decision directed tracking mode severely
degraded the BER performance.

We developed a novel adaptive diversity combining technique with QRD-RLS
based parallel weights tracking and M-D decoding algorithms with moderate in-
crease in complexity, this system significantly reduces error propagation in the
decision directed array systems while maintaining the same tracking speed. The
M-D algorithm was first developed for convolutional code and then extended to
the Trellis coded modulation (TCM). Computer simulation has confirmed that this
technique has much better performance than that of the conventional technique.

We studied and evaluated different weights tracking algorithms. Based on our
study, we recommend the numerically stable QRD-RLS algorithm which, when
implemented in the data domain, can almost double the tolerable interference level
compared to the standard RLS algorithms under low fading rate situations. We
also studied the AGC and A/D effects on the signals and array weights extraction
and revealed an unstability problem caused by lower bits A/D converter. We
developed an exact initialization method for complex QRD-RLS algorithms to
address this problem and to reduce the total computational complexity.

To significantly improve the robustness of DOA estimation and of beamforming
and to estimate both azimuth and elevation angles in a 3D multipath mobile radio
environment, we developed techniques for applying SS to arrays of nonlinear ge-

ometry. We found and proved the necessary and sufficient conditions on an array

10




configuration for applying SS. This array must have an orientational invariance
structure with an ambiguity free center array, and the number of subarrays must
be larger than or equal to the size of the largest group of coherent signals. We
also studied the cause of ambiguities in a multipath environment. We found the
necessary and sufficient conditions for a three-sensor array manifold to be ambi-
guity free and identified several higher order ambiguity situations. If an array is
also central symmetric, the forward/backward spatial smoothing can be used to
improve the resolution. Finally, we expanded the application of our technique to
MUSIC and adaptive beamforming algorithms as well as to ESPRIT algorithm.
All the predicted results have been verified by simulations.

We applied DOA based adaptive array technique to TDMA mobile communi-
cations. We showed the effectiveness of our two dimensional spatial smoothing and
DOA based adaptive array on suppressing interference under some multipath fast
fading mobile environments.

For DS/CDMA system, we developed a reference-signal-based simultaneous
diversity combining and decoding technique to reduce fast fading and suppress

interference caused by poor synchronization and power control.

1.5 OQOutline of the Dissertation

In the next four chapters, we investigate the two kinds of adaptive arrays that
are most applicable to the TDMA wireless system. The adaptive array based on
optimum diversity combining is covered in Chapter 2 and 3. The adaptive array
based on DOA is covered in Chapter 4 and 5. The application of adaptive arrays
in DS/CDMA system is discussed in Chapter 6.

11




In Chapter 2, we introduce the principle of optimum diversity combining and
several conventionally used weights tracking algorithms. We present a new exact
initialization method for the complex QRD-RLS algorithm. Simulation results are
presented to compare different weights tracking algorithm and to study different
effects on the performance of adaptive array. We find that error propagation in
the decision directed tracking mode causes severe performance degradation.

In Chapter 3, the idea of simultaneous diversity combining and decoding is
introduced. To realize it, computationally efficient D-symbol delay algorithm and
M-D algorithm are then developed. QRD based parallel weights tracking tech-
niques are presented. The performance and the computational complexity of our
adaptive diversity combining system are analyzed. The D-symbol delay and M-
D algorithms are extended to the TCM signals. Computer simulation results are
provided to demonstrate the significantly improved performance of our techniques.

In Chapter 4, we introduce MUSIC and SS, and state the limitation of linear ar-
rays. We prove the necessary and sufficient conditions on a two dimensional array
for applying SS, and consider the FBSS technique for applications in two dimen-
sional array. We study the cause of ambiguities in a multipath signal environment.
We expand our results to ESPRIT.

In Chapter 5, we discuss some practical issues of using SS and verify the theo-
retical results obtained in Chapter 4 using computer simulations. We demonstrate
the effectiveness of our SS under multipath multiuser TDMA wireless communi-
cation environment. We present our techniques for suppressing interference and
achieving capacity increase using DOA based adaptive array.

In Chapter 6, we discuss the application of combined weights tracking and

decoding technique in DS/CDMA system. We developed reference-signal-based
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diversity combining schemes with predicted weights and orthogonal convolutional
codes.
Chapter 7 summarizes the results obtained in this dissertation and proposes

some suggestions for future research.
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Chapter 2

Diversity Combining

2.1 Introduction

Previous theoretical studies, based upon the ideal case of knowing complete infor-
mation about the fading channel characteristics showed that antenna arrays with
optimum combining can reduce multipath fading of the desired signal and sup-
press interfering signals [9], thereby increasing both the performance and capacity
of wireless systems. In the simulation study of adaptive array in the digital Mobile
Radio System IS-54 with flat fading [8], no error propagation in the decision di-
rected tracking mode was assumed and a computational intensive DMI algorithm
was used. The purpose of the work presented in this chapter is to evaluate the
performance of adaptive arrays in different situations: ideal case, training mode
and tracking mode, and to choose a best available adaptive algorithm for array
weights acquisition and tracking.

To achieve optimum combining in fast fading environment, we need to have a
fast convergence adaptive signal combining algorithm which can track the fading

channel. The DMI algorithm has been shown to have a fast convergence rate
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and good tracking capability compared to the low complexity LMS algorithm.
In this work, we investigate several RLS algorithms which are mathematically
equivalent to the DMI algorithm but computationally more efficient for symbol
by symbol weight updating. We completed a simulation study using different
algorithms to determine the maximum tolerable interference for a desired signal to
achieve a 0.01 BER performance. We found that, at a low fading rate, QRD-RLS
(QR decomposition based recursive least square) algorithm provides a much larger
dynamic range, and can almost double the tolerable interference level compared to
other standard RLS algorithms and modified DMI algorithm. Its computational
complexity is, nevertheless, no more than the others.

Through computer simulations, we found that the decision errors in the tracking
mode cause error propagation and cause severe degradation in BER performance.
On the other hand, in the training mode, an interference that is 40dB stronger
than the desired signal can be suppressed at a fading rate 80Hz and symbol rate
24.3ksym/sec by using QRD-RLS for weights acquisition and tracking. This fading
rate is corresponding to a vehicle speed of 60 miles/hr in IS-136 system.

Using QRD-RLS for weights acquisition and tracking, we found that in the
training mode, an interference that is 40dB stronger than the desired signal can
be suppressed at a fading rate 80Hz and symbol rate 24.3ksym/sec. This fading
rate is corresponding to a vehicle speed of 60 miles/hr in IS-136 system. However,
in the tracking mode, decision errors cause error propagation and cause severe
degradation in BER performance.

We also studied the AGC (Automatic Gain Control) and A/D effects on the
signals and array weights extraction and revealed an unstability problem caused

by a lower bits A/D converter. We developed an exact initialization method for
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Figure 2.1: Block diagram of adaptive array

complex QRD-RLS algorithms to address this problem and to reduce the total
computational complexity.

This chapter is organized as follows: In section 2.2, we introduce the principle
of optimum diversity combining and several conventionally used weights tracking
algorithms. In section 2.3, we present QRD-RLS weights tracking algorithm and
a new exact initialization of the complex QRD-RLS algorithm. Simulation results
are provided in section 2.4 to compare different weights tracking algorithm and
to study different effects on the performance of adaptive array. In section 2.5, we
analyze the error propagations in the decision directed tracking mode. We show the
severe performance degradations caused by that. We will discuss the algorithmi

of reducing of error propagation in the next section.

2.2 Diversity Combining

2.2.1 Ideal Optimum Combiner

16



Fig. 2.1 shows a block diagram of a M-element adaptive array handset. The

received signal vector consists of the desired signal vector x4, thermal noise vector

Xn, and interference vectors x;,j = 1,2,---, L and therefore, can be expressed as
L
X = Xg+Xp+ )X (2.1)
1=1
L
= ugsy(k) +xn + >_ uys;(k) (2.2)
j=1

where ug and u; are the desired and jth interfering signal channel distortion vec-
tors, respectively and sq(k) and s;(k) are the desired and jth interfering signals.

Assuming the desired signal, noise, and interfering signals are uncorrelated, and
Bls}(k)] = 1 (2.3)
E[s3(K)] = P, (2.4)
Then the received signal correlation matrix can be expressed as

L
R, = E(xx") = ugull + o*I +_ Puju” (2.5)
7=1

where o2 is the noise power and [ is the identity matrix.
The difference between the desired array response and the actual array output

signal defines an error signal e(n):

e(n) = d(n) — wx(n) (2.6)
The equation for the weights that minimize the mean-square error is [19]

Wopt = R;lryg = R;zluz (2.7)

In the following simulations, the weights in the ideal case are calculated by Eq. 2.7.
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2.2.2 Weight Generation

In practice, only a finite number of data are available for processing. MSE is
practically impossible to be calculated exactly. So we use the method of least
squares instead. We choose the tap weights of the adaptive array w, so as to

minimize the cost function that consists of the sum of error squares:

Em) =Y. | ei) P (28)

Here, we employ the sliding window as the data weighting function. In the method
of exponentially weighted least squares, we use an exponential window as the data

weighting function. We minimize the cost function

£(n) = ﬁ;w-ﬂe(i)ﬁ (2.9)

where X is a forgetting factor between 0 and 1. The optimum value of the tap-
weight vector, w(n), at which the cost function £(n) attains its minimum value is

defined by the normal equation written in a matrix form:
Ry, W(n) = fuq (2.10)

In this work, we only consider the use of an exponential window. The use of a

sliding window will be considered in the future. By using the exponential window,

R, is defined by

n

Ry, = Z A ix (i) xH (1) (2.11)
and
Foq = ; N (5)d* (4) (2.12)

To track time-varying signals, we update the weights upon the arrival of new
data at time n and the estimate of the weights at time n — 1. Several methods can

be used for updating:
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2.2.3 The modified DMI method

In the modified DMI method [8], we use the following recursion to update the value

of correlation matrix:

~

Rz (n) = ARge(n — 1) + x(n)x (n) (2.13)

Similarly, we use the following recursion for updating the cross-correlation vector

between the received signal and the desired response:
fz4(n) = Afza(n — 1) + x(n)d*(n) (2.14)

We calculate w on a symbol-by-symbol basis as follows:

~

w(n) = Rz (n) 'tzq(n) (2.15)

In Eq.( 2.15), we assumed that ﬁm is nonsingular so that f{zz exists. If not, we
can use SV D(Singular Value Decomposition) to find w.

This method needs to determine the inverse of the correlation matrix for each
symbol interval. It can be numerically unstable and can be time consuming, par-

ticularly if the number of weights is large.

2.2.4 The standard recursive least squares(RLS) algorithm

To avoid performing matrix inverse every time, and to compute the weights recur-
sively, the standard RLS algorithm uses a matrix inversion lemma to update the
inverse of the correlation matrix.

According to the matriz inversion lemma [20], we express the inverse of the

correlation matrix as follows:

_ AR (n = Dx(n)xT (m)Ri(n 1)

ﬁ"l = )\_lﬁ_l -1 R
2z (1) 2 (1= 1) 1+ A~1xH (n)Rg} (n — 1)x(n)

(2.16)
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We can then update w accordingly.

The standard RLS algorithm requires an initialization of R,,. Two methods in
the literature can be used to perform such initialization. The soft-constraint initial-
ization has proved statistical performance and was shown to be error bounded [21].
We adopt this method in our simulation. We set R,4(0) = 6I. The recommended
choice of § is that it should be small compared to 0.0102, where oZ is the variance
of a data sample x(n) [21]. However, without a priori information about the in-
terference and the Gaussian noise, an arbitrary set of the initial value may cause
a bias in the weight estimation.

Another problem with the standard RLS algorithm is that as DMI algorithms,
standard RLS is implemented in the covariance domain. As we will see in the next
section, it is numerically unstable compared to the one implemented in the data

domain.

2.3 QRD-RLS algorithm

An equivalent cost function of Eq.( 2.9) in matrix notation is given as
£(n) = [|AY*(n)e(n)]? (2.17)
where A is the exponential weighting matrix given by
A(n) = diag[A" 1, A" 2. 1] (2.18)
and the error vector € equals to
e(n) =d(n) — A(n)w(n) (2.19)

where the vector d(n) denotes the desired data vector, and A(n) denotes the data

matrix. The norm of a vector is unaffected by premultiplication by a unitary
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matrix. Hence, we may express the cost function £ as
E(n) = |Qn) A (n)e(n) || (2.20)

where Q(n) is an unitary matrix. It can be deduced [20] that £(n) is minimized

when W(n) satisfies the condition
R(n)w(n) = p(n) (2.21)

where Q(n) is generated in such a way that it applies an orthogonal triangulariza-

tion to the weighted data matrix A/2(n)A(n), as shown by

R(n
Q(n)A*(n)A(n) = (() ) (2.22)

R is an upper triangular matrix, and 0 is an null matrix. p(n) is a vector defined
by

p(n) = F(n)AY*(n)d(n) (2.23)
where F(n) consists of the first M rows of Q(n). Thus Eq.( 3.12) may be readily
solved for the optimum weight vector w(n) by a process of back substitution. To
solve the least squares problem recursively, we use a sequence of Givens rotations

to annihilate all M elements in the new incoming data x(n) one by one. This

procedure is shown as follows:

R M2R(n — 1)
O NPT 0 (2.24)
0
u”(n)

where T'(n) is the unitary matrix denoting the combined effect of a sequence of
Givens rotations:

T(n) =JIpy(n), -, J2(n)J1(n) (2.25)
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The QRD-RLS algorithm has good numerical properties. In our simulations, we
use a single precision floating point format. We found that QRD-RLS can almost
double the tolerable interference power level compared to a standard RLS algo-
rithm. This is because the QRD-RLS algorithm is implemented directly in the
data domain A(n), while the standard RLS algorithm or modified DMI is imple-
mented in the covariance domain R,,. Suppose, there is only one interference,
if I/S ratio is P; in the covariance domain, then I/S is v/P; in the data domain.
Under the same finite precision, this results in a higher signal to quantization noise
ratio in the data domain than in the covariance domain. Therefore, a higher dy-
namic range is obtained. Equivalently, in order to suppress the same amount of
interference, the QRD-RLS algorithm requires a significantly shorter word-length

than the standard RLS algorithm.

2.3.1 Exact Initialization of the complex QRD-RLS Al-

gorithm

We have seen in the previous section that the orthogonal triangularization of the
data matrix is recursively updated using a sequence of Givens rotation as each new
set of data enters the computation. A Givens rotation used to annihilate the kth

element of a new data vector x is given as:

1 0
c 0O s*
Ji(n) = ; (2.26)
0 0
—s 0O ¢
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The real cosine parameter ¢ and the complex sine parameter s have to satisfy the

following conditions:
A+lsP=1 (2.27)
z(n) = —sryx + czp(n) =0 (2.28)
where 7 is the kth diagonal element of the matrix R(n). For a complex input
x(n), c and s are given by

|7k

= 2.29
c VIreel® + i (n) [ (2:29)
_ xx(n)

Now suppose that we begin the time recursions at n = 2 when we have two vectors
x(1) and x(2). We transpose and stack these two vectors to form a matrix with
two rows. Then we apply a 2 x 2 Givens rotation matrix to eliminate the first

element of the row vector x(2):

Vxi(1) VAxa(1) -+ VAxu(1) ri(l) ri2(l) - rim(1)

x1(2) %2 o xum(2) 0 @2 - %@
(2.31)

In our simulation, we found that after going through the AGC and A/D converter,
low noise can be totally quantized to zero, and x(1) and x(2) can be identical at
very low fading rates. This results in r1;(1) = 0. Thus we cannot further append
vector x(3) to the matrix at the right side of Eq.( 2.31) and apply the Givens
rotation to eliminate the first two elements of x(3) using Eq.( 2.30). Actually,
suppose all the diagonal elements of R are real, the cosine and sine in the Givens

rotation can be calculated as follows:

¢ = Tkk (2.32)
VIl + lak(n) |2
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§ =
VIriel? + |z (n) |2

In particular, if we start with a real 7y, then the transformation maintains that

(2.33)

property. This also results in reduced computational complexity for further up-
dating. In the following, we developed an exact initialization algorithm for QR
decomposition which can eliminate the problem of dividing by zero and guarantee
the realization of all the diagonal elements of R in each updating step.

We begin the time recursions at n = 1. We multiply a complex number which
takes the complex conjugate of the first element of data vector x(1) and normalize it
to 1. This number can be expressed as e 7% where 6 = arctan[Im(z,(1))/Re(z1(1))].
At n = 2, We append x(2) to form a matrix with two rows. We apply a 2 x 2
Givens rotation matrix G(2) with ¢ and s calculated by Eq. 2.32 and 2.33 to

eliminate the first element of the row vector x(2).

c s Ve 01z (1) Ve 0ay(1) -0 Ve 0y, (1)

(2.34)
-5 ¢ z1(2) z2(2) zp(2)
@y Oy ... O
_ L) (1) 712 (1) 1M(1) (2_35)
0 2@ - 2@
where
\/Xe‘jalzl(l)
c= (2.36)
V(e (1))2 + |21 (2) 2
and
s = 1) (2.37)

Ve 112, (1)) + |21 (2) 2
We then multiply a unitary matrix to make the xél)(2) real.

(2) (2) (2) %) @ ... .2

|

1 T T S 5 r T
11 12 1M _ 12 1M (2.38)
e || 0 2@ - 2l 0 i - Y
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Figure 2.2: Comparison of different QRD-RLS initialization schemes

where 8, = arctan[Im(z$" (2))/Re(z$" (2))].- At n = 3, we append vector x(3) to
the matrix at the right side of Eq. 2.38 to form a three-row matrix. We eliminate
the first two elements of x(3) using two Givens rotations J2(3) and J;(3).

3) ) 3)

7"&%) Tg) 7"321 Tﬁ) T12 T13 Tim

J2(3)J1(3) 0 rg) rﬁ} =1 0 rg) rég) ’I‘S\Zf

21(3) (3) - zm(3) 0 0 9@ - 2PE)
(2.39)

We then multiply a unitary matrix to make the xg2) (3) real.

E [Tr2 ol | [
1 I R O
i e 90 0 0 x§2)(3) xg\%[)(3) 0 0 rgg) rgel
(2.40)

By continuing this process, we can construct a triangular matrix at n = M with

all diagonal elements real.
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Fig. 2.2 shows simulation results of different initialization schemes. With the
one without realization, we can see an obvious performance degradation caused by
the problem described earlier in this section. In contrast, our method shows no

evidence of numerical instability.

2.4 BER Performance

5 In this section, we present our simulation results to compare different algorithms

and to evaluate the performance of adaptive arrays quantitatively.

2.4.1 Radio Channel Specifications

In the adaptive array system we simulated, the transmitted signal is modulated
by QPSK. The carrier frequency is 2 GHz. The modulation data rate is 16kb/s.
The channel is time-division-multiplexed. There are 162 symbols in each time slot.
BER were obtained based on an average over 1000 slots.

A useful index of the rate at which the mobile radio channel varies with time is
the symbol-normalized fade rate [22] v = fpT, where fp is the maximum Doppler
frequency and T is the inverse of the channel symbol transmission rate. Here, we
use an equivalent index symbol vary period, denoted as Ny4, which is given by
Nty = 1/v =1/ fpT;. Table 2.1 shows this index for different systems for vehicle
speed at 60 miles/hr.

According to this index, we can establish a relationship between different sys-
tems. This relationship is shown in Fig 2.3. Although our simulations are based
on PCS system, a corresponding performance index can be found for other TDMA

systems.
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System | N, T, fo Nyg

at 60miles/hr
PCS 162 62.5usec | 178.8 Hz 89.5
[S-136 | 162 41.5usec | 80 Hz 301.2
GSM 156.25 | 3.692usec | 100 Hz 2708.6

Table 2.1: Adaptive Array Design Parameters for TDMA Systems
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Figure 2.3: Equivalent Fading Velocities

2.4.2 Algorithms Comparison

The computer simulation results shown below illustrate the effect of finite pre-
cision on the performance of adaptive array, based on different algorithms. A single
precision floating point format is used in all these approaches. Fig. 2.4 depicts the

boundary conditions to achieve 0.01 BER. Here, we assume

e The reference signal is the transmitted signal.
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Figure 2.4: The boundary conditions for achieving 0.01 BER, without considering
the finite precision A/D effect. Both signal and interference move at the same

speed, QRD-RLS(’- -’), DMI(’-’) and standard RLS(’-.")
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e Both vehicles move at the same speed.

o A/D converter has more than 32 bits precision and has negligible effect com-

pared to the single precision effect in DSP processing.

e The forgetting factor A was optimized at speed of 60 miles/hr and was found

to be 0.74.

In our simulation we found that the performance is almost stable for a small change
of A, e.g, from 0.72 to 0.78.
In Fig. 2.4, interference to noise ratio is plotted as a function of the vehicle

velocity. From Fig. 2.4 we can make the following observations:

e Although RLS has a faster convergence rate comparing to other adaptive
algorithms such as LMS and CMA, the tracking ability is still limited and

loss of tracking is observed at a higher fading rate.

o At a lower fading rate, QRD-RLS shows supreme performance, can suppress
interference that is much stronger than the desired signal. The DMI or the
standard RLS has a limited interference suppressing capability because of
a much more severe finite precision effect in the covariance domain which

distorts the desired signal at a high interference level.

The complexity of the different RLS algorithms in terms of the number of
additions, multiplications, divisions per iteration is shown in Table 2.2.

In general, addition and multiplication operations can be achieved within one
instruction cycle by most state-of-the-art digital signal processors such as TMS320C40,
one division operation can be finished within 7 cycles, and one inverse square root

operation can be finished within 10 cycles. Thus both RLS algorithms have about
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Figure 2.5: The boundary conditions for achieving 0.01 BER, without considering

the finite precision A/D effect. The desired signal moves at 5 miles/hr, QRD-
RLS(’- -’), DMI(’-’) and standard RLS(’-.’)
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RLS agorithm | QRD-RLS | m=4 | Standard RLS m=4

Version 2(Version 1)

Multiplication | 9m? + 12m | 156 | 14(10)m? + 18m + 2 | 298(234)

(1 cycle)

Addition 6m?+4m | 112 | 12m? + 10m 232
Division 2m 56 2 14
(7 cycle)

Reciprocal m 40

Square Root
(10 cycle)

Approximate 252 312(248)

Total Cycle

Table 2.2: Complexity Comparison Between Standard RLS and QRD-RLS used

for Adaptive Array Weights Tracking

the same computational complexity. Table 2.3 lists the number of instruction per
second required in QRD-RLS algorithm for different systems. We can see that for
PCS and IS-136, this level of MIPS is well within the capabilities of TMS320CA40.
For a GSM system, this complexity is not acceptable using a single DSP processor,
allowing However, in a GSM system, the symbol fade rate is low even for a vehicle
speed at about 60 miles/hr, it allows us to update weights every 10 to 20 symbols.
We can also adopt block processing techniques [56]. Thus the complexity is again

within the capabilities of modern programmable DSP processors.
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PCS | 4 MIPS

IS-136 | 6 MIPS

GSM | 68 MIPS

Table 2.3: MIPs required in different systems

2.4.3 Several Factors in Tracking

1. Tracking relative to velocity

The fading rate of the desired signal and of the interference are generally not
the same. The fading rates can be even more different when an indoor user
is interfered by an outdoor user. In Fig. 2.5 an interference to noise ratio is
plotted as a function of the interference handset moving velocity. Here, we
assume that the desired handset moves at 5 miles/hr. Comparing this result
with the one shown in Fig. 2.4, we observe that the BER is lower in Fig.5
when interference velocity is faster than 5 miles/hr. This is consistent with
common sense that it is more difficult to track two faster moving vehicles
than to track one. The relative variation rate of signal to interference ratio
depends both on the variation rate of the signal and the variation rate of the

interference. This relationship is shown below:

8 (P(t) 8P, (t P (¢ aP; ap
5t (Frd)) “%JPI+PS%JPI=1+E (2.41)

3 P? P, P, P

In the following simulation, we assume that both the desired signal and

interference have the same fading rate.

2. Tracking relative to SNR
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Fig. 2.4 and Fig. 2.5 show that the interference suppressing level increases
nonlinearly with SNR. When SNR increases from 10dB to 14dB, the im-
provement is significant. However, when the SNR increases from 20dB to
30dB, the improvement is less obvious. At a very low fading rate, an adap-
tive array can suppress interference that is much stronger than the desired
signal even when the SNR is low. In this situation, the signal and noise level
change very slowly in one time slot. Gaussian noise is the dominant effect.
However, for fast fading channels, the joint effect of high level Gaussian noise
and fast changing channel distortion make it difficult for all the adaptive al-
gorithms to extract the phase information of the desired signal. When the
noise level is relatively high e.g., 20dB, the fast changing channel distortion
is the dominant effect on weight tracking. In indoor communication, signal
levels are usually lower. But cellular phones(car phones) usually get signal
power several dB higher relative to indoor [3] signals. In most cases, we don’t

have to be concerned with fast fading coupled with low SNR.

. Tracking relative to the forgetting factor

In our simulation, the forgetting factor A is optimized when both vehicles
move at 60 miles/hr. The smaller the A, the faster the convergence rate but
the higher the misadjustment. At a higher fading rate, we need to choose a
smaller ) for fast tracking. At a lower fading rate a larger A can improve the
performance. In most cases, we don’t know the vehicle velocity in advance.
Therefore, we use the A optimized for 60miles/hr, for all velocities. We are

most interested in the adaptive array performance at 60 miles/hr.
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Figure 2.6: The boundary conditions for achieving 0.01 BER, with a 10 bits A/D

converter

2.4.4 AGC and A/D Effect

In a receiver, the received power variation of each branch is regulated by an AGC.
The gain is determined by the maximum power of the four branches, and is used
on all branches (common AGC). The A/D converter we simulated has 10-bits
accuracy.

Fig. 2.6 shows the boundary of 0.01 BER in the system described above. In
this simulation we did not consider the effect of decision errors on the reference

signal. We have the following observations:

e The lower bit A/D converter dominates the finite precision effect and causes

the performance deterioration.

e Due to the finite precision A/D effect, the difference of using different al-

gorithms is not discernable. The single precision floating point format used
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Figure 2.7: The boundary conditions for achieving 0.01 BER

in our DSP processor has more than enough precision compared to the 10
bit precision used in the A/D converter. We should be able to use much

lower precision for QRD-RLS than for the standard RLS to achieve the same

performance.

e With the assumption that a correct reference signal is always available, an
interference which is 20dB higher than the desired signal can be suppressed
at SNR of as low as 10dB for a vehicle speed up to 17 miles/hr. This fading
rate is equivalent to a fading rate for a vehicle speed up to about 60 miles/hr

in the IS-54 system. Meanwhile, we also see a performance loss at a high

fading rate.
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2.5 Error Propagation Problem
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Figure 2.8: Error propagation phenomenon when SNR=20dB, Veloc-
ity=60miles/hr I/S=20dB

In the following simulation, we use QRD-RLS algorithm for adaptive array
processing. In a system like IS-54, there are only 14 known symbols available for
synchronization and training. We have to change to the decision directed mode
to further track the fading channel. To obtain the solid line in Fig 2.7, we used
the 1-14 symbols as the training sequence and later changed to decision directed
mode. It is necessary to change to a decision directed mode to further track the
fading channel. We see a severe performance loss compared to our previous results.
This is caused by the error propagation in the tracking, i.e., when an decision
error is made, this error remains in the estimation of the next set of weights.
In our simulation we use a forgetting factor of 0.74, the corresponding window
size is small. The decision error weights heavily in the subsequent estimation

and will most likely cause a large bias leading to wrong decisions. The further
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Figure 2.9: The boundary conditions for achieving (a) 0.1 frame error rate (b) 0.01

frame error rate

propagation of errors causes eventually the failing of the subsequent decisions.
This phenomenon is shown in Fig. 2.8 which measured the absolute error between
the transmited signals and the signals after array combining. We also measured
the frame error rate. Fig 2.9 (a) shows the 10% frame error rate boundary. Fig 2.9

(b) shows the 1% frame error rate boundary.
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Chapter 3

Simultaneous Diversity Combining and

Decoding

3.1 Introduction

In the previous chapter, we have shown that in slowly time-varying mobile ra-
dio channels, adaptive diversity combining can reduce multipath fading of desired
signal and suppress interfering signals. The effectiveness of optimum adaptive di-
versity combining on a fast time-varying channel, however, depends on the tracking
speed of the adaptive algorithms and on the control of a decision error propagation.

Adaptive optimum diversity combining weights tracking and adaptive channel
equalization are two closely related problems. Most of the techniques used for
equalization can also be applied to adaptive optimum diversity combining. The
majority of previous studies on channel equalization or adaptive array combining
have concentrated on slowly time-varying fading channels.

In a slowly time-varying fading channel, LMS algorithm is used most often

for channel equalization. A small change in the equalizer weights is capable of
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tracking the fading variation. Error propagation is not a severe problem in this
situation. Bit Error Rate (BER) performance can be further improved with the
combination of an equalizer and a Viterbi decode [53]- [55]. A tentative decision
with small delay or no delay from a Viterbi decoder has been used for channel
tracking. In contrary, in a fast time-varying fading channel, a decision delay results
in poor tracking performance and a premature tentative decision will cause error
propagation.

Also, in a slowly time-varying fading channel, blind equalization techniques
such as constant modulus algorithm (CMA) can be used to avoid error prop-
agation in the decision-directed channel equalization [56]. Unfortunately, blind
equalization algorithms converge slowly and are not capable of tracking fast time-
varying fading channel. Although various improved schemes of CMA have been
investigated [57], most of them involve significant increases in complexity or com-
putational costs, and the convergence rates are still lower than that can be achieved
by RLS algorithms.

Recently, respective-states channel estimation (RCE) [58][59] was proposed,
and was reported to have better performance over conventional decision-directed
channel equalization on fast time varying fading channels. Nevertheless, the con-
tinued use of the Viterbi algorithm (VA) in RCE tends to introduce error when
cochannel interferences are strong. Moreover, the complexity of this approach is
high. This method has not yet been studied on adaptive array systems.

To effectively perform diversity combining on a fast time-varying fading chan-
nel, we developed an adaptive diversity combining system using a M-D decoder.
The array weights are tracked by using the QRD-RLS algorithm along each of M

surviving paths selected by using an M-D decoding algorithm. M and D are to

39




be selected according to RLS updating window length and interference to signal
ratio. This system significantly reduces error propagation in the decision directed
array system while maintaining the same tracking speed. Our technique is first
developed for the convolutional encoded signals and then extended to trellis-coded
modulation (TCM) signals to increase information bit rate.

This chapter is organized as follows: In section 3.2, the idea of simultaneous
diversity combining and decoding is introduced. To realize it, computationally
efficient D-symbol delay algorithm and M-D algorithm are developed. QRD based
parallel weights tracking techniques are presented. The performance and the com-
putational complexity of our adaptive diversity combining system are analyzed. In
section 3.3, the D and M-D algorithms are extended to the TCM signals. In sec-
tion 3.4, computer simulation results are provided to demonstrate the significantly

improved performance of our techniques.

3.2 Simultaneous Weights Tracking and Decod-
ing

We have shown in the previous chapter that a premature symbol by symbol decision
is not reliable and will cause error propagation. One solution is to adopt the
blind equalization technique, which avoids the use of reference signals; however,
its convergence rate is too slow. The other solution is to simply combine array
weights updating with convolutional decoding, and feed back more reliable delayed
decision from a convolutional decoder. However, a decision delay may cause poor
channel tracking.

To reduce error propagation, and to make a more reliable delayed decision
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Figure 3.1: (2,1,2) convolutional encoder

but without lossing weights tracking speed, we propose the following simultaneous

array weights tracking and decoding technique.

3.2.1 More reliable decision based on D symbols

We use a convolutional code shown in Fig. 3.1 to encode the transmitted infor-
mation bit and use QPSK to modulate the transmitted signals. At each state, two
possible QPSK symbols might be transmitted based upon a “0” or a “1” input.
Instead of making an immediate bit decision based upon one symbol we make a
more reliable symbol decision based upon D symbols.

We elucidate our thinking using the example shown in Fig. 3.2. In Fig. 3.2(a),
D = 5. At each symbol interval, all the possible sequences in the next D stages

are saved. On each path, we perform the following operations:

e Update diversity weights using each path’s own reference signals, i.e. its own

path outputs.

e Calculate the Euclidean distance between array output and path output for

each branch as follows:

bi(n) = [w{’ (n — 1)x(n) — si(n)]" (3.1)
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Figure 3.2: An example of delayed bit decision based on 5 symbols
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where w;(n — 1) is a previously updated weighting vector, x(n) is a currently
received array data and s;(n) is the reference signal which is the path output

on each branch.

e Calculate and save the accumulated Euclidean distance which is evaluated

by $P_ b;(n) along its own path.

In Fig. 3.2 (a), all the solid lines originate from a “1” input bit at stage “0” and
all the dashed line originate from a “0” input bit. If at stage 0, the transmitted
information bit is “1” which corresponds to path output “11”, then a correct path
must be a solid line path. After D symbol interval, for one half of the solid paths,
weights are updated based upon one correct reference signals and D — 1 wrong
reference signals. One fourth of the solid line paths are updated based upon two
correct reference signals and D — 2 wrong reference signals and so on. On the other
hand, on each dashed line path, weights are updated erroneously along D branches
and will result in a large accumulated path metric. The smallest accumulated path
metric of all the solid line paths should be smaller than that of all the dashed line
paths. We then decide the input bit back by D stages. That input bit should be
the bit that leads to the selected smallest accumulated path metric.

Once the input bit back by D stages is chosen, we save all the branches origi-
nating from it and discard the rest. In Fig. 3.2 (a), we discard all the dashed line
paths. At the next stage, we repeat this process to choose the bit at stage 1, which
is shown in Fig. 3.2 (b).

Along the correct path, weights are updated symbol by symbol. There is no
loss of tracking. Moreover, there is no error propagation. We use the correct path’s
own path output as the reference signal. There is no need to feedback any decided

symbol. This way, we make a more reliable symbol decision based on D symbols.
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Therefore, we reduce error propagation while keeping the same tracking speed.

3.2.2 D-symbol Delay Algorithm

We introduced our idea for reducing error propagation based upon convolutional
code and accumulated path metrics along D + 1 symbols.

In the following, we will present an efficient D-delay algorithm to perform the
simultaneous weights tracking and decoding.

In Fig 3.2 (a), at stage 5, two paths merge into each state before we make
decision. After the decision, we discard one path in every pair. We will see in the
following that each state only needs to remember one w and one accumulated path
metric. It then contains all the information on the past D symbols. Each time,
we only need to update the information contained in the current states as shown
in Fig. 3.3.

The decoding algorithm relies on the following key properties of a trellis dia-

gram with 20 states.
e Property 1: The states in the trellis are in the order from 0 to 2P — 1. The
state of the encoder is set to 0 at the begining of each frame.
An example is shown in Fig. 3.4 where D = 4.
e Property 2: The ith bit of each state corresponds to the input bit ¢ stages
back.

For example, in Fig. 3.4, at stage N — 1, all the states with “0” as the last

bit are from a “0” input 4 stages back at stage N — 5.

From Fig. 3.4, we observe that a state X;Xs:--Xp can only be reached

from the previous state that is either X,---Xp_10 or X,--- Xp_;1. This
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Figure 3.3: D-delay algorithm
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Figure 3.4: 4-symbol delay decoding trellis diagram
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Figure 3.5: States change relationship between consecutive stages

is demonstrated more clearly in Fig. 3.5. From this point on, we will refer
to the path from state Xy Xp_10 to X1 X5+ Xp as an upper path and
the path from the state X5--- Xp_11 to X;X5--- Xp_1Xp as a lower path.
State Xy -+ Xp_10 is always above state X, - -+ Xp_11. Therefore, the upper
path that merges to X1 X5+ Xp must be from X5--- Xp_;0 and the lower
path must be from X, --- Xp_11. According to Property 2, X5--- Xp_10is
from a “0” input bit D stages back and X5 .- Xp_11 is from a “1” input bit

D stages back. This leads to property 3.

e Property 3: Every upper path of a pair that merges to each state corre-
sponds to a “0” input bit D + 1 stages back. Every lower path of a pair that

merges to each state corresponds to a “1” input bit D + 1 stages back.

Based on these properties, we developed the following D-symbol delay algo-

rithm.

e At each stage, calculate the next accumulated path metrics of all the paths
that are generated from all the current states. Compare their accumulated
path metrics. If the path with the smallest accumulated path metric is an
upper path, then every upper path at each state is kept and every lower

path is discarded. The information bit D stages back is decided to be 0.
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Otherwise, all the lower paths are kept and all the upper path are discarded,
the information bit D stages back is decided to be 1.

At the current stage, a set of array weights wg(n) at each state s, s =
1,---,2P are updated by using wWpre_s(n— 1), which is a set of array weights
obtained at the state prior to “s” along the surviving branch, and by using
array data x(n) and the modulated output signal of the path from state

[{1P%)

“pre — s” to “s”.

In Fig. 3.4 at stage N — 1, the path from state 0111 to state 1011 has the
smallest accumulated path metric. All the lower paths, i.e. all the solid line
paths, are saved as the surviving paths. The information bit 4 stages back is
1 which is the input bit that leads to the path from state 0011 at time N —5
to state 1001 at time N — 4. We then update the array weights along the
surviving paths. For example, wio11(n) is updated based on woi1(n — 1),
the QPSK modulated signal (@ + z@) of path output 00 and received array
data. Finally, we update the information at the current states with new
updated array weights and accumulated path metrics of the surviving paths.
The whole updating and symbol decision process is completed by only using

the information at current time slot as shown in Fig. 3.3.

At the end of each time slot, the last D input bits are decided based upon
the final state of the selected path. The last ith bit is equal to the first ith
bit of the selected state. In Fig. 3.4 the last state is 1101, the last four input
bits are 1011.
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3.2.3 Performance Analysis

In this section, we will prove that the reliability of bit decision increases with an
increase of D in the D-symbol delay algorithm when there is no strong cochan-
nel interference. But when there is strong cochannel interference, D has to be
appropriately chosen to achieve an optimal BER.

In general, the branch metrics measured by Eq.( 3.1) can be divided into three

categories:

e Case 1: w is updated using n desired symbols, and s;(n) is a desired symbol.
The expected value of b;(n) is the mean square error of the estimated array
output wX(n—1)x. We denote it as mse. %sﬁez ~ x2. The mse is determined
by the adaptive algorithm used, such as RLS or LMS and also determined by
the channel conditions such as SNR, fading rate and cochannel interference

to signal ratio.

e Case 2: w is updated using n desired symbols, s;(n) is an undesired symbol,
%ﬁ} is from noncentral x? with 1 degree of freedom and noncentral parameter

dy, where d; is the Euclidean distance between two output signals from two

branches that stem from the same node.

e Case 3: w is updated using n—m desired symbols and m undesired symbols.
s;(n) is an undesired symbol, The expected value of b;(n) is large in this case
and is denoted by MSE. If there is no strong interference in the received
array signals, along a wrong path the path outputs are randomly connected
with respect to the received array data, and the updated array weights are

getting more and more divergent. As a result, we have

MSED > MSED_l > MSED._2 > e > MSE;[ > mse. (32)
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Accordingly, we evaluated the path metrics Py(n),i = 1,---2P*! by Pi(n) =

Yo+l bi(n),i = 1,---2P*1, there are three classes of path metrics:

e Class 1: P, is a path metric of a correct path.

e Class 2: The first m branches belong to Case 1, the (m+1)th branch belongs

to case 2, the last D — m branches belong to Case 3, m=1,---,D

e Class 3: The first branch metric belongs to Case 2, the rest branches belong

to Case 3.

In a D-delay decoder, we make a choice between two subsets of equal size based
on the smallest P; at each stage. Note that all the paths in the undesired subset
belong to Class 3, and the paths in the desired subset belong to either Class 1 or
Class 2. Obviously, the average difference between a P, in the undesired subset
and the P, corresponding to the correct path will decrease with an increase of D.
The average difference between a P, and a P; of a false path in the desired subset
is

D
E(P,—-P)= > MSE,—m-mse m=1,2,---,D, (3.3)
i=D—m+1

The overall average difference Ep between a path in Class 3 and a path in Class

2 for a D-symbol fixed-delay decoder is given by

By = BB -F) (3.4)
1 D D
= 557 Yo 2b=m( Y MSE; —m - mse) (3.5)
m=1 i=D—m+1
1

= [%:1 2D-m( XD: MSE; — m - mse) + (i MSE; -~ D -mse)] (3.6)

2P -1 i=D—m+1 =1
1 D-1 D D
= 35 1[2- Y 2Pt N MSE; —m-mse)+ (D>, MSE; — D - msé€3|7)
- m=1 i=D—m+1 i=1
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> Z——[2- Y 27 Y MSE;—m-mse) + (>, MSE; — D - (3]
27 —1 m=1 i=D—1-m+1 i=1
1 D-1 2
= 557 [2-(2°7 = 1)Ep_1 + (O_MSE; — D - mse)) (3.9)
- i=1
D
= Ep-1+[>. MSE;— D -mse) — Ep_1] (3.10)
i=1
> FEp_; (311)

The bigger of the decision delay, the larger the average Euclidean distance between
the correct path and a false path in the other subset and also the larger the average
Euclidean distance between paths in the two different subsets. Therefore, the
BER decrease with the increase of the decoding decision delay. However, if the
output symbols of one of the 2 surviving paths happen to be the same as the
transmitted symbols from the interference, the further increase of D will cause
the weights to converge along the interference path and will result in an increase
of BER. The relationship in Eq.( 3.2) no longer holds. MSE; increases initially
and then decreases. When D is large enough, M SE; finally converges to a mean
square error between (i) the combined array outputs using the weights that are
trained by the interference signals and (ii) the interference signals. We denote this
mean square error by mse;. When the Ith interference is stronger than the desired
signal, we have mse; < mse. Thus P; may become smaller than P; when D is large
enough. Our simulation results also showed that the increase of D will decrease
the BER when the interference signals are not as strong as the desired signal.
When an interference signal is stronger than the desired signal, BER decreased as
we increase the decision delay from 1 to 4 symbols. The improvement becomes
smaller and smaller. As we further increase the decision delay, we observe a slight

increase of BER. Therefore, a proper delay length needs to be decided based on
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I/S ratio and RLS updating window size to minimize BER.

3.2.4 M-D algorithm

The use of the D-symbol delay algorithm reduces the error propagation in the con-
ventional decision directed array weights tracking algorithm. However, the com-
plexity would increase drastically if we use a D-symbol delay algorithm, because
now we have to update 2P weighting vector instead of 1 weighting vector.

To reduce complexity, we exploit the fact that the correct path should have
much smaller accumulated path metric than most of the other selected paths. So,
we should be able to discard a majority of the selected paths and keep those most
likely ones without compromising the performance. This results in the following
M-D algorithm.

Based on the three properties we discussed in the previous section, we find that
if all the binary representation of the surviving states have a common last bit, they
must be from a unique state D stages back, and the input bit to that state is equal
to this last bit. Otherwise, they are from different states D stages back. From this
finding and the D-delay algorithm presented in previous sections, we developed

the following M-D algorithm.

e At each stage, calculate the next branch metrics and accumulated path met-

rics of all the paths that are generated from the surviving states.

e When the binary form of the surviving states have a common last bit, either
“1” or “0”, the input bit D stages back is decided to be equal to this common
last bit. Select M paths that have the smallest accumulated path metrics

from all the surviving paths from the surviving states.
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----- 0001 x000 xx00 XXxQ upper path
—_— 1001 x100 xx10 XXX 1 lower path

Figure 3.6: An example of M-D decoding trellis diagram, M =2, D =4

e When the surviving states have different last bits, compare all the path

metrics from these states. If the smallest path metric is from an upper path,
keep all the upper paths and discard all the lower paths. The input bit D
stages back is decided to be “0”. Vice versa. Select M paths that have the

smallest accumulated path metrics among the surviving paths.

A set of array weights wy(n) at each surviving state is updated by using
Wpre—s(n — 1) obtained at the state prior to ’s’ along the surviving branch,
and by using array data z(n) and the modulated output signal of the path

(C ”

from state “pre — s” to

At the end of each time slot, the last D input bits are decided based on the
final state of the selected path. The last ith bit is equal to the first ith bit

of the final selected state.
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In Fig. 3.6, the two surviving states 0010 and 1101 at stage n + 4 have different
last bits. They are from two different input bits back by D stages. Using the
weights obtained at these two surviving states, and the received array signal, we
calculate the branch metrics of the branches generated from these two states using
its own path output. We update accumulated path metrics of the four correspond-
ing paths. The path that enters state 0110 at stage n + 5 has the smallest path
metric. It is a lower path. The input bit 4 stages back is decided to be “1” which
is the bit that generates the path from state 0011 at stage n to the state 1001
at stage n + 1. We then discard all the upper paths at stages n + 5 and select
2 paths from all the lower paths. In this case, both lower paths are selected and
kept. We then update the weights of these two surviving paths using its own path
output and save the updated weights separately at these two surviving states. At
the next stage n + 5, we compare the last bit of the two surviving states 0110 and
1110. They have a common last bit “0”. The input bit 4 stages back is decided
to be “0” which is the bit that generates the path from 1001 at stage n + 1 to
the state 0100 at stage n + 2. We then continue to update the accumulated path
metrics for the paths generated from these two surviving states, find the one with
the smallest path metric, choose the next two surviving paths, and update the
next two weights.

The use of M-D algorithm reduces the number of surviving paths from 2° to M.
Our simulation results showed that an M as small as two results in only a slightly
degraded performance while D = 5. Although, compared to the decision directed
weights tracking algorithm, M-D algorithm still increases the number of updating
weighting sets from 1 to M, the complexity does not increase by M times. We will

demonstrate this relation in the following sections.
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3.2.5 Diversity Weights Tracking

To achieve MMSE optimum combining on time varying fading channels, recursive
algorithms such as LMS or RLS can be applied. RLS has been known to have a
fast convergence rate and good tracking capability compared to the low complexity
LMS algorithm [60] or blind adaptive algorithms such as CMA. Among different
RLS algorithms, QRD-RLS has much better numerical stability. Moreover, it is
also computationally more efficient. We can obtain the branch metrics required in
M-D algorithm directly using the modified QRD-RLS algorithm without calculat-
ing the w explicitly. The QRD-RLS algorithm is thus adopted in our system.

The weights in QRD-RLS algorithm satisfy the following equation
R(n)w(n) = p(n) (3.12)

which is another form of solution to minimizing Eq.2.9. R is an upper triangular
matrix obtained in the following equation, in which the weighted data matrix

AY2(n)A(n) is trianglarized through a unitary matrix Q(n).

R(n
Q(n)AY*(n)A(n) = (() ) (3.13)

where O is a null matrix. p(n) is a vector defined by
p(n) = F(n)AY2(n)d(n) (3.14)

and F(n) consists of the first M rows of Q(n).
To use the QRD-RLS algorithm for parallel residual error (square root of branch
metric) calculation, M sets of array weights w;(n),¢ = 1,--- M, which are associ-

ated with the M surviving paths, must satisfy the following equation:

R(n)[wi(n), wa(n), - -, wam(n)] = [p1(n), p2(n), - - -, Pu (n)] (3.15)

95




To solve the least square problem recursively, we use a sequence of Givens
rotations to annihilate all M elements in the new incoming data x(n) one by one.

This procedure is shown as follows:

. [ \2R(n — 1)
R 0 (3.16)
0
i xH(n) ]

where T(n) is the unitary matrix denoting the combined effect of a sequence of
Givens rotations:

T(n) = Ipu(n), -+, J2(n)J1(n) (3.17)
pr(n) is updated based upon the output df (n) of the kth surviving branch at time

n and the vector px(n — 1) generated at the departing state of the branch.

[ M/2py(n—1) |
P () —T(n) | \2v(n—1) |- (3.18)
vk(n)

 aw

Without calculating w explicitly, the residual error (or the branch metric) of the

kth path can be obtained through T'(n) and the last element of v4(n) [20].

3.2.6 Computational Complexity

In the QRD-RLS updating algorithm, the complexity of updating R is O(K?),
The complexity of updating p is O(K). The total complexity of calculating 2 x M
branch metrics is O(K? + 2MK). While in the decision directed algorithm, in
addition to updating R and p, we need to perform back substitution to calculate
w in order to get estimated array output. The complexity of back substitution
is O(K?). Overall, compared to decision directed algorithm, the complexity of

updating M paths is only moderately increased when M is less than K.
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If we keep M surviving paths, we need to calculate 2M branch metrics and
compare 2M accumulated path metrics.

The cost of getting M surviving paths in this M-D decoder is evaluated in the
following. One can find the best path out of 2M paths with 2M — 1 compar-
isons [62]. Let Cy(n) denote the average number of comparisons required to find

the tth largest of n elements. Then an algorithm exists [62] for which
Ci(n) =n+t+ f(n) where lim f(n)/n = 0. (3.19)

To find the Mth best path out of 2M paths, we need 2M + M + f(2M) comparisons.
Once the metric of the Mth path is known, we can choose the rest M — 1 best
paths with at most M — 1 comparisons [63]. In total, the cost of finding the M

best paths out of 2M paths is
AM — 1+ f(2M) comparisons/branch released (3.20)

The complexity is O(M). The memory required is also O(M). Thus, this part

adds a small amount of complexity when M is less than K.

3.2.7 Proposed Adaptive Diversity Combining System

A block diagram shown in Fig. 3.7 summarizes our proposed adaptive diversity
combining system. Each source is encoded with a binary convolutional code. This
system combines our proposed M-D decoder and QRD-RLS algorithm for surviv-
ing paths selection and symbol decision. At each symbol interval, M surviving
paths are selected. Among them, only one is left after D symbol intervals. Each
transmitted symbol is automatically decided after a D symbol delay. This system

reduces error propagation, with moderate increase in computational complexity.
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Figure 3.7: The proposed adaptive diversity combining system
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3.3 M-D decoding of a Trellis coded 8-PSK code

In some situations such as wireless video transmission, we need to transmit high
speed data through some limited frequency bandwidth. A use of 8-PSK signal con-
stellation in conjunction with trellis codes can double the transmitted information
bit rate compared to a binary 1/2 convolutional coded 4-PSK signal used in the
previous examples. Therefore, we modified the D and M-D decoding algorithm of
convolutional code and applied it to TCM [61].

In our example of TCM, we partition the eight-phase signal constellation shown
in Fig. 3.8 into subsets of increasing minimum Euclidean distance. We use the
rate of 1/2 convolutional code to encode one information bit while the second
information bit is left uncoded. The encoder is shown in Fig 3.8. The coded bits
are used to select one of the four subsets that contain two signal points each, while
the uncoded bit is used to select one of the two signal points within each subset.
The Euclidean distance between parallel paths is 24/¢, where € is the energy of the
signal.

The decoding algorithm is given as follows:

e Select the branch having the smaller path metric among the parallel branches.
If an upper path is selected, the uncoded bit at current time is decided to be

“0”, otherwise, it is decided to be “1”.

e The coded bit is decoded using the D or M-D algorithm presented in the

previous sections.

Fig. 3.9 shows a 2-symbol delay 8-PSK TCM decoder. Each time, one branch
is selected between each pair of parallel branches in favor of the one having a

smaller branch metric. Then we choose surviving paths among these selected paths
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Figure 3.8: Set partitioning of an 8-PSK signal set
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Figure 3.9: 2-symbol delay 8-PSK TCM decoding trellis diagram

following the same procedure that is used in the convolutional decoder having a
2-symbol delay. At time 3, one path is selected from each pair of branches that
are generated from surviving states 01 or 11 at stage 2. Within these four selected
paths, the path that enters state 10 at stage 3 has the smallest accumulated path
metric. All the lower paths in the surviving paths are saved, i.e., the paths enter

state 00 and state 10 at stage 3.

3.4 Simulation Results

In our simulations, four antennas are used. The channel is time-division-multiplexed.
There are 162 symbols in each time slot. The first 14 symbols are from the train-

ing sequence. The carrier frequency is 900 MHz. The modulated data rate is
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Figure 3.10: Learning curve of LMS, CMA and RLS

24.3ksym/s, which is the same as in IS-136 standard. The SNR is 15dB.

It is well know that the RLS algorithm has faster initial convergence rate and
better tracking ability than the LMS algorithm, and the reference dependent RLS
and LMS algorithms have faster convergence rate and better tracking ability than
the blind adaptive algorithms such as CMA. [20]. With 14 training symbols (in
IS-54), it is not possible for weights to converge to optimal values using either LMS
or CMA [60]. RLS algorithm is adopted in our system for weights initialization.
RLS algorithm is however computationally more expensive than the other algo-
rithms. In most slowly time-varying channels, people still prefer LMS. To see the
feasibility of these algorithms on the tracking of fast time-varying channels, we did
the following simulations.

In Fig. 3.10, RLS is used in the training mode. RLS, LMS and CMA are
used individually in the tracking mode. The SNR=20dB, INR=10dB. The weights
updating of the RLS algorithm is based upon the algorithm given in section IV.
The weights updating of the LMS and CMA algorithm is based upon the following
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equation:
Ww(n + 1) = W(n) + pux(n)e*(n) (3.21)

where 1 is the stepsize, e(n) is estimation error. For LMS, e(n) is given by
e(n) = d(n) — wH(n)x(n) (3.22)
where d(n) is a reference signal. For CMA, e(n) is given by
e(n) = W (n)x(n) (|WH (n)x(n)[* - 1)* (3.23)

Notice that there are other kinds of blind equalizing algorithms such as Sato’s
algorithm. Here, the most widely used CMA algorithm is used in our demo.

We observe a severe performance loss in fast fading channel tracking by using
LMS or CMA. Different stepsizes have been tried. Similar or even worse results
have been observed when LMS and CMA are used. Therefore the RLS algorithms
is adopted in our system for both weights acquisition and tracking on fast time-
varying fading channels.

A frequently used approach in a slowly fading channel equalization with convo-
lutional or Trellis coded signal is to use a delayed temporal decision from a viterbi
decoder to update the equalizer weights. However, when adopting such techniques
to our system, we found a loss in channel tracking and poor BER performance.
Especially, for the fast time-varying fading channel as shown in Fig. 3.11(b), a
larger decision delay results in a worse performance.

Computer simulation results provided in Fig. 3.12 give a quantitative exam-
ination of the BER improvement from using D-symbol delay algorithm and the
M-D algorithm, respectively. Three sources are all encoded with the convolutional
encoder shown in Fig 3.1. The desired vehicle is moving at 60 miles/hr. The other

two are moving at 30miles/hr and have the same interference to signal ratio.
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Figure 3.11: Delayed decision-directed weights tracking for coded QPSK
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Figure 3.12: Influence of D on the performance of D-delay and M-D decoding

algorithms
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Figure 3.13: More significant improvement at low ISR (M-D algorithm, M=2)
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Figure 3.14: BER performance of D-symbol delay decoding of a TCM code

In Fig. 3.12, we observe improved BER performance as we increase D from 0
to 5: about 4dB improvement in one interference suppression and a total of 8dB
improvement in both cases (a) and (b). With M-D algorithm, the improvement
is slightly less compared to D algorithm, but the complexity of M-D algorithm is
greatly reduced.

In Fig. 3.13, the M-D algorithm is used and M is set to 2. In Fig. 3.13(a), at
low ISR, BER performance is gradually improved as D is increased. A total of
10dB improvement with D = 5 over D = 0. At high ISR, BER performance is
improved as D is increased from 1 to 4 and is slightly decreased as D is further
increased. This is because when the interference is stronger than a desired signal,
weights may converge along a wrong surviving path. So D should be appropriately
chosen at high ISR to achieve the optimal BER.

An extension of D-delay and M-D algorithms to the TCM code is demonstrated
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Figure 3.15: Comparison between M-D algorithm and Viterbi algorithm

in the following example. A TCM encoder shown in Fig. 3.8 is used. In Fig. 3.14,
the dotted line represents the BER performance under decision directed QRD-
RLS for weights tracking. Coherent demodulation is made on an uncoded QPSK
signal sequence. The solid line represent the BER under 1-symbol and 2-symbol
delay algorithms. Using 2-symbol delay algorithm, 3 to 5 dB improvement in
the interference suppression over the conventional decision directed algorithm is
observed.

The BER performance achieved by using M-D algorithm with M = 2,D =
4 are compared to that achieved by using Viterbi algorithm [59] with 4 states.
Infinite memory length is used in the Viterbi algorithm. Fig. 3.15 shows that
more improvement in BER is achieved by using M-D algorithm at high ISR. The
complexity of M-D(M = 2) algorithm is also lower. This is because the length of

two parallel surviving paths in the Viterbi decoding algorithm is not fixed and can
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not be controled. Therefore, using Viterbi decoding algorithm, we can not avoid

the converging of weights along a wrong path at high ISR.
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Chapter 4

Two-Dimensional Spatial Smoothing for
Multipath Coherent Signal

Identification and Separation

4.1 Introduction

In Chapter 2 and 3, adaptive diversity combining based on reference signals is used
to suppress interference and to reduce the effects of multipath fading of desired
signals. We find that the lack of accurate tracking of the fast changing mobile
channel and the error propagation in the decision directed tracking mode degrade
the BER performance. Combined diversity weights tracking and decoding can
greatly reduce the error propagation, but still can not eliminate error propagation.
The diversity optimum combining technique is applicable to both mobile handset
and base station, located in a metropolitan area as well as rural and suburban
areas. In rural or suburban areas, or in the metropolitan areas with high rise
antennas, we have the option of using constrained adaptive array based on DOA’s

information at base station. This technique does not require reference signals.
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Error propagation is avoided.

The basic idea of this technique is to constrain the response of array beamformer
so that signals from the direction of interest are passed with specified gain. The
weights are chosen to minimize array output power under these constraints. Ac-
curate DOA estimation and effective adaptive beamforming are the two key steps.
The existing methods for high resolution DOA estimation and optimum adaptive
beamforming include the well known MUSIC [25] algorithm and ESPRIT [26] al-
gorithm for DOA estimation and MVDR and LCMV algorithms [27], [28], [29] for
beamforming. However, an important drawback of these techniques is the severe
degradation of the estimation accuracy in DOA estimation [30] or signal cancella-
tion [31] in adaptive beamforming, in the presence of highly correlated or coherent
signals.

To counter the deleterious effects due to some coherent signals, a pre-processing
~ scheme referred to as spatial smoothing (SS) proposed by Evans et al. [32] and
further developed by Shan et al. [30], [33] has been shown to be effective in decor-
relating coherent signals. However, such a scheme is only applied to uniformly
spaced linear arrays. Linear arrays are known to be limited to estimating azimuth
angles within 180°, and practically effective only for signals from the broadside
direction. The degree of SS using a uniformly spaced linear array is also sensitive
to DOA’s [34]. As a result, a linear array is not very effective in radar, sonar, or
especially in cellular communications where users can never predict the incoming
directions of the moving targets.

In the past decade, research has been carried out in developing algorithms for
coherent interference using arrays of arbitrary geometry. In the area of DOA esti-

mation, multidimensional subspace fitting algorithms such as deterministic max-
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imum likelihood (DML) [14], multidimensional (MD)-MUSIC [15], and recently
proposed weighted subspace fitting (WSF) [16], [17], are effective in both coher-
ent and noncoherent environment and can be applied to arrays of arbitrary geome-
try. However, all these algorithms involve some searching procedures used to solve
nonlinear equations. They are computationally intensive and are not practical in
real-time applications. Direction finding using spatial smoothing with interpolated
arrays technique [13] [18] maps the signal received by the array to a virtual ar-
ray, but these methods all need approximations and have restricted applications.
In the area of narrow-band adaptive beamforming, the coherent interference sup-
pression using null constraint with an array of arbitrary geometry was addressed
in [35]. This approach still requires pre-estimation of arrival angles of coherent
interferences. The SPT-LCMV beamforming algorithm applicable to arrays of
arbitrary geometry was considered in [36]. This algorithm requires increased com-
putational complexity compared to LCMV. Recently, diversity combining [9] and
blind adaptive beamforming [56] have been proposed to combat multipath fading
and cochannel interference. However, both techniques have limitations on tracking
fast fading channels with strong cochannel interference.

In this work, we develop a general SS technique for arrays of arbitrary geometry
to make MUSIC, ESPRIT and optimum adaptive beamforming algorithms oper-
ative in a coherent interference environment and meanwhile achieve robustness in
performance. Compared with the aforementioned methods for arrays of arbitrary
geometry, this SS technique can be easily implemented. It does not increase the
computational complexity of either MUSIC, ESPRIT, or adaptive beamforming.
It allows us to work on a data domain [37], and thus enables us to incorporate

the recently developed URV [38] [39] algorithm to DOA estimation and updating
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and enables us to implement MVDR beamforming algorithm using systolic arrays.
Therefore it has great potential in mobile radio communication where coherent
and cochannel multipath interference is a major problem. Also, it can be used in
conjunction with MUSIC or ESPRIT algorithm to provide an initialization for the
WSF method to get a more accurate DOA estimation [17].

Specifically, we discovered and proved the necessary and sufficient conditions
on an array geometry for applying SS. They are: (1) such an array must have an
orientational invariance structure; (2) its center array has an ambiguity free array
manifold; and (3) the number of subarrays is larger than or equal to the largest
number of mutually coherent signals. By working on a smoothed data matrix
obtained from SS, we can use MUSIC and optimum adaptive beamformers effec-
tively in a coherent interference environment. To further increase efficiency and
estimation resolution, we found that the forward/backward spatial smoothing [40]
(FBSS), when applied to a nonlinear array of central symmetry, can reduce the
number of sensors required and improve the estimation resolution for closely spaced
incoming signals. Finally we expand the application of our results to ESPRIT.

In all the papers cited above that dealt with DOA estimation with arrays of
arbitrary geometry, ambiguity free array manifolds were assumed. In [25] Schmidt
discovered and defined the rank-n ambiguity in an array manifold. In [43], Lo and
Marple proved the conditions for a rank-2 ambiguity. In [41] ambiguities of linear
arrays were studied. However, constructing a nonlinear array free of up to rank-k
ambiguities using only (k + 1) sensors remains a challenging problem [42]. In this
chapter, we report a more thorough study on this issue. We proved the necessary
and sufficient conditions for a three-sensor array manifold to be ambiguity free.

We then identified several situations, for higher order sensor array manifolds, in
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which ambiguity may arise. Thus we get corresponding necessary conditions to
design ambiguity free center arrays and subarrays.

This chapter is divided into five sections. In section 4.2, we introduce MUSIC
and SS, and state the limitation of linear array. In section 4.3, we prove the
necessary and sufficient conditions on a two dimensional array for applying SS,
and consider the FBSS technique for applications in two dimensional array. In
section 4.4, we study the cause of ambiguities in a multipath signal environment.

In section 4.5 we expand our results to ESPRIT.

4.2 The Problem Statements

In this section, we will briefly describe the array model for DOA estimation and
beamforming and explain the principles of various techniques developed under the
assumptions of noncoherent interference environment and how it was applied to a
coherent interference environment in the specific case of uniformly spaced linear
array by using SS. We will then demonstrate the undesired sensitivity of the linear
array to the DOA estimation.

Fig. 4.1 shows an equally spaced linear array model for DOA estimation and
beamforming. In this example, there are four array elements, each has its own
receiver. The array beam pattern is adjusted automatically through the array
weights w. Array weights w are chosen according to DOA estimation information
and beamforming algorithms. DOA estimation and beamforming are implemented
in a real time DSP processor. Different incoming signals result in different phase
delays at each array element. In Fig. 4.1, the phase delay of the signal from

angle @ is characterized by steering vector [1,e 7710 e=im(0) =i r(6,)
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DOA Estimation and LCMV Beamforming

Figure 4.1: Linear array model

is the phase delay of the signal from the first sensor to the jth sensor. 7;(6;) =
2wLsin(0). X is the signal wavelength. High resolution DOA estimation methods
(MUSIC and ESPRIT) are based upon the fact that the received array signal
vectors span the two disjoint spaces signal plus noise space and noise space. These
two spaces are orthogonal and complement to each other. The space spanned by the
steering vectors associated with the incoming angles is the same as the signal plus
noise space. Incoming signal angles are identified by searching for those steering
vectors that are orthogonal to the noise space. After the estimation of DOA’s,
the array weights are chosen by LCMV or MVDR beamforming algorithm such
that the signal energy at the desired directions are passed and that signals at the
interference directions are suppressed and that the total array output power is
minimized. Therefore, the noise effect is minimized.

The mathematical model is given as follows. Consider an array of p sensors. Let
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d narrow-band plane waves s;(t), sa(t), ..., S4(t) impinge on the array at incident
angles 6y, ..., 04. There is also an additive white Gaussian noise vector n(t), where
n(t) = [ni(t),---,n,(t)]7, and n;(¢),i = 1,- - -, p have zero mean and variance o2.
The noise received by any sensor is assumed to be uncorrelated with signals and
with noise received by any other sensors. The received signals of the array can be
expressed as

r(t) = As(t) + n(t) (4.1)

where r(t) = [r1(¢), ..., 7p(t)]7, and r;(t) is the received signal at the ith sensor, and

A is a p X d matrix, p > d,
A = [a(0y),...,a(0,)] (4.2)

where a(6;) is the steering vector associated with the arrival angle 6;,

The array output covariance matrix has the form:
R = E(x(t)rf(t) = ARA" + oI, (4.3)

where R, = E(s(t)sf(t)). Let {\1 > A2 > ... > A\, } and {1, 14, ..., 15} denote the
eigenvalues and corresponding eigenvectors of R. When the d incoming signals are
noncoherent, and the matrix A is of full column rank, the MUSIC algorithm can
be used to estimate the angles of the incoming signals as the peaks of the MUSIC

estimates
1
ar12(0)Hy|?

However, when the signals are coherent, R, is then singular, and the MUSIC algo-

Suvsic(6) =

(4.4)

rithm is no longer applicable. In the case of a uniformly spaced linear array, with
a sensor spacing A, the SS [30] algorithm can be applied to achieve the nonsingu-

larity of the modified covariance matrix of the signals. This technique begins by
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dividing a uniform linear array with L sensors into K overlapping subarrays of size
p, with sensors {1, ...,p} forming the first subarray, sensors {2, ...,p + 1} forming

the second subarray, etc. It was shown that [30]

Ay = A E*Y), (4.5)
where A;, 1 =1,..., K, is a p x d matrix consisting of steering vectors associated
with the ith subarray, E®) denotes the kth power of the d x d diagonal matrix E,
where E = diag{e 750 ¢=i%sin0a)} ¢ is the speed of the incoming signals.

The covariance matrix of the kth subarray is therefore given by
Ry = A EE-VR EHG-D AH 4 521 (4.6)

The spatially smoothed covariance matrix is defined as the average of the sub-
array covariances:
_ 1 K _
R= E ZRk = AleA{I+O'2I, (47)
k=1
where R; is the covariance matrix associated with the kth subarray, R, is the
modified covariance matrix of the signals, and has been proved [30] to be full rank
when K > d. The signals are thus progressively decorrelated [34]. However, linear
arrays have limitations in the domain of estimable DOA’s. It has been shown

in [44] that R, can be decomposed as follows:
1
= — 4.
R, KC’C’ (4.8)

where C = PAT with P = diag(p1, D2, -+, pa), and

1 1 . 1
e—j21r% sin(f:) e—j27r-§— sin(d2) . e—j27r% sin(fg)
A= | -itnlsin0) —jardsin(6) ... —jarlsin(6s) | . (4.9)

e—J2KnRsin(01) o—j2Knsin(82) .. o—j2Kw% sin(6s)
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When incoming signals are closely spaced, the columns of both A and A; become
almost linearly dependent [44]. The dependency increases drastically when some of
sin(6;),i = 1,---,d approach 1 for DOA’s near 90°. As a result, the performance
of a linear array deteriorates quickly when some of DOA’s approach 90°. The
highly directional sensitivity of the linear array causes the lack of performance
robustness to the DOA’s and limits the domain of estimable angles to azimuth
angles from broadside direction of the array. The lack of performance robustness
of a linear array is even more severe when the SS technique is applied, because in
the smoothed covariance matrix, not only the steering matrix A,, but also A is ill-
conditioned in the situation described above. A general SS technique that is robust

and can be applied to directionally independent arrays is thus more desirable.

4.3 SS for Array of Arbitrary Geometry

4.3.1 Orientational Invariance Structure

It is apparent that the mapping relation between Ay and A; is the key to successful
application of the SS technique. In general, we can divide an arbitrary array into
K subarrays which may overlap. There is not always a steering matrix A to
map all the steering matrices Ay, for £ = 1,---, K to A. In this section, we will
develop necessary and sufficient conditions on array geometries for implementing
the general SS. First, we give the following lemmas.

Lemma 4.3.1.1 For steering matrices A and B, given by A = [a(6,), - --, a(f4)]
and B = [b(8,), - -+, b(64)], there exists a mapping relation B = AC if and only if
C is a diagonal matriz.

Proof of Lemma 4.3.1.1:
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If part:

The proof is obvious and is omited.
Only If part:

If B=AC, A =[a(61), -,a(04)] and B = [b(6;),--,b(f,)] and also assume
C is not a diagonal matrix, i.e. it has non-zero element c, for | # m, then the

steering vector b(6,,) is

d d
b(0m) = ;clma(@) = clma(Hl) =+ ._Z?é czma(ez) (410)

This means that b(f,,) is a function of variable §;, which contradicts to the def-
inition that b(f,) is only a function of 6,,. Thus the assumption that C is a
non-diagonal matrix is false. C has to be a diagonal matrix with ¢; = 2%09%
Lemma 4.3.1.2 For K steering matrices Ay, Ag,- -+, Ak, each A; can be mapped
to a steering matriz B if and only if there exists a mapping relation A; = A;C;;
for any i and j.
Proof of Lemma 4.3.1.2:
If part:

Obviously, B can be any of {A4;, As, -, Ak}
Only if part:

If each A; can be mapped to a steering matrix B, by definition there exist
Ci, Cj such that A; = BC;, A; = BC;. By Lemma 4.3.1.1, C; is a diagonal
matrix. So C;! exists and is also a diagonal matrix. We have A; = A,C;'C;.
Let C;; = C;'Cy, Cy; is the product of two diagonal matrices. So C; is also an
diagonal matrix. A; = A;C;;.

Consider an array that is divided into K subarrays. Suppose A; and A; are

the steering matrices associated with the ith and the jth subarrays, and there are
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d signals with incoming angles 6;,---,0,. A; can be written as

At = [84(91), a’i(92)a T ai(ed)]’ (4'11)

where af (0;) = [e779(k) e=38200) ... e=39w(%)] k =1,... d, is the steering vec-
tor associated with the ith subarray, and ¢;(6x), [ € {1,---,p}, is the phase delay
of the kth signal at the {th sensor of the ith subarray from the first sensor of the
first subarray. We refer to the sensor of an array associated with the [th row of a
steering matrix of the array as the [th sensor of the array.

Let A, 1 <1 < p, represent the distance between the Ith sensor in the ith
subarray and the /th sensor in the jth subarray. Let §;; represent the angle of the
line on which these two sensors are located. If the ith and the jth subarrays are
identical and have the same orientation, i.e. all A;; for [ =1,---,p are equal and
all Bi1,l = 1,---,p are equal, then the phase delay of a signal with an incoming
angle ) from each sensor in the ith subarray to the corresponding sensor in the
jth subarray is the same according to the far field assumption. We denote this

phase delay by ®;;(6;). For any [ € {1,---,p}, we have

®;i(6k) = 1(0k) — Pu(Or) = 2m A— sin(Biji — Ok + %),

(4.12)
then A; = A;C;;, where Cj; is a diagonal matrix with the mth diagonal element
e~I%i(®n) The identical and orientational invariance properties between two sub-
arrays guarantee a mapping relation between their steering matrices.

On the other hand, if A; = A;C, by Lemma 4.3.1.1, C should be a diagonal ma-
trix and can be represented by C = diag{c11(61), ca2(62), - -, caa(6a)}. It requires
that

e_j¢“(0k)ckk(9k) = e 1%10k)  for | = 1,---,p, (4.13)
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which can be simplified to
$it(Ok) — $u(O) = @;;(6k) + 27, for I=1,---,p (4.14)

where n can be any integer. The relation in (4.14) holds for all 6y, in [0, 360) only
if Ayj1 = Agjo = -+ = Ayjp and fij1 = Bijo = - = Bijp, 1. the ith and the jth
subarrays must be identical and have the same orientation. Thus, we have Lemma
4.3.1.3:

Lemma 4.3.1.3 Suppose A, and A; are steering matrices associated with the ith
and the jth subarrays. The sensors in each subarray are numbered in the same
sequence. There exists a mapping relation A; = A;C;; if and only if the ith and
the jth subarrays are identical and have the same orientation.

From Lemmas 4.3.1.2 and 4.3.1.3, we have:

Theorem 4.3.1.1 Suppose an array can be divided into K subarrays, each having
a p X d steering matriz A;, 1 =1,2,---, K. All Ay, Ay, -+, Ax can be mapped to a
p X d steering matriz B by A; = BD; if and only if all these subarrays are identical
and have the same orientation.

We call the array structure held by an array satisfying conditions in Theorem
4.3.1.1 the orientational invariance structure. A more rigorous definition is given
as follows:

Definition 4.3.1.1 (Orientational Invariance Structure) An array has an
orientational invariance structure if it can be divided into subarrays that are iden-
tical and have the same orientation.

For an array with orientational invariance structure, we can consider each sub-
array as one element located at its first sensor. Then all these elements form a

center array. A more rigorous definition for center array is given as follows:
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Figure 4.2: Orientational invariance sensor array geometry

Definition 4.3.1.2 (Center Array) an array with orientational invariance struc-
ture is divided into subarrays (which can have overlap), then the collection of all

the first sensors of these subarrays form a center array.

4.3.2 Necessary and Sufficient Conditions

Suppose an array has an orientational invariance structure. Moreover, its center
array has an ambiguity free structure and the number of subarrays is larger than
or equal to the largest number of mutually coherent signals. The p x d steering
matrices Ay, Ay, - -+, Ag are associated with the subarrays 1,2, - - -, K, respectively,
and dj, is the distance between the first sensor in the first subarray and the first
sensor in the kth subarray. The angle 0y represents the direction of the line on

which the first sensor in the first subarray and the first sensor in the kth subarray
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are located (see Fig.4.2). We have

Ar=ADy, k=2,---,K (4.15)
where
o3 5k sin(By—01+3) ]
6_7.@& sin(Br—02+7%)
D, =

omdy .
=L sin(By—04+%)

(4.16)

The covariance matrix of the kth subarray is thus given by
Ry = AiDyR,DF AT + 5?1, (4.17)

where R, is the covariance matrix of the source. The spatially smoothed covariance

matrix is defined as the average of the subarray covariances

_ 1 X _
R=— Z Rk = A1R3A1 + 0'21, (418)
K k=1
where R, is the modified covariance matrix of the signal given by
_ 1 X
R,==> DR,D{. (4.19)
K k=1

We will show in the following that R, is nonsingular. First, R, can be written as

1R, I
] LR, DE
R;=[I Dy ---Dg| (4.20)
| k|| ot |
Let C denote the Hermitian square root of %Rs, ie.
ccf = LR (4.21)
K™ '
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It follows that

R, = GGH (4.22)

where G is a d x Kd block matrix given by

Clearly, the rank of R, is equal to the rank of G. Suppose there are g groups
of signals in d incoming signals, with /;, ¢ = 1,---,¢, correlated signals in each
group. R, must be a block diagonal matrix with block size [;, i =1,---,q. We can
thus get a corresponding block diagonal matrix C. If we exchange the columns of
a matrix, the rank of the matrix does not change. By grouping columns of similar

elements, we can verify that

C1,1b1 Cl,l1b1

Cll,lbh cll,llbll
rank(G) = p

Cdtgtl,d—lg+1Pd—tg41 *** Ca—igr1,dPd—1 41
Cd,d—1,+1ba X c4,dbd
(4.24)

c;; is the ¢jth element of matrix C, and b; (i = 1,---,d) is the 1 x K row vector
given by

b; = [1 oI 2 sin(Br—0i+3) p—ihsin(Ba=0,4+3) |, o—i 5K sin(Bx—0,+F) . (4.25)

Each row of matrix C has at least one nonzero element because the energy of

each signal is nonzero. It is observed that b; is the transpose of the steering
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vector associated with the center array. Since the center array is assumed to have
ambiguity free array manifold, when K > max{ly,ls,---,l,}, all the b vectors
associated with all the signals within a group of coherent signals are thus linearly
independent. Therefore, G is of full row rank and the modified covariance matrix
Rg is of full rank. Otherwise, if K < max{ly,ly,--,l,}, we will see that R, is rank
deficient. We assume that Rg; is the correlation matrix associated with the ith
group of coherent signals. Thus, R,; has rank 1 and can be expressed as \;h;h

where ); and h; are the corresponding eigenvalue and eigenvector of R ;. We have

Rsl Alhlh{{

R, Aghyh#
R, = 2 = 2Tt (4.26)

R, Aqhth
and

Y1 A (Dxyhy)(Dy by )7
_ SR 1 Ao(Dx,ho) (Dy,ho)®

z:k{{:l )\‘I(‘Dkqh(I) (DkqhQ)H i
(4.27)

where Dy, is a diagonal matrix consisting of /; diagonal elements of D, which are

associated with all the DOA’s from ¢th group of coherent signals. Since

K
rank(d" \i(Dyh;)(Dy b)) < min(K, 1) (4.28)
k=1
and
K
dim(>" \i(Dy,h;) (D he)¥) = 1 x (4.29)
k=1
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thus R, is rank deficient if K < maz(ly,ly, -+, 1,).

If the center array is not ambiguity free, then all the b vectors associated with
all the signals within a group of coherent signals can be linearly dependent, G
cannot be ensured to be of full row rank, and neither can R;.

From Theorem 4.3.1.1 and the proof above, we get the following theorem.
Theorem 4.3.2.1 SS can be applied to an array of arbitrary geometry to obtain a
Jull rank smoothed signal covariance matriz if and only if an array has an orien-
tational invariance structure, its center array has an ambiguity free structure, and
the number of subarrays is larger than or equal to the size of the largest group of

coherent signals.

4.3.3 Further Improvement

To get a smoothed nonsingular covariance matrix R, by using the SS technique,
we need K > maz{ly,ls,---,l;}. We can further reduce the number of subarrays
by getting another K backward subarrays similar to the case in a linear array [40].
Although, the Forward-Backward Spatial Smoothing (FBSS) [40] can always be
applied in a uniformly spaced linear array. For arrays of arbitrary geometry, there is
some requirements on the geometry for successful implementation of the backward
method. We first give the definition of central symmetry:
Definition 4.3.3.1 (Central Symmetry) The array is central symmetric if it
is identical before and after rotating 180° about its center of mass.

If an array is central symmetric, we can get K additional backward subarrays
by reversing the order of the subarrays and the order of the sensors within each

subarray. Let ré(t) denote the complex conjugate of the output of the kth backward
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subarray for Kk =1,---, K. We have
1 (t) = A1 Dp(Dys(t))* + i*(t) (4.30)

where 1i(¢) is an additive white Gaussian noise vector, Dy, is a diagonal matrix
with the 7th diagonal element given by e~ 2 42 sin(Brp=03+5) and dg, is the distance
between the first sensor in the first forward subarray and the first sensor in the first
backward subarray. The angle Bk, represents the direction of the line on which
the two sensors are located.

The covariance matrix of the kth backward subarray is given by
Rl = A\DyRDF AF + 01 (4.31)
with
R' = E(D;s*(t)sT (t)DY) = D} R! DY, (4.32)

Define the spatially smoothed backward subarray covariance matrix R® as the

average of these subarray covariance matrices, i.e.,

_— K —
Rb = % > R} = A RPAT + 071, (4.33)
k=1
where
_ 1 X
Ry == DRIDE, (4.34)
k=1

and define the forward/backward smoothed covariance matrix R as the average of

R in (4.18) and R?, i.e.,

. R+4+R -
R= ; = AR, AR 4+ 51 (4.35)
It follows that
- 2] Db
mzmg&. (4.36)

We can show, in a similar way as in the case of a linear array [40], that the mod-

ified source covariance matrix R, is nonsingular as long as 2K > max{l;,l3,---,l4}.
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4.4 Ambiguity Free Array Structure

To perform SS, we need an ambiguity free center array manifold. Also, to perform
MUBSIC, we further require ambiguity free subarray manifolds. Ambiguity arises
when a steering vector can be expressed as a linear combination of other steering
vectors in an array manifold [25]. For a uniformly spaced linear array, rank-1
ambiguity [25] cannot be avoided since the DOA’s which are “mirror images” with
respect to the array line, have the same steering vector. This limits the range
of DOA’s estimable by a uniformly spaced linear array to within 180°. Suppose
an array has p elements, then rank-p [25] ambiguities cannot be avoided. In this
chapter, an ambiguity free array manifold of an array of p sensors refers to rank-(p-
1) ambiguity free. Generally, to avoid ambiguity, an array used for high-resolution
DOA estimation must have a proper structure. An ambiguity free array manifold
has been assumed in several papers [26], [17], [15]. Our attempt is to identify all
the situations in which ambiguity may arise. One of our guidelines in designing
arrays is to avoid these identified ambiguities.
Theorem 4.4.1 In an azimuth only system, the necessary and sufficient condition
for an ambiguity free three-sensor array manifold is that all these three sensors are
not on one line and that the distance between any two sensors is less than or equal
to 3.
Proof of Theorem 4.4.1:
If part:

If sensors A, B and C' are not on one line and their mutual distance is less than

%, without loss of generality, we let sensor A be the first sensor in the array, B the
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second and C' the third. The steering matrix of the array has the form

1 1 1
V = | ei91(61) id1(62) pidi(6a) (4.37)

ei92(01)  piv2(f2) pida(fs)

where ¢ denotes phase delay. If the distance between any two sensors is < %, the
phase delay ¢;(6;) and ¢5(6;),7 = 1,2, 3, are real numbers from (-, 7).

Note that the steering matrix of the array corresponding to three incoming
signals at different angles is a special case of the general array in Lemma 4.3.1.2
of [43]. By Lemma 4.3.1.2 in [43], V' is nonsingular with possible exception in one
of the following three situations:

(1) When ¢;(01)=¢1(62), i.e. the two incoming signals are symmetric with

respect to the line on which sensors A and B are located. Note that

0 1 0
det(V) e ej¢1(01) — ej¢1(02) ej¢1(02) ej¢1(03) — ej¢1(92) (438)

eI02(01) _ @i2(02)  @i¢2(02)  i¢2(83) . id2(62)

eI$1(01) _ oid1(02) pid1(03) _ oid1(62)
_ - | (4.39)
eI#2(01) _ pid2(02) pid2(0a) _ oid2(62)

When ¢, (0;) = ¢1(62), det(V) = 0 if and only if ¢o(61) = ¢2(02) or ¢1(63) = ¢1(62).
Since these sensors are not on one line, if ¢, (6;) = ¢1(62), we have ¢2(61) # ¢a(6s).
Since 6;, 0, and 63 are three different angles, when #; and 6y are symmetric with
respect to the line, ;3 and 6, cannot be symmetric to the line, i.e. if ¢1(6;) =
#1(02), then we get ¢1(0s) # ¢1(62). Thus, when ¢,(01) = ¢1(02), the matrix V is

nonsingular.
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(2) Similarly, we can prove that when ¢3(6;) = ¢2(6;), the matrix V is nonsin-

gular.

(3) When ¢, (61) —¢1(62) = d2(61)—d2(62), i.e. ¢1(61)—d2(61) = b1(62) —b2(62),

0, and 6, are symmetric with respect to the line connecting sensors B and C. Note

that
e=i%2(01) e=i%2(02) e=i92(0)
det(V) = | ei#1(00)=ie2(01) ¢id1(02)=j$2(02) i1 (6s)—ia(0s) (4.40)
1 1 1

— (e_j¢2(01) _ e—j¢2(92))(ej¢1(92)—j¢2(‘92) _ ej¢1(93)—j¢2(03)) (4.41)

When ¢1(61) — ¢2(01) = ¢1(62) — ¢2(02), det(V) = 0 if and only if e~792(1) =
e~192(02) or gi91(02)=742(02) — g191(03)=792(85)  Since the mutual distance between A,
B and C are less than 3, ¢2(61), ¢2(62), 61(82) — 62(6:) and ¢1(65) — ¢2(65) are
all real numbers in (—m, 7). e 79201 = ¢=392(%2) if and only if ¢3(8)) = P2(6s).
e191(82)=192(02) = ¢791(63)=392(%) if and only if ¢1(62) — 2(62) = $1(63) — b2(6s)-

Since A, B and C are not on one line, if 6; and 6, are symmetric to the line
connecting B and C, they can not be symmetric to the line connecting A and B
or A and C. ie., if ¢1(61) — ¢2(61) = ¢1(62) — #2(62), we have $y(61) # ¢a(6a).
Since 61,0, and 65 are three different incoming angles, if #; and 6, are symmetric
to the line connecting B and C, 6, and 83 can not be symmetric to the line. i.e., if
¢1(01) — $2(61) = $1(62) — $2(62), we have ¢1(02) — p2(602) # ¢1(03) — ¢2(05). Thus,
when @1(01) — ¢2(61) = ¢1(62) — ¢2(62), the matrix V' is nonsingular.

Therefore, we conclude that all the three situations which cause the singularity
of the matrix in Lemma 4.3.1.2 of [43] will not cause the singularity of three-sensor
steering matrix if three sensors are not on one line and their mutual distance is

less than % Therefore the matrix V is full rank.
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If the spacing between any two of the three sensors is not larger than %, and
there is at least one pair in these three sensors with a spacing of %, then the
only situation that the phase delay #:(6;) and ¢5(6;),7 = 1,2,3, are not all in
(—m,m) is when one of the incoming signals is from the direction parallel to a
line on which the two sensors with spacing % are located. The other two signals
can be either from the opposite direction or from other directions. If one of the
other two signals is from the opposite direction, it can be easily proved that the
corresponding steering matrix is full rank. If the other two signals are from the
two other different directions, then one of ¢,(6;), n = 1,2, i = 1,2,3 is equal to
7 and the rest are real numbers from (—m, 7). Similarly, we can prove that the
matrix V is of full rank.

Only if part:

If the conditions in Theorem 4.3.1.1 are not satisfied, rank-1 or rank-2 ambi-

guity occurs for some incoming signals. These situations are shown schematically

in Fig.4.3(a)(b). In Fig.4.3(a), the relation between ¢ and « is

2%%32’11(0 —a)+kom = 2w§sm(9 +a) ke{l,2,--).  (4.42)

In Fig.4.3(b), the relation between 6 and « is

27r§sin(a) + k27 = 27r§sin(g -6), ke{1,2, -} (4.43)

We can see in general that (a) rank-1 ambiguity occurs not only in uniformly
spaced linear arrays but also in rectangular arrays with sensors having a uniform
spacing of % along either x-axis or y-axis, (b) rank-2 ambiguity occurs in an array
that consists of two parallel linear arrays with an identical uniform sensor spacing

A

that is larger than §, (c) rank-3 ambiguity occurs in an array that consists of

three parallel linear arrays with an identical uniform sensors spacing that is larger
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(b) rank-2 ambiguity

Figure 4.3: Three-sensor array structures that can cause ambiguities
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(a) rank-1 ambiguity

(c) rank-3 ambiguity

(b) rank-2 ambiguity
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(d) high order ambiguity

Figure 4.4: high order array structures that can cause ambiguities
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than %, and (d) higher order ambiguity occurs if more than [£] sensors are on one
line in a k sensor array or if an array consists of m parallel linear arrays with an
identical uniform sensor spacing that is larger than %L%J These situations are
shown schematically in Fig.4.4(a)-(d). In Fig.4.4 (b) and (c), the angles 6 and «

satisfy the following constraint:
d . d .
27TX sin(a) + 2km = 27rX sin(f), ke {1,2,---}. (4.44)
In Fig.4.4 (d), the angles 8, 3 and « satisfy the following constraint:

27r§ sin(a) + 2k = 271'% sin(f) + 2kom = 2%% sin(#), (4.45)

where ki,ks € {1,2,--} and ky # ks.
To get an ambiguity free array manifold, it is necessary to avoid these identified

situations.

4.5 Spatial Smoothing for ESPRIT

Similar to MUSIC, the ESPRIT algorithm [26] is an approach to signal parameter
estimation. It exploits an underlying data model at significant computational sav-
ings. The ESPRIT algorithm is also limited to estimating parameters in noncoher-
ent incoming signals. The conventional SS can be incorporated into ESPRIT [47],
but it requires the center array to be a uniformly spaced linear array. In this sec-
tion, we show that our scheme also works for the ESPRIT algorithm to estimate
parameters in a coherent interference environment.

In the ESPRIT algorithm, we consider d narrow-band plane waves with incident
angles 0y, - - 6, and wavelength ), impinge on a planar array of m sensors (m is

even), arranged in 7 doublet pairs. The displacement vector is the same for each
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doublet pair, but the location of each pair is arbitrary. The sensor output z(t) is

given by

A
x(t) = s(t) +n(t) (4.46)
Ad

where n(t) is a white Gaussian noise vector. A and A® are the steering matrices
corresponding to the first sensors and the second sensors in all pairs, respectively.
The matrix @ is a diagonal d X d matrix of phase delays between the doublet sensors

for the d signals. The sensor output covariance matrix R, is thus measured by
H

R, = 4 R, 4 + oI (4.47)
Ad Ad

A full rank matrix R, is assumed when the ESPRIT algorithm is performed. If

some of the incoming signals are coherent, R, will not be a full rank matrix and the

ESPRIT will fail. The spatial smoothing technique we introduced in the previous

sections can then be applied here to get a modified full rank signal covariance
matrix.

We consider each doublet sensor pair in the array used by ESPRIT algorithm as

one element. Then the array consists 7 elements. If this array has an orientational

invariance structure with K subarrays and the corresponding center array has an

ambiguity free structure, the sensor output at the kth subarray is given by

Ay

AP
Matrix Dy is a diagonal d x d matrix of the phase delays in the form given in

(4.16). The corresponding covariance matrix Ry, is given by

H

A A
Ro,=|  |DwRDE| 7 | +o°L (4.49)

A1¢ Alq)
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A smoothed output covariance matrix R, can thus be defined as

H
1 A4 )| 4
= Ry, = VR T +el (4.50)
i=1 AI(I) Alq)

R, =

where R, is the modified signal covariance matrix as defined in (4.19). As proved
in Section II, R, is of full rank if K is larger than or equal to the size of the largest
group of coherent signals. We can now successfully perform ESPRIT based on R,.
We can also use FBSS to further reduce the number of sensors required and to
improve the estimation resolution if the array of % element is central symmetric.

Although SS enables ESPRIT to estimate DOA’s in a coherent interference
environment, the estimation is still limited to identifying DOA’s within 180° in an
azimuth only system. Hence, in terms of performance robustness to DOA’s, our

SS is more effective for MUSIC than for ESPRIT.
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Chapter 5

Capacity Increase with Constrained

Adaptive Beamforming

5.1 Introduction

An alternative to using reference signal based adaptive array combining is to use
constrained adaptive array combining. It is based on high-resolution direction find-
ing followed by optimal combination of the antenna outputs. By actively tracking
mobile units and directionally transmitting information to and receiving informa-
tion from these units, significant improvements are achieved without any modifi-
cation to the mobile units and without using reference signals. It is independent of
the particular type of signal modulation and is therefore compatible with current
and future modulation schemes in wireless communication systems. It allows a
reduction in transmitter power at the base station by directive transmission while
still improving signal quality by increasing amount of power received by the mobile
unit.

The DOA based array approach is limited to some environment where angle
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spread is small and SS and DOA estimation is possible. In this chapter, we will
demonstrate the effectiveness of our SS in decorrelating coherent signals under
these environments.

This chapter is organized as follows: In section 5.2, we will discuss some practi-
cal issues of using SS. In section 5.3 we will verify the theoretical results obtained
in Chapter 4 using computer simulations. In section 5.4, we will demonstrate the
effectiveness of our SS under multipath multiuse TDMA wireless communication
environment. In section 5.5, we will present the techniques of suppressing interfer-

ence and achieving capacity increase using DOA based adaptive array.

5.2 Some Practical Considerations

5.2.1 Performing SS in the Data Domain

In practice, we can perform FBSS by setting up a special data matrix. Specifically,

for the nth snapshot we set up the data matrix

u(p, 1,n) - u(p,K,n) u*(1,K,n) --- u*(1,1,n)
up—1,1,n) -+ ulp—-1,K,n) v 2,K,n) --- u(21,n
iy | HETILW ML Km wK) e w2 L)
u(1,1,n) <+ u(l,K,n) u*(p, K,n) .-+ u*(p,1,n)

) (5.1)

where u(1, j,n) denotes the sample taken at the ith sensor of the jth subarray. For

the totality of N snapshots, we can define the overall data matrix

A = [47(1), AR (2), .-, AT(N)]. (5.2)
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It follows that the averaged smoothed correlation matrix R (as defined in (4.35))

can be estimated as follows:

~ 1

As we know, more robust results can be obtained from data domain rather than
from covariance domain [37]. We can proceed with MUSIC [37] algorithm or
MVDR (28] [37] beamforming algorithm based on A instead of R.

An array needs to be chosen for applying SS. Such an array should satisfy
all conditions aforementioned. An omnidirectional circular array has been a con-
ventional choice for mobile communications [10] [11], and there have been active
research efforts to find a pre-processing scheme for the circular array to handle the
coherent interference [46]. However, we can see clearly from our discussion that a
single circular array is not orientational invariant. Therefore it does not satisfy the
necessary condition for applying SS. This implies that the circular array cannot
overcome the coherent interference by using the SS technique. For some circular
arrays with central symmetric, we can apply FBSS to handle two coherent signals.
To handle more than two coherent signals, several parallel circular arrays have to

be used.

5.2.2 Selecting Orientational Invariance Structure

In this section, we study some guidelines for designing an optimal sensor array for
SS. We found that the sensor utilization rate is an important factor for estimating
DOA'’s of coherent signals with SS.

Definition 5.2.2.1 (Sensor Utilization Rate (SUR))

SUR = 2 Nsubarray (54)

Narray
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Figure 5.1: (a) A sixty four-sensor dense square array with four overlapping dense
square subarrays of forty nine-sensors (b)A sixty four-sensor hollow square array

with four overlapping hollow square subarrays of thirty two-sensors

where }° Nsuparray 1S the sum of the number of sensors in each subarray, and 74prqy
is the total number of sensors in the whole array. Obviously SUR > 1, because of
possible overlap of subarrays.

Example 5.2.2.1: We perform simulations on two 64-element arrays: (1) a hollow
square array as shown in Fig.5.1(a), which has a low SUR for a given number of
sensors, and (2) a dense square array, as shown in Fig.5.1(b), which has a high SUR.
The dense square array contains 4 subarrays each having 49 sensors. The spacing
between two neighboring sensors is 0.45)\. The SUR of the array is approximately
3. The hollow square array contains 4 subarrays, each having 32 sensors. The
spacing between two neighboring sensors is 0.45X. The SUR is 2. Both structures
are used to estimate the DOA’s of two coherent signals. The input SNR is 20dB.
We use the FBSS method. The simulation results are shown in Fig.5.2. In cases

(a) and (b), the two coherent signals are at 40° and 50°. Both arrays can clearly
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Figure 5.3: Beamwidth comparison between a dense square array and a hollow

square array (a) two DOAs are 10° apart (b) two DOAs are 5° apart

identify the DOA’s. In cases (c) and (d), the two coherent signals are at 45° and
50°, only the dense square array can determine the DOA’s. Our results show that
a dense square array structure is better than a hollow square array structure.

For a uniformly spaced linear array, the larger the physical aperture, the
narrower the beamwidth, and the higher the resolution. For a nonlinear array,
the DOA resolution is however decided by an effective array beamwidth. The
beamwidth b; » of two signals, with DOA at 0, and 6,, arriving at an array with

steering vector v(6) is evaluated by the following equation.

[v(61)"v(6)|

NALOL (5:5)

b o = —cos™}(
7

We compared the beamwidths between a dense square subarray and a hollow square
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subarray. In Fig. 5.3, we plot the beamwidths of two signals, that are 10° and 5°
apart in (a) and (b), respectively, versus the angle of arrival of the signal that has
a smaller DOA values. We see that although the dense square array has a smaller
physical array aperture, it has a narrower beamwidth. Since both arrays have the
same number of elements, we infer that SUR is an important factor and needs to be
maximized in the array design. An array consisting of several parallelly positioned

circular arrays has a low SUR and is not recommended for SS applications.

5.3 Simulation Results

In this section, we present some simulation results on MUSIC algorithm to show
the applications and effectiveness of our SS and FBSS. We choose a square array,
which has an orientational invariance structure, central symmetric, and a sensor
spacing less than 3.

Example 5.3.1: To compare the performance of a square array to that of a
linear array of the same complexity, we use a nine-sensor linear array and a nine-
sensor square array as shown in Fig.5.4, both having a spacing of 0.45)\ between
neighboring sensors. We divide the both arrays into four overlapped subarrays. We
get six and four sensors in each subarray of the linear array and the square array
respectively. The resolution of DOA estimations is measureed by the beamwidth of
the subarrays. The beamwidth b, 2 of two signals, with DOA at 6, and 6,, arriving

at an array with steering vector v(6) is evaluated by the following equation.

= zcos_1 W
bz = 208 (ST @y

We consider two narrow-band coherent signals s;(t) = €72/, and sy(t) = €727/ (¢+0%)

) (5.6)

with DOA’s at 70° and 85°. where f = 0.2, 6t = 0.1. The SNR is 20 dB. A total
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Figure 5.6: Beamwidth comparison between a six-sensor linear array and a four-

sensor square array

of 500 samples (“snapshots”) (¢t = 1,---,500) are taken from the array. We use
SS as a pre-processing scheme for MUSIC. Fig.5.5 shows that the DOA’s of the
two coherent signals are not resolved using a linear array, whereas the square array
gives a satisfactory result. In Fig. 5.6, we plot the beamwidths of two signals, that
are 15° apart, versus the angle of arrival of the signal that has a smaller DOA
values. For the linear array, actual beamwidth varies greatly with the DOA. The
square array, however, shows a relatively stable beamwidth for different DOA’s.
When DOA'’s are at 70° and 85°, the square array provides a narrower beamwidth
and a higher resolution.

Example 5.3.2: We use the square array shown in Fig.5.4 to receive two coherent
signals that are described in Example 1. with DOA’s at 75° and 100°. The SNR
is 20dB. A total of 500 samples are taken from the array each time. We apply SS

and FBSS separately. Fig.5.7 shows that the DOA estimation resolution achieved
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Figure 5.7: Standard deviation of DOA estimation using SS and FBSS

by a central symmetric array is significantly improved by using the FBSS method.
The standard deviation is averaged over 200 estimated DOA’s.

Example 5.3.3: We use a dense square array of sixty-four sensors as shown in
Fig.5.1(b). The array contains 4 subarrays each of 49 sensors. The spacing between
two neighboring sensors is 0.45\. The array receives signals from four mobile users:
four coherent signals at 20°,65°, 150° and 200° from user 1, three at 230, 250° and
280° from user 2, two at 30° and 300° from user 3 and one at 320° from user 4.
The SNR is 20 dB. A total of 500 samples are used. First, we apply FBSS and
then apply MUSIC. Simulation results are shown in Fig.5.8.

Example 5.3.4: We use the square array shown in Fig.5.4 to receive two coherent
signals, one at an azimuth of 40° and an elevation of 30°, and the other at an
azimuth of 50° and an elevation of 60°. The SNR is 20dB. There is a random
phase delay from (0, 27) between these two signals at each snapshot. The number
of samples taken is 500. By using FBSS and MUSIC, we obtain the result in

Fig.5.9. It demonstrates that a planar array enables us to perform FBSS and
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Figure 5.9: DOA estimation of two coherent signals at an azimuth of 40° and an

elevation of 30°, and at an azimuth of 50° and an elevation of 60°, respectively

DOA’s estimation in a 3D domain while a linear array or two crossed linear arrays
are not capable of doing that.

Example 5.3.5: A twelve sensor array shown in Fig.5.10 is used in this example to
receive two coherent signals at 70° and 80°. This array consists of two overlapping
nine-sensor square arrays. Each sensor in one square array and its counterpart in
another form a doublet pair. These nine doublet pairs form an array which has
orientational invariance structure and is central symmetric. The spacing between
two neighboring sensors is 0.45A. The doublet spacing for ESPRIR is 0.45A. The
SNR is 20dB. A total of 2000 trials are run. A histogram of the results is given in
Fig.5.11. We apply FBSS first and then applied the ESPRIT. The two angles are

clearly identified.
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Figure 5.10: A twelve-sensor rectangle array with spacing d
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Figure 5.11: FBSS and ESPRIT for DOA estimation of two coherent signals at

70° and 80°
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Figure 5.12: Multiuser Frequency Selective Channel

5.4 DOA Estimation in Multipath Fading and
Cochannel Interference Environment

In a fading wireless channel, coherent signals are inevitable. Fig. 5.12 shows a
typical example of the distribution of scatterers in a mobile radio environment, [3].
We can treat all the reflected signals from local scatterers as coming from a super
position. those reflected signals from far away scatterers such as high rise buildings
or mountains are from another super position. Each group of local scatterers span
a small angle with respect to the base station. There are many reflected signals
within each small angle spread. These angles cannot be resolved even with high
resolution MUSIC algorithm. They will be treated as one signal that suffers from

flat fading. Thus there are seven angles to be estimated in Fig. 5.12. There are
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two groups of coherent fading signals with three and two coherent signals in each.
The others are noncoherent fading signals.

We use a dense square array of sixteen sensors as the base station antenna.
The array contains 4 subarrays each of 9 sensors. The spacing between two neigh-
boring sensors is 0.45A. The wireless communication environment in Fig. 5.12 is
simulated. The array receives signals from four mobile users. All of them move at
60miles/hr. The carrier frequency is 900 MHz. The modulated data rate is 24.3
ksym/s, which is the same as in IS-136 standard (an Electronic Industry Associa-
tion Interim Standard). The maximum Doppler frequency fdpe = 80Hz. There
are 40 reflected signals from each local scatterers or each distant scatterers. These
signals uniformly span a 4° angle. The combined signals to noise ratio is 10dB.

The received array data is given as
r(t) = A xs(t) + n(t) (5.7)

where the steering matrix A = [A;, Ag, - -+, A7}; Ai = [ai1, iz, + + , Gigo)-

o327 (fot fa)- 2452

o2 (fo+fa)- 2532 (3-cos(6; 5)

32 (fot-fa)- 2552 (3:5in(6:,5))

g2 (fotfa)- 2432 (3-cos(6, ;) +3-5in(6s,))

is a 16 x 1 steering vector.

s(t) = [s1,1(t),++, 51,40(t)s 2,1(2),  * +, S2,40(2), + +, $7.1(8), -+, s7.00)]F  (5.9)

is a signal vector, sn x(t) is the kth reflected signal from the nth group of scatterers.
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Figure 5.13: DOA estimation of four groups of coherent signals at

(10°,20°,100°), (120°), (200°,220°) and (300°) based on a sixteen sensor square array

1 .
Sn,k(t) — Ee.727"(fd'n.,k""'+'¢n,lc) (5.10)

The phase distorsion ¢, ; is uniformly distributed in [0, 27r]. The doppler fre-
quency fdnx = fdmaz ¥ cos(ﬂfo;ll), k=1,---40.

n(t) = [ny(t), -, me(t)]” (5.11)

is a noise vector.

Reflected signal for user 1 is from 10° to 14°, 20° to 24° and 100° to 104°.
Reflected signal for user 2 is from 120° to 124°. Reflected signal for user 3 is from
200° to 204° and 220° to 224°. Reflected signal for user 4 is from 300° to 304°.

A total of 162 samples are used. We apply FBSS first and then MUSIC. Simu-
lation results are shown in Fig. 5.13. According to the DOA’s information, we can

further perform constrained beamforming and thus can achieve Spatial Division
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Multiple Access(SDMA) [12] in a multipath environment.

A square array is efficient in terms of the sensor reuse rate. One can also use
any other kind of planar arrays which satisfy the necessary and sufficient conditions
stated in chapter III.

An alternative way of using planar arrays to cover all the azimuth angles is
to use two crossed uniformly spaced linear arrays. Spatial smoothing and DOA’s
estimation can be done on each linear array. Ambiguities related to linear arrays
can be largely avoided by searching for common estimated DOA’s from both arrays.
It is effective when there are only a few DOA’s and these DOA’s are not close to
the end fire of either of the linear arrays. For example, to resolve two coherent
signals, we need two linear arrays each with four sensors. Using square arrays, we
need nine sensors. The complexity is reduced by using two crossed linear arrays.
Better DOA’s estimation resolution can be achieved for some angles as shown
in Fig. 5.14. But we will show in the following that in wireless communication
environments when there are a lot of DOA’s, the use of two crossed linear arrays
may increase the complexity and may cause ambiguities for signal incoming angles
close to the end fire of either of the linear arrays.

In the previews example, if we rearrange the sixteen sensors to two crossed
linear arrays, each of eight sensors, we will not be able to perform FBSS on each
linear array to estimate seven incoming signals. The condition that the number
of sensors in each subarray is larger than the number of incoming signals was not
satisfied.

We increased the number of sensors. We used two crossed linear arrays each of
nine sensors. We divided each linear array to two subarrays each of eight sensors.

The spacing between two neighboring sensors is 0.45)A. We use these two crossed
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Figure 5.14: DOA estimation of four groups of coherent signals at
(10°,20°,100°), (120°), (200°,220°) and (300°) based on a two acrossed linear ar-

rays
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linear array to received the same transmitted signals described in Example 3.
Fig. 5.14 (a) shows the DOA estimation using a horizontally positioned linear array.
For incoming signals close to the array end fire, the DOA estimation resolution is
poor. Two signals at 10° and 20° cannot be resolved. Fig. 5.14 (b) shows the result
of DOA estimation using vertically positioned linear array. The final decisions
on the DOA’s is decided based upon the common peaks in these two figures.
The unresolved angles at 10° and 20° in Fig 5.14 (a) make the DOA’s estimation
difficult. For those incoming signals that are not close to array end fire, we can
get more accurate DOA’s estimation. The DOA’s estimation resolution of two
acrossed linear arrays is sensitive to the DOA’s. This approach also increases the
computational complexity. We need to search for peaks of DOA’s twice. Therefore,
compared to the square array used in Example 3, the two crossed linear arrays

require high hardware and computational complexity.

5.5 Capacity Increase in TDMA Wireless Sys-
tem with Constrained Adaptive Beamform-
ing

This method is based on high-resolution direction finding followed by optimal
combination of the antenna outputs. The basic idea is to constrain the response
of array beamformers so that signals from the direction of interest are passed with
specified gain. The weights are chosen to minimize array output power under these
constraints. For example, to get the cochannel signals from different directions A,

B and C separately, we use three beamformers. We constrain the response of the

116



LCMV (DOArange=4 vel=60mph nsym=162 noslots=100)
20 T T T T T T T T

outsinr dB
o

-5}

2 4 6 8 10 12 14 16 18 20
insnr dB

Figure 5.15: Interference suppression with LCMV

first beamformer so that signals from the direction A are passed with no attenuation
while signals from directions B, C and noise arriving from other directions are
minimized. Similarly, we can get signals from B and C simultaneously by using
two other beamformers. In such a case, we achieved 3-fold capacity increase. By
actively tracking mobile units and directionally transmitting information to and
receiving information from these units, significant capacity increases are achieved
without any modification to the mobile units.

To reduce multipath fading, we use angle diversity. We optimally combine the
reflected signals from both distant scatterers and local scatterers.

Fig. 5.15 shows the result of LCMV. Weights are chosen such that the signals
at one desired direction are passed and all the signals at the other interference
directions are all suppressed, and the signal energy at the rest angles are all min-

imized. We observed that output SNR is almost equal to the input SNR. All the
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interferences are successfully suppressed.

To suppress interference at the mobile handset, we use data independent beam-
forming algorithms in the transmitter beamformer. The weights in a data inde-
pendent beamformer are designed so that the beamformer response approximates
a desired response independent of the array data or data statistics. In a slow fad-
ing channel where all users are still or moving slowly, the beamforming weights
in a beamformer of transmitter can be chosen to be the complex conjugate of the
receiver beamformer weights if the forward and the downward link share the same
frequency band. When mobile terminals move at some fast speeds, we try to steer
the main beam lobe of each beamformer to each mobile and minimize sidelobe at
other direction. So we chooses the weights of each beamformer to be the steering
vector corresponding to the DOA of each targeted mobile. This results in increased
gain in the direction of the mobile and decreased gain in the direction of any in-
terferers. Thus, cochannel interference from the base station to mobiles in other
cells is reduced, and each mobile receives its own signal with very little cochannel

interference.
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Chapter 6

Adaptive Array in CDMA

6.1 Introduction

In the previous chapters, we presented the applications of adaptive arrays in TDMA
mobile communication system. In this chapter, we will investigate their applica-
tions in CDMA systems.

In (DS) CDMA spread spectrum systems, the same frequency band is shared by
many users. The receiver uses a matched filter corresponding to the user’s spread-
ing chip sequence to extract the desired signal components from the composite
signal comprised of the desired interference signals.

CDMA system possesses many advantages such as security, resistance to inter-
ference, but it also has an inherent disadvantage of having the near-far problem.
Overcoming this problem holds the key to achieving high-capacity CDMA mobile
communication systems. Power control is often used to solve this problem, but
the rapid fluctuation in the signal strength caused by multipath Rayleigh fading
remains in spite of power control. A hybrid diversity scheme combining space di-

versity and path diversity [67] provides an effective way to reduce of fast fading
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effect and to further reduce the near-far effect. Conventionally, equal gain com-
bining is used to combine diversity paths. However, when there are remaining
interferences after despreading, caused by poor power control or poor synchroniza-
tion, then equal gain combining degrades the performance [68]. In such situations,
an adaptive diversity combining technique that can suppress residual interference
and reduce fast fading is beneficial.

In this chapter, we propose a diversity combining technique with weights ob-
tained based on previous information along surviving paths of an orthogonal convo-
lutional code. We develop the reference signal based diversity combining techniques
for O-CDMA system with orthogonal Hadamard-Walsh (HW) codes to suppress

remaining interferences after demodulation.

6.2 DS/CDMA Mobile Signal with HW Modu-
lation

In the proposed CDMA standard IS-95, the downlink employs coherent demodula-
tion with assistance of pilot signals. Multiple transmitted signals are synchronously
combined. Its performance in a single cell system will be much superior to that
of the reverse link. No power control is required, since for each subscriber, any
interference caused by other subscriber’s signals remains at the same level relative
to the desired signal. There are little degradations due to fading.

In this work, we will only consider the diversity combining in the most difficult
uplink. In the following, we will briefly present the signal characteristic at the
uplink.

Orthogonal Hardmard-Walsh modulations are used on the uplink in IS-95. The
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baseband equivalent of the [ — th DS/SS K-ary Hardmard-Walsh(HW) modulated
user signal can be expressed as follows:
(k) 4\ _ (k) k ¢ k) :
5B (1) = o (t)V ES Z (S, + ) - Y - gp(t —iT) (6.1)
i=—00
where [i| £ mod L, the superscript ~ denotes a complex-valued signal, Eg’“) is

the average transmitted power of the k-th user, « is Rayleigh distributed, g7(¢) is
(k)

s Coliln € %1 are the so called

the impulse response of the transmit filter, ¢ and c!

a0, IZI
chips of the spreading sequence (with 7 ticking at the chip rate 1/7,), dﬁf’ € 1
is the h-th HW binary symbols (with h ticking at the HW symbol rate H/T}),
L is the spreading code repetition period. The chip pulse shape gr(t) may be
a standard square-root Nyquist raised-cosine with roll-off factor a with respect
to the chip signaling rate 1/T,. The baseband equivalent of the DS/SS-CDMA
signal received is thus a multiplex of K different signals in the form of Eq. 6.1 as
follows(no channel distortion is assumed):

K
F(t) = 3 §W(t — 7y )edCutawt) 4 () (6.2)
k: 1

= Za (t)V EP i Oxtrunt) (6.3)

Z ( ;k|)z|L + Cf,’ilh) d(k) r(t — i1, — 7)) + D(t) (6.4)

where 7, and 6; are the unknown delay and carrier phase shift, respectively, and
Auwy, is the carrier frequency offset of the local oscillator. The white Gaussian noise
process #(t) £ Vvp(t) + jug(t) has one-sided power spectral density Io.

Let us now look at the signals after the demodulator. After noncoherent I
and ) demodulation and chip matched filtering, the basedband components of
received signal are correlated each with both I and Q signature codes and appro-

priately combined, to give a noise-corrupted replica of the generic binary symbol
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of currently transmitted HW function. Those samples are taken H at a time and
fed to correlate with each of the possible HW functions. The observable vectors
for in phase and quadrature outputs may be taken as y’ (y%n,yél),' ,y(l))

and y@ = (ng),yéQ), T (Q)) N = T,/T, is the spreading factor. When a HW

function corresponding to a correct signal is used,

N
pe(y®,y9|a, ¢) = [] expl-uL)—0y/Eocosd)?/ I)exp|—(u@—ar/ Bosing)2/ I} /I,
n=1
(6.5)

Otherwise

pr(y,y H exp[—(uy)? /Tolexp[~ (43 @)?/ o] /1o (6.6)

Each square modulus Z defined by Z = Y* 4 Y(@ is then calculated to get
rid of phase errors, where YO = 3N () y(Q) = 5N 4(Q) The estimated HW
sequence is the one with the largest Z. The probability density function pc(Z) of

Z refers to the presence of a (correct) signal in the given correlator and is given by

20 _a2 exp(— Z 4+ a*M?) |V 2vValM?2Z
vel2) = [ 2enepCELa N Mo i 6
— i —Z/Vp
= VFe (6.8)

The probability density function p;(Z) refers to the absence of a (correct) signal
and is given by

pi(Z) = %e-Z/V (6.9)

V = NIy, M? = N’E,, Ve =V + M?0?
More generally, there are L independent multipaths. When these paths have
independent Rayleigh fading with equal-average energy, equal gain combining is

usually used. The probability density function of Z which is the sum of the squares
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Figure 6.1: Orthogonal convolutional encoder

of L independent Rayleigh observations, is given as follows: (i) when signal is

present,
SL—1=2/Vp
L) = 7 .
pc(Z) T DVE (6.10)
(ii) when signal is not present,
SL-1=2/V
pi(Z) = =DVt (6.11)

6.3 Multipath Selection Based on Orthogonal
Convolutional Code

If the orthogonal convolutional code shown in Fig. 6.1 is used, we can achieve
better performance by using combining based on the predicted weights than by
using equal gain combining. The orthogonal convolutional encoder of Fig. 6.1
produces for each bit time one of H = 2¥ Hardmard-Walsh sequences of length
2K X1, Xo, -, Xy. Fig. 6.2 shows an example of paths of the code trellis diagram
over their unmerged span, for K = 6, H = 64, labeled according to the Hardmard-
Walsh sequence generated for each branch. In a slowly fading situation, on a correct

path marked by solid line in Fig. 6.2, the noncoherent demodulator output Z at
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Figure 6.2: Example of two unmerged paths of orthogonal convolutional code

two consecutive branches are highly correlated. Along the correct path, when the
desired signal from the ¢th fading path suffers from deep fading, it will still suffer
from deep fading at the next branch. The signal energy distribution on a correct
branch can be predicted by the noncoherent demodulator output at the previous
branches. In contrast, on a wrong path marked by dashed line, the demodulator
output at two consecutive branches are uncorrelated.

Suppose that an incorrect path is unmerged from the correct path for d branches,
in which case all corresponding branch pairs are orthogonal. Let the branch metrics
on the correct and incorrect paths be denoted by Z;, Z,,---,Z, and 27,7}, -- -, Z},
respectively.

When equal gain combining is used, the probability of pairwise error upon

remerging is just

d d
Py=Pr(d_Z! > 7). (6.12)
i=1 =1
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We then have the Chernoff bound,

Py < ElerZinZ=2)] = (E[erZ -2, (6.13)
with
0] = [T p(@)iz e pe(2)iz  (614)
_ 1 >0 6.15
T O-pMi+pea+nE P (619)

where U = (02E,/Iy)/L = (Ey/Iy)/L. The minimum with respect to p occurs at
p=(U/2)/(14+U). Therefore,

Py < W, (6.16)
where
. 1+U

The excess of E,/Iy over 2In(1/Wy) for this noncoherent L-path Rayleigh channel

is
Ey/ Iy _ U/2

2An(1/Wo) — In[(1 + U/2)2(1+ D))’ (6.18)
%L/WO) = 2In[(1+U/2)*/(1+U)]. (6.19)

This excess of Ey/ I over 2in(1/W,) in decibel is plotted as a function of 2in(1/W,)/L
in decibels in Fig. 6.3.

In our effort to improve combining performance, we assume that, on a cor-
rect path, we can predict the path of the strongest received signal energy. The

probability function of the largest square modulus Z is given by

z 1
Pro(mas{Z,i=1,--,L} < Z) = [/ eV iz (6.20)
0 F
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Its density function is given by

z 1 1
VA — L/ - —z/VFd L-1_~ —-Z/Vp )
pc(2) [0 VFe z] VFe (6.21)
—Z|Vp
= L[1—e#Vrl1E___ (6.22)
Vr
~Z/(1+U)
— L[] —e-2/0+unL—18 T~ 9
1 - e O (6.23)
Then we obtain the Chernoff bound:
d d
i=1 =1
< ElerTm@2)] = (Bl -2))¢, (6.25)
with
E[e"? 2] = /0 e#? py(Z')dZ" /0 ” e "2po(2)dZ (6.26)
00 _ ,—=Z/(14+U)1L-1
— / e(P—l)Z’dZI /oo L[l € [+ )] e_Z[p+H+U]dZ (627)
0 0 1+U
1 L!
- . 6.28
=) Tl + 1+ D)) (6.28)
= W,. (6.29)

The corresponding required excess E,/I in decibel is plotted in dashed line in

Fig. 6.3. We observe a reduced Ej;/I, compared to equal gain combining.

6.4 Weighted Diversity Combining

In practice, due to the noise effect, we may not always know the diversity path with
the strongest signal every time. We can nevertheless predict the suitable weights
for the path diversity combining at next branch based on orthogonal convolutional

code.
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In the case when we have perfect synchronization and power control, the sig-
nals after CMF consist of the desired signal, Gaussian noise, and summation of
many residual interference signals with low energy. The summation of all these
interference signals can be approximated by Gaussian noise. The characteristic of
noncoherent demodulator output has been analyzed in the previous sections. The

weights prediction algorithm in this case is given in the following.
e We update the weights along each surviving path in the code trellis diagram.

e On each path, the weights are updated based upon updated smoothed branch
metrics. The reason to use the smoothed branch metric is to reduce the
Gaussian noise effect. We define the smoothed branch metric Bf of the sth

surviving path as follows:

n—1
Bl =) A""Z}(n—1i) + Z(n) (6.30)
i=1
[ denotes the lth diversity channel, n denotes the nth symbol period and A

is a forgetting factor. The predicted weights for the next connected branch

is given as follows
__ B
ZlL=1 Bls .

wy (6.31)

Along a correct path, the weights approximately reflect the noncoherent de-
modulator outputs from different fading paths at the next branch. On the
other hand, along a wrong path, such weights do not provide any information

about the noncoherent outputs at the next branch.

e We then correlate the weighting vector with the noncoherent demodulator

output vector Z, Z = [Zy, Z,, - - - Z1] (L is the total fading paths) at the next
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branch, and use the correlated result as the final branch metric. Use the final

branch metric to update the accumulated path metric as follows

Pé(n) = nz:;(Ws(n —i— 1) Z(n—d) + (W (n—1))TZ*(n)  (6.32)

e Select the surviving path from the code trellis diagram based on the accu-

mulated path metrics obtained in the above step.

The accumulated path metrics calculated based on equal gain combining is

given by

n—1

iz (n — 1) +ZZ, (6.33)

=1 =1

1

o~

7

Il

P? obtained from (6.32) is enlarged compared to that obtained from (6.33), on a
correct path, and is reduced on a wrong path. Therefore, we increase the difference
between the path metric of a correct path and that of a wrong path. This results
in a reduced BER as shown in the following example.

In our simulation example, the channel is code-division-multiplexed. There are
384 symbols in each frame. The symbol rate is 19.2ksym/s. The carrier frequency
is 17 GHz. There are totally eight diversity paths (including both path diver-
sity and antenna diversity) The desired user is moving at 5miles/hr. Orthogonal
convolutional code and Hardmard Walsh modulation(K = 3, H = 8) are used.
Perfect synchronization and effective power control are assumed. After CMF, the
signal to noise ratio is 6dB. A = 0.8. In Fig. 6.4 the BER obtained with predicted
weights is compared to that with equal gain combining. We observe 0.2 to 0.3dB
SNR improvements from the use of predicted weights.

In the case when there is no effective power control and no perfect synchro-
nization, after noncoherent demodulation, there will be some strong interference

signals remaining in some diversity paths. Similar to the diversity combining in
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Figure 6.4: BER comparison between equal gain combining and combining based

on the predicted weights
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TDMA, the desired signal can not be extracted from strong interferences and noise
without using reference signals. Here, we also need to insert training sequences
at the begining of each frame and use them as the reference signals to get an ini-
tial estimate of the multipath weights. The use of orthogonal convolutional codes
allows us to further update the weights to track the fading variations in the chan-
nel. Without the use of orthogonal convolutional code, we have to use the initial
weights for the rest of the diversity combining for the whole frame period. To
prevent weights from converging along a wrong path which is associated with an
interfering signal sequence, weights have to be updated under certain constraints.
As we have explained previously, the initial estimated weights should be highly
correlated with the noncoherent demodulator output vector at the next branch
along a correct path and not correlated along a wrong path. Therefore, we evalu-
ate this correlation first on each path before updating the weights. Our algorithm

with the use of reference signals is given below:

e We normalize Z; as follows:

__Z{(n)
z(n) = ——EiL=1 ) (6.34)

e We then find the correlation coefficient p between z and w(n — 1) obtained

in Eq. 6.31,
e Wi (n —1)2](n)

p= :
VEE (wi(n - 1))2/ 2L, (28 (n))?
e On the sth path, if p is greater than a preset Threshold, we update the

(6.35)

weights following the procedure in the previous algorithm. Otherwise, we

keep the previous weights.

In the following simulation example, we assume five strong interference signals

remain after CMF, each’s INR = —3 ~ 1dB. SNR = 6dB, Threshold is set
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Figure 6.5: BER comparison between diversity combining with fixed weights and

predicted weights

to be 0.9. A = 0.8. The channel conditions are the same as in the previous
example except that all the desired vehicle and interfering vehicles are moving at
10 miles/hr. Fig. 6.5 shows 1 ~ 1.5dB improvement in interference suppression

using adapted weights over using fixed weights obtained in the training mode.

132



Chapter 7

Conclusions and Future Research

Our dissertation is devoted to applying the adaptive array signal processing tech-
niques to wireless communications to increase channel capacity. We identified and
addressed issues related to two major kinds of adaptive arrays suitable for TDMA
systems. One is optimum adaptive diversity combining based on reference signals
and the other is constrained adaptive beamforming based on the DOAs.

From computer simulation studies, we discovered that the effectiveness of ref-
erence signal based array combining on a fast time-varying channel depends on the
tracking speed of the adaptive signal processing algorithm used and on the level
of a decision error propagation.

To reduce the decision error propagation in the conventional optimum diversity
combining system, we developed a simultaneous diversity weights updating and
decoding technique which incorporates QRD-RLS based parallel weights tracking
and a M-D decoding algorithm. The M-D decoding algorithm was first developed
for the binary convolutional codes and then extended to TCM codes. It provides
instantaneously a set of candidate reference signals for weights tracking and makes

a final symbol decision with a D symbol delay based on more reliable accumulated
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path metrics. The memory required by the M-D algorithm is only O(M). The
computational complexity required is O(K? + M - K) for K weights updating and
O(M) for decoding, which is not much increased from O(K?) in the conventional
decision directed adaptive array system when M is smaller than K. Simulation
results showed that about 8 to 10dB improvement in total interference suppression
at low ISR and about 3 to 5dB improvement at high ISR can be achieved in
our system using M-D algorithm with M = 2. This system significantly reduces
error propagation in the decision directed array systems with moderate increase in
complexity.

To find the best weights acquisition and tracking algorithm, we conducted
comparisons on applicable adaptive array algorithms. We found that QRD-RLS
algorithm has good numerical stability, can double the tolerable interference level
compared to the DMI or other RLS algorithms if a high precision A/D converter
is available. Its complexity is no more than that of the others and is within the
capability of a modern programmable DSP processor. We revealed an unstability
problem caused by a low bits A/D converter, and developed a new exact initial-
ization approach for the QRD-RLS algorithm to solve the problem.

To effectively use DOA based adaptive array in a multipath TDMA mobile ra-
dio channel, a robust DOA estimation algorithm applicable to coherent signals is
crucial. We developed a general SS technique for two dimensional arrays to decor-
relate coherent signals, and to make MUSIC, ESPRIT and adaptive beamformers
operative in a coherent interference environment. In order to apply SS to an array
of nonlinear geometry, this array must have an orientational invariance structure
and its center array must be ambiguity free. Also the number of subarrays must

be greater than or equal to the largest number of mutually coherent signals. To
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apply SS in conjunction with MUSIC, all the subarrays must also be ambiguity
free, and the number of sensors in each subarrays must be larger than the number
of incoming signals. For ESPRIT, two identical arrays (or subarrays) separated
by a displacement vector are used each satisfying the conditions for applying SS
and MUSIC. When a nonlinear array is central symmetric, the FBSS can be used
and it outperforms the regular SS in terms of improved efficiency and estimation
resolution.

We proved the necessary and sufficient conditions for a three-sensor array man-
ifold to be ambiguity free. We identified several situations, for higher order sensor
array manifolds, in which ambiguity may arise. It is necessary to avoid the iden-
tified ambiguities in designing ambiguity free center arrays and subarrays.

We conducted simulations to verify the effectiveness of our SS in decorrelat-
ing multipath coherent signals in TDMA wireless communications environment.
The successful interference suppressing and capacity increase based on SS, high
resolution DOA estimation and LCMV beamforming have also been verified by
computer simulation.

The combined diversity weights tracking and decoding previously developed for
TDMA system is applied to DS/CDMA system. We proposed a diversity combin-
ing technique using predicted weights and orthogonal convolutional code. Better
BER performance can be achieved compared to conventional equal gain combining
especially when there is lack of perfect synchronization and power control.

With regard to possible future research direction, the simultaneous weights
updating and decoding may be extended to various decision directed algorithms
for tracking time-varying environment with cochannel interference, for example,

the application to decision feedback equalization(DFE). In the frequency selective
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fading environment, fading, intersymbol interference and cochannel interference
occur at the same time. Diversity-DFE techniques [70] [72] [73] have been proposed
to improve the channel conditions. Error propagation in DFE can be even more
severe. If we make a decision error, not only the reference signals but also the
input signals are erroneous in the next equalizer weights updating. Bidirectional
equalization has been proposed to reduce error propagation, but this method is
valid only for those TDMA systems that have reference signals at both the begining
and the end of each time slot. A precoding technique [71] has been proposed to
reduce error propagation in DFE, but this technique is only applicable when the
actual system response varies moderately. Reducing error propagation in DFE
under fast time-varying frequency select environment should be an interesting and
research rewarding topic.

Other possible applications of this combined technique include joint phase syn-
chronization and decoding, joint channel and data estimation.

Several interesting research topics can be pursued in CDMA.

For DPSK DS/CDMA system, an adaptive optimum path diversity combining
scheme is proposed in [68] to reduce interference only path effect. RLS was used for
diversity weights tracking. We can apply simultaneous optimum diversity weights
tracking and decoding in this system to reduce error propagation. Fig. 7.1 is a
proposed block diagram. More quantitative studies in this area are needed.

Adaptive linear and decision feedback receiver structures for coherent demodu-
lation in asynchronous code division multiple access (CDMA) system were consid-
ered in [69]. The error propagation in the decision feedback receiver may be even
more severe. The combined equalizer weights updating and decoding can also be

applied here.
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Figure 7.1: Simultaneous diversity combining and decoding for DPSK DS/CDMA

system
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