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In the era of the Internet-of-Things (IoT), billions of smart devices are deployed

in indoor environments, connect, share data, and integrate information to fulfill

users’ needs. Wi-Fi is the ubiquitous communication interface in IoT networks.

Inspired by the fact that the Wi-Fi signal can interact with the environment during

the propagation, it can extend its role from a communication medium to a wireless

sensing tool to perceive human activities in surrounding environments. By analyzing

the dynamic components of the Wi-Fi radios introduced by human motion, many

applications on activity monitoring and detection are enabled. To contribute to the

novel applications of Wi-Fi, this dissertation mainly focuses on passive fall detection,

indoor proximity detection, and virtual keyboard implementation for Wi-Fi sensing.

In the first part of this dissertation, we propose a novel Wi-Fi-based environment-

independent indoor fall detection system by leveraging the features inherently asso-

ciated with human falls — the patterns of speed and acceleration over time. The

system consists of an offline template-generating stage and an online decision-making



stage. In the offline stage, the speed of human falls is first estimated based on the

statistical modeling about the channel state information (CSI). Dynamic time warp-

ing (DTW) based algorithms are applied to generate a representative template for

typical human falls. Then fall event is detected in the online stage by evaluating

the similarity between the patterns of real-time speed/acceleration estimates and

the representative template. Results of extensive experiments demonstrate the pro-

posed system can achieve consistently high accuracy in time-varying line-of-sight

(LOS) and non-line-of-sight (NLOS) environments and can be generalized to new

environments without re-training.

In the second and third parts, we investigate the feasibility of detecting mo-

tion in proximity robustly and responsively based on a single pair of commercial

Wi-Fi devices. We establish the connection between the underlying radio prop-

agation properties and the proposed features. Extensive experiments in various

environments validate the efficiency of the devised feature-based detection scheme.

Further, we generalize the system to a multi-device structure and conduct exper-

iments under single-user and multi-user sensing scenarios. The results verify the

responsive on-device proximity detection can be achieved by combining the infor-

mation from different links, illustrating its potential for real-time home automation

applications.

The last part of the dissertation considers the design of a universal virtual

keyboard that reuses a commodity 60 GHz Wi-Fi radio as a radar. By leveraging the

unique advantages of 60 GHz Wi-Fi signals, the proposed system can convert any flat

surface into an effective typing media and support customized keyboard layouts. We



devise a novel signal processing pipeline to detect, segment and separate, and finally

recognize keystrokes. The proposed virtual keyboard system enables concurrent

keystrokes and does not need any training except for a minimal one-time effort of

only three keypresses for keyboard calibration upon the initial setup. Extensive

experiments demonstrate a high recognition accuracy for both single-key and multi-

key scenarios on different keyboards, presenting the proposed systems as a promising

solution to future applications.
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Chapter 1: Introduction

1.1 Motivation

The Internet of Things (IoT) is transforming our world in tremendous ways.

By enabling everyday objects to connect, interact and exchange data with each

other, we can automate the integration of the most valuable information from dif-

ferent devices to address specific needs.

Almost all IoT devices communicate through wireless modules such as Wi-Fi

[9], Bluetooth [3], Zigbee [10], etc. In addition to providing connectivity among

“things”, these radio technologies also extend their role from a communication

medium to a wireless sensing tool and enable IoT devices with the capability to

decipher the physical world by leveraging pervasive wireless signals. This is because

radio frequency (RF) signal can be altered by the environment during its propaga-

tion and thus contains the information of the surrounding environment.

Among different radio technologies, Wi-Fi is one of the most widely used wire-

less technologies today in indoor environments and could be the ideal infrastructure

to accommodate a large number of IoT devices. It is simple to use, easy to install,

and economical. Households in the US have on average 25 connected devices in

2021 and the majority of them use Wi-Fi technology [1]. It has been envisioned
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that Wi-Fi sensing will become a prominent solution to IoT applications due to

its ubiquitous deployment and cost-efficiency [42, 76]. In fact, with the technology

advancing, Wi-Fi sensing has supported a variety of features in real-world scenarios

such as motion detection [97], vital sign monitoring [99], speed estimation [85, 96],

indoor positioning [17, 18] and tracking [86, 95].

Nowadays, as individuals spend the majority of their time in their homes or

workplaces, to provide services to occupants and fulfill their needs, understanding

the human daily indoor activities becomes essential in modern security systems,

smart homes, and health care. In this dissertation, we study activity monitoring

and detection using Wi-Fi sensing. More specifically, we design three important IoT

applications - fall detection [29, 30], proximity detection [26], and virtual keyboard

[27, 28].

1. Fall detection is important to seniors who live alone in their homes. Fall is

recognized as one of the most frequent accidents among elderly people, which

can cause severe injuries and even death [4]. The damage caused by the

falls is not only reflected in the immediate injury of the body, but also in all

subsequent adverse effects caused by the lack of timely assistance. Therefore,

a real-time indoor fall detection system with timely and automatic alarms is

highly in need, which could potentially save lives by requesting external help

without delay.

2. Proximity detection through motion sensing has gained much attention re-

cently. It can not only detect the presence of the moving target but also provide
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location information. It plays a fundamental role in many applications, includ-

ing security surveillance, intruder monitoring, area-aware home automation,

etc. In addition, proximity detection can provide important location-related

context to support further indoor activity recognition.

3. Virtual keyboard has been greatly demanded as a handy substitute for ordinary

physical keyboards. Keyboard, as the primary and most integrated computer

peripheral, has become an indispensable part of our daily lives. However,

physical keyboards have been suffering from poor portability issue. Addition-

ally, as IoT devices go smaller, they are typically not feasible to have a bulky

physical keyboard. Therefore, virtual keyboard has gained increasing popu-

larity in recent years to enable typing experience for billions of IoT devices

without a keyboard.

1.2 Related Works

The related works of this dissertation cover indoor activity recognition, motion

detection and localization, and virtual keyboard implementation, which are reviewed

in the following subsections, respectively.

1.2.1 Indoor Activity Recognition and Fall Detection

Existing activity recognition techniques can be roughly divided into two cat-

egories: active and passive systems. The active or device-based techniques require

users to wear special devices, including ECG sensors, pressure sensors, accelerome-

3



ters, gyroscopes, smartwatches, and smartphones, etc., to track the motion of their

bodies. However, in addition to the potential false alarms of wearable systems [47],

it needs users’ continuous cooperation and is not suitable for home security applica-

tions. Also, it is cumbersome and sometimes impractical to ask users especially elder

people to carry specialized sensors for healthcare applications [39], which motivates

the development of passive or device-free systems. The most common passive sys-

tems are vision-based [45]. Typically, an array of cameras, infrared sensors, or depth

cameras like Kinect need to be deployed to monitor an area of interest. While high

accuracy could be achieved under favored settings of good lighting conditions and

a clear field of view, vision-based systems are limited by the visibility requirement

and also bring privacy concerns, especially in some specific environments such as

the bathrooms and bedrooms. Acoustic-based methods have also been used to mon-

itor activities [62], but they usually experience weak echo audio signal and ambient

noise, and are not widely deployed in practical applications.

On the other hand, wireless sensing is an innovative approach to capture activ-

ities in a non-obtrusive way while overcoming the aforementioned limitations. Exist-

ing works on passive wireless sensing can be categorized into different groups based

on the features extracted from the wireless channel as Table 1.1 shows: radar-based,

received signal strength indicator (RSSI) based, and channel state information (CSI)

based systems.

Radar-based systems detect events relying on specialized devices that are not

readily available in homes. Many of them infer the motion of the reflector by evaluat-

ing the Doppler frequency shift and extract micro-Doppler signatures for recognizing
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Methodology Existing works Limitations

Radar-based

Limited detection range
Indoor activity recognition [11, 61, 67] Cannot be integrated with commercial Wi-Fi
Fall detection [13, 44, 49, 70] Specialized device required

Doppler signature affected by moving direction

RSSI-based
Indoor activity recognition [23, 68]

Coarse granularity

Fall detection [32]
High sensitivity to environmental changes
Multiple devices required

CSI-based
Indoor activity recognition [14, 81, 92] Re-training required in new environments
Fall detection [53, 78, 83, 101] Performance degrades with LOS path blocked

PWR
Indoor activity recognition [19]

Extra peripherals and directional antennas required

Human sensing [21, 37]
Doppler signature affected by moving direction
Stable reference channel required

Table 1.1: Related works on activity recognition using wireless sensing

finer body movements, such as activity monitoring [11, 67], gesture recognition [34],

and fall detectors [13, 70]. However, although radars may have higher range or

frequency resolutions, they usually require line-of-sight (LOS) for reliable opera-

tion. Therefore they can only monitor activities in very limited coverage and are

also limited by the requirement of extra specialized dedicated devices. Further, the

speed estimation derived from Doppler shift by radars varies for different moving

directions and the heading direction of the subject is usually predefined [85].

Some other works on activity recognition use commodity devices. Commercial

wireless devices, such as Wi-Fi infrastructures, are available in most indoor spaces

and allow more flexible low-cost deployment. Chetty et al. apply passive Wi-Fi radar

(PWR) to realize through-the-wall human sensing [21] and overcome the coverage

limitation of traditional radars. However, PWR, which also relies on the princi-

ple of radars, collects Doppler information and therefore is also direction/location-

dependent and requires directional antennas [37].

Another widely-used method is using the RSSI to characterize indoor activ-
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Reference Features Antenna Detection False alarm
Environment-
independent

WiFall [83] Variance 3Tx/3Rx 87% 18% 7

RT-Fall [78] Phase difference 1Tx/2Rx 91% 11% 7

FallDeFi [53] Spectrum 2Tx/2Rx 94.33% 14.92% 7

TL-Fall [101] Frequency 1Tx/3Rx 86.83% 15.29% 7

DeFall Speed 1Tx/1Rx 95.80% 1.47% 3

Table 1.2: A brief summary of different CSI-based approaches to fall detection and
the claimed performance.

ities, either on Wi-Fi or other wireless devices. For example, Gu et al. explore

Wi-Fi ambient signals for RSSI fingerprint of different activities [23]. However,

since RSSI measures the overall amplitude response of multiple superposed sub-

carriers, it loses the phase information as well as the detailed information of each

frequency component. Therefore it suffers from dramatic performance degradation

in complex situations due to multi-path fading and temporal dynamics [93], limiting

its stability and reliability in practical applications.

CSI, which measures both amplitude and phase information on different fre-

quency components, provides finer-grained information for a propagation environ-

ment and has become popular in the field of wireless sensing recently. Different from

the mechanism of PWR, CSI is the standard information that can be extracted from

commodity Wi-Fi devices. By analyzing CSI accessible on mainstream devices nowa-

days, one could monitor indoor activities and detect indoor events, such as Wi-chase

[14], CRAM [81] and TRIEDS [92].

Fall detection gains increasing attention among various activity recognition

applications [82]. Many CSI-based fall detection systems have been implemented

[53, 60, 78, 83]. WiFall [83] detects falls by extracting features from CSI amplitude
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information, while RT-Fall [78] exploits the efficacy of phase difference for activ-

ity segmentation and fall detection. FallDeFi [53] performs time-frequency analysis

using short-time Fourier transform (STFT) to detect falls. Unfortunately, as illus-

trated in Table. 1.2, since the features extracted in the existing Wi-Fi based fall

detection systems mentioned above are environment-dependent, the trained classi-

fiers in these works suffer from the impact of environmental changes and cannot be

generalized well to new environments without performance degradation. Re-training

is required in these systems when the environmental settings change, with the unde-

sirable complication that users would be asked to fall and collect training data every

time the placements of furniture or the deployments of the devices get changed. To

address these challenges, in this dissertation we propose DeFall that explores the

inherent environment-independent features of a fall and can be put into use once

deployed in any new environment without any re-training or calibration [29, 30].

1.2.2 Indoor Motion Detection and Localization

Indoor motion detectors are an important component of IoT security and

automation applications. Most of the existing CSI-based methods detect motion by

capturing the temporal variations caused by the moving object and extract time-

domain features, such as mean and variance of CSI amplitude [80], the variance

distribution of CSI amplitude [107] and the variance of amplitude variance over

subcarriers [43]. Other works [90, 96, 97] exploit the auto-correlation of the CSI

over time. PILOT [90] decomposes the CSI amplitude correlation matrix using
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singular value decomposition (SVD) and monitors the variations of the singular

vectors. WiDetect [97] explores the efficiency of autocorrelation function (ACF) of

CSI power with a single time lag, while WiSpeed [96] makes use of more lags to

detect motion and estimate speed. In addition, many other works detect motion

by exploiting the subcarrier diversity in the frequency domain. For example, R-

TTWD [106] extracts the first-order difference of eigenvector of CSI amplitudes

across subcarriers, while PADS [57] uses the maximum eigenvalues of covariance

matrices from normalized amplitude among subcarriers as one of the features to

detect human movements.

The location-related information is also important in real-world applications

for indoor motion sensing. However, most of the aforementioned motion detection

works only aim at detecting the dynamic object in a predefined large area with-

out being able to capture the location information of the motion, which inspires

the development of CSI-based motion localization schemes. Many of the existing

localization systems rely on a database storing the CSI fingerprints and the target

is localized by matching the newly collected CSI features with the stored profiles

[90, 104], which requires laborious training and is not easy to be generalized to

new environments due to the environment-dependent and location-dependent fin-

gerprints. Other works build geometric models to infer the angle-of-arrival (AoA) or

time-of-flight (ToF) information [58, 102] and usually require dedicated calibration

or multiple transceivers with a specific geometric arrangement, which prevents their

practical usage in real-life scenarios.
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Modality Reference Method Hardware Training

Vision

Murase et al. [50] Contour extraction, Real-Adaboost Camera Yes
Ji et al. [31] Contour feature restriction RGB camera No
CamK [94] Shape-based fingertip tracking Camera Yes
Su et al. [71] Morphology processing, ellipse fitting Image sensor No

Acoustic
Zhuang et al. [109] MFCC, HMM, linear classification Microphone Yes
Zhu et al. [108] Time difference of arrival (TDoA) Smart phone No
UbiK [79] Multipath fading of audio signals Smart phone Yes

Ambient
Marquardt et al. [46] Accelerometer, FFT, MFCC Smart phone Yes
VibKeyboard [41] Power spectral density, SVM Vibration sensor Yes

Wearable

Zhao et al. [103] Angle complementary filter, kNN mIMU Yes
Wu et al. [89] Velocity and acceleration measurement Pressure sensor Yes
iKey [20] MFCC, class-center classification Vibration sensor Yes
Scherer et al. [64] LDA, feedback training EEG sensor Yes

RF-based

WiKey [12] PCA, DWT, DTW, kNN 2 × 3 transceivers Yes
Windtalker [48] DWT, PCA, STFT, DTW Directional antenna Yes
Chen et al. [16] FIR filter, phase/amplitude matching 1 × 2 transceivers Yes
SpiderMon [40] PCA, Wavelet decomposition, SVM, HMM Directional antenna Yes
WiPass [100] Symlet filter, DCASW, DTW 1 × 2 transceivers Yes

Table 1.3: Summary of related works on virtual keyboard systems/keystroke recog-
nition

1.2.3 Keystroke Recognition and Virtual Keyboard Implementation

As a portable alternative to physical keyboards, various virtual keyboard sys-

tems based on different modalities have been proposed as summarized in Table 1.3.

The existing virtual keyboard systems can be implemented in an active or passive

manner.

The active systems integrate the sensors into the specialized wearables such as

glove [89], wristband [20], and ring [103] to track the motion of fingers. Considering

user convenience, passive approaches have gained more attention over the years and

great effort has been made to implement passive virtual keyboards in both academia

and industry.

Vision-based methods usually employ cameras to detect and localize the keystroke

by shape-based fingertip tracking [31, 94]. Although these approaches can achieve

high accuracy with the significant advances of technology and algorithms in the
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Modality Limitation

Vision
Requirement of good visibility
Specialized devices
Privacy issue

Acoustic
Applicable for only single-key keystroke
High sensitivity to ambient sounds
Specialized devices

Ambient
Specialized devices
Applicable for only single-key keystroke

Wearable
High false alarm rate
Inconvenience to users
Specialized devices

RF-based
Re-training required in new environments
Applicable for only single-key keystroke
Non-portable devices

Table 1.4: General limitations of the existing works on virtual keyboard/keystroke
recognition.

field of computer vision, they are limited by their privacy invasion and the require-

ment for ambient light. Besides traditional RGB cameras, optics-based sensors such

as LiDAR and depth sensors in Kinect have also been integrated for virtual in-

put [15, 71, 72]. However, LiDAR is too expensive for home use and lacks strict

international protocols that guide data collection and processing.

Acoustic- and ambient-based sensing have also been considered to enable pas-

sive virtual keyboard implementation. Some researchers [79, 108, 109] classify the

acoustic signals when typing different keys for keystroke recognition while others

[41, 46] use either the accelerometer in mobile phones or vibration sensor to capture

and decode the vibrations from nearby keystrokes. Nevertheless, the sensitivity to

ambient sounds or vibrations prevents these approaches from being widely deployed

in practical applications.

Several recent studies [12, 16, 48] have demonstrated the potential of using the
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2.4 GHz/5 GHz wireless radios to distinguish different keystrokes. More specifically,

by analyzing the unique patterns of CSI when pressing different keys, Ali et al.

[12] explore the feasibility of using 2.4 GHz Wi-Fi radios for keystroke recognition.

Chen et al. [16] localizes the keystrokes by matching and canceling the signal ampli-

tude/phase over different antennas. Extracting features in both time and frequency

domains, Windtalker [48] utilizes network layer traffic information and physical layer

CSI information to recognize keystrokes. Limited by the fundamental characteristics

of 2.4 GHz/5 GHz signals, however, all of the implementations mentioned above can

only work for a single keystroke, are vulnerable to surrounding motion interference,

and require significant effort for training and learning, preventing them from broader

generalization to new keyboards or new environments. Recently, 60 GHz Wi-Fi tech-

nology has emerged to enable fine-grained applications including keystroke recogni-

tion. In this dissertation, we reveal the possibility of using a single 60 GHz Wi-Fi

radio for universal virtual keyboards with minimal one-time calibration effort.

1.3 Dissertation Outline and Contributions

Considering the limitations of current studies discussed in Section 1.2 and

the significance of using Wi-Fi signals to accomplish IoT applications in activity

monitoring, we are motivated to develop new Wi-Fi sensing techniques that not

only fully utilize the information embedded in indoor multipath environments, but

also support simple implementation with commercial Wi-Fi devices.

In this dissertation, we first introduce the primer of wireless sensing in Chapter
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2, including the propagation characteristics of Wi-Fi signals at different frequency

bands and the specific approaches to harness them. Then, we present different indoor

monitoring systems, that is, a passive indoor fall detection system in Chapter 3, a

proximity detector and its home automation application in Chapter 4 and Chapter

5 respectively, and a virtual keyboard system in Chapter 6. Chapter 7 concludes

the dissertation.

The contributions and outline of Chapter 3-6 are described as follows.

1.3.1 Environment-Independent Passive Fall Detection using Wi-Fi

(Chapter 3)

In this chapter, we propose DeFall , a Wi-Fi based passive fall detection sys-

tem that is independent of the environment and free of prior training in new en-

vironments. Unlike previous environment-dependent works, our key insight is to

probe the physiological features inherently associated with human falls, i.e., the

distinctive patterns of speed and acceleration during a fall. DeFall consists of an

offline template-generating stage and an online decision-making stage, both taking

the speed estimates as input. In the offline stage, augmented dynamic time warping

(DTW) algorithms are performed to generate a representative template of the speed

and acceleration patterns for a typical human fall. In the online phase, we compare

the patterns of the real-time speed/acceleration estimates against the template to

detect falls. To evaluate the performance of DeFall , we build a prototype using com-

mercial Wi-Fi devices and conduct experiments under different settings. The results
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demonstrate that DeFall achieves a detection rate above 95% with a false alarm rate

lower than 1.50% under both line-of-sight (LOS) and non-LOS (NLOS) scenarios

with one single pair of transceivers. The extensive comparison study verifies that

DeFall can be generalized well to new environments without any new training.

1.3.2 Robust Passive Proximity Detection using Wi-Fi (Chapter 4)

In this chapter, we design a reliable and effective proximity detector to dis-

tinguish the nearby and faraway motions. To achieve this, we propose two robust

proximity detection metrics, correlation, and covariance, over the adjacent subcarri-

ers which are extracted from the CSI available on mainstream Wi-Fi devices. Rather

than a data-driven scheme, our features are derived from in-depth insight into the

fundamentals of RF propagation. Specifically, we explore the physics behind the

practical indoor multipath propagation and investigate the relationship between the

human-device distance and the correlation/covariance of CSI power response over

subcarriers in the frequency domain. We then demonstrate the feasibility of the

proposed features in detecting the motion in the proximity of devices with exten-

sive experiments. Experimental results in various real-world scenarios show that

the proposed scheme can achieve true positive rates (TPR) greater than 95% and

99% in distance-based and room-level proximity detection, respectively, while main-

taining the corresponding false positive rates (FPR) less than 5% and 0.5%. The

detection delays for a detection distance of 2 m are within 0.6 s, which verifies the

responsiveness of the proposed scheme.
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1.3.3 Home Automation Applications via On-Device Proximity De-

tection (Chapter 5)

In this chapter, we extend the structure of a single-receiver proximity detector

to a multi-device architecture and facilitate the home automation application via

on-device proximity detection. To address the problem of hardware diversity, we

devise an offline training phase to adaptively determine the thresholds of proxim-

ity state and silent state, which are fed into real-time monitoring. In the online

monitoring phase, the links between the central receiver(Rx) and different IoT de-

vices are integrated for a final decision on the device action. The experiments verify

that given the number of targets smaller than the number of devices of interest,

the system can detect the motion of multiple users in the proximity of the devices

responsively within 0.4s. Besides the real-time proximity detection on IoT devices,

the corresponding location log can be generated to provide information for further

home automation applications.

1.3.4 Universal Virtual Keyboard using A Single Millimeter Wave

Radio (Chapter 6)

In this chapter, We design mmKey , the first virtual keyboard system using a

single 60 GHz Wi-Fi radio. With minimal infrastructure support, mmKey can turn

any flat surface, with a printed paper keyboard, into an effective interactive tool.

We present a novel signal processing pipeline to detect, segment, and recognize both
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single keystroke and multi-finger concurrent keystrokes without any training. We

prototype mmKey by reusing a commodity 60 GHz Wi-Fi radio as a millimeter-

wave (mmWave) radar and validate the performance of mmKey by extensive ex-

periments on three different virtual keyboards, including a computer keyboard, a

piano keyboard, and a phone keypad. We conduct experiments at different locations

in both home and office environments, with ten volunteers involved. Experimental

results demonstrate a remarkable accuracy of > 95% for single-keystroke scenario

and > 90% for multiple concurrent keystrokes. Furthermore, by feeding mmKey ’s

output to commercial text correction tools, we achieve a considerable word recogni-

tion accuracy of > 97% for natural typing on a printed computer keyboard. With

the great performance, mmKey promises universal virtual keyboards for comput-

ers, mobiles, wearables, and IoT devices, should they be equipped with a mmWave

radio.
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Chapter 2: Primer of Wireless Sensing

Wireless sensing technology combines perception and communication together.

It has three distinct characteristics: 1) Sensorless as no special sensors are required

except the wireless signals; 2) Wireless as there is no need to deploy the physical

wired connection; 3) Contactless, a.k.a. passive, as there is no need for users to

wear any devices [105]. Due to the wide deployment of Wi-Fi infrastructure, Wi-Fi

sensing has become particularly attractive and extensive research on passive Wi-Fi

sensing has spawned. The IEEE 802.11 standard specifies various bands in the RF

spectrum that can be used for Wi-Fi, including but not limited to 2.4 GHz, 5 GHz,

and 60 GHz. The radio signals at different frequency bands exhibit distinct propa-

gation characteristics, which enable them to capture the environmental dynamics at

different scale levels and inspire different applications. In this chapter, we introduce

the model of the propagation of radio signals in practical systems.

2.1 2.4 GHz/5 GHz Wi-Fi

The conventional 2.4 GHz or 5 GHz Wi-Fi is the most well-known and most

widely-deployed wireless networking technology, given its widespread use in home

and office settings. CSI, which is now accessible in mainstream Wi-Fi devices, has

16



been used for different sensing purposes.

2.1.1 WiFi Sensing with CSI

During the wireless radio propagation indoors, radio waves arrive at the re-

ceiver (Rx) over multiple paths due to reflection, diffraction, and scattering caused

by walls, furniture, and human bodies in the indoor environment. As the signal

propagates through these multiple paths, the environment information is contained

in the received signal. With L(t) independent clusters of multipath components, the

multipath channel h(t) at time t, a.k.a. channel impulse response (CIR), is given by

h(t, τ) =

L(t)∑
l=1

βl(t)δ(t− τl(t)), (2.1)

where βl refers to the coefficient of the l-th multipath component (MPC) and τl is

the time delay associated with βl. δ(·) denotes the Dirac delta function [73]. The

propagation delay is a function of the propagation distance τl(t) = dl(t)
c

, where c is

the speed of light and dl(t) is the traveled distance of the l-th MPC.

In practice, to mitigate the inter-symbol-interference (ISI), 2.4 GHz/5 GHz

WiFi system is built on the orthogonal frequency-division multiplexing (OFDM)

communication scheme, in which data are transmitted on multiple subcarriers in

parallel. Different subcarriers have different frequencies. Therefore, although the

wireless channel generally uses CIR expressed in 2.1 to describe the multipath ef-

fect, the commercial Wi-Fi devices usually obtain the propagation information via

estimating channel frequency response (CFR) in the frequency domain, which is the
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discrete Fourier transform (DFT) of CIR and takes the form of

H(t, f) =

L(t)∑
l=1

βl(t)e
−j2πfτl(t), (2.2)

where f , in the OFDM-based Wi-Fi system, denotes the particular frequency of each

subcarrier where the channel is measured. The CSI refers to the CFR equivalently.

2.1.2 Decomposition of CSI

CSI describes the multipath propagation of the signals from a transmitter (Tx)

to an Rx. The total of L(t) MPCs of the signal propagation can be classified into

two sets: Ls(t) and Ld(t). Ls(t) is the set of the time-invariant MPCs that are

reflected or scattered off the static objects, e.g., walls and furniture, while Ld(t)

denotes the time-varying MPCs with paths altered by the moving subjects, e.g.,

dynamic gestures and walking human. Based on the superposition principle, we

then decompose H(t, f) into a sum of signals contributed by different MPCs as

H(t, f) =
∑
i∈Ls(t)

Hi(t, f) +
∑

j∈Ld(t)

Hj(t, f) + ε(t, f), (2.3)

where ε(t, f) is the additive thermal noise. Within a sufficiently short period, it is

reasonable to assume that the static component Hi(t, f), i ∈ Ls(t) changes slowly

in time. Then, defining Hs(f) ,
∑

i∈Ls Hi(f) and Hd(t, f) ,
∑

j∈Ld(t)Hj(t, f), we
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have the following approximation:

H(t, f) = Hs(f) +Hd(t, f) + ε(t, f). (2.4)

Without the loss of generality, we can denote the combined time-varying components

Hd(t, f) and ε(t, f) as

H̃d(t, f) = Hd(t, f) + ε(t, f), (2.5)

where Hd(t, f) is the superimposed signal contributed by a large number of multi-

path dynamic rays with random phases, which, through the Central Limit Theorem,

follows a circularly symmetric Gaussian distribution with zero mean and the same

variance for both real and imaginary parts. Meanwhile, Hd(t, f) has a Rayleigh

distributed amplitude and uniformly distributed phase. In addition, the real and

imaginary parts of ε(t, f) can be assumed as white Gaussian. Since Hd(t, f) and

ε(t, f) are from independent sources, it can be assumed that the overall dynamic

H̃d(t, f) tends to be circularly symmetric Gaussian. Then the received CSI can be

further represented as

H(t, f) = Hs(f) + H̃d(t, f). (2.6)

By extracting and analyzing the dynamic component H̃d(t, f), the indoor Wi-Fi

sensing systems are capable of capturing activities in the environment through the

changes in the received CSI.

In practice, however, the measured H(t, f) suffers from severe synchronization

errors, including carrier frequency offset (CFO), sampling frequency offset (SFO),
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symbol timing offset (STO) [17, 18, 91]. Both SFO and STO introduce linear phase

offset which grows with the subcarrier index, and CFO introduces initial phase offset

which is constant for each OFDM symbol. That is, the estimated raw CSI Hraw(t, fk)

on the k-th subcarrier can be represented as

Hraw(t, fk) = H(t, fk)e
−j(kφlinear(t)+φini(t)), (2.7)

where φlinear(t) denotes the slope of the linear phase offset and φini(t) is the ini-

tial phase offset, both of which are time-varying and different for each CSI. These

synchronization errors significantly distort CSI phase, which causes difficulties in

the extraction of the complex-valued H̃d(t, f) and thus limit its practical usage in

real-world applications. To reduce or remove the effect of phase distortions, existing

works usually rely on phase calibration or phase elimination.

2.1.3 CSI Phase Calibration and Elimination

Phase calibration of CSI In literature, there are two commonly used meth-

ods to calibrate the CSI phase: linear regression [35, 57, 66] and conjugate mul-

tiplication [36, 58, 59]. The linear regression based method aligns the phase by

estimating the φlinear(t) and φini(t), while the initial phase φini(t) cannot be com-

pletely removed as it is mixed with the original common phase. The conjugate

multiplication method exploits the fact that different antennas on the same Wi-Fi

card share the same RF oscillator and thus have the same time-varying random

phase offsets. When the conjugate multiplication is applied between two anten-
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nas, the phase offsets are canceled out, which, however, also alters the signal phase

and fails to recover the original CSI. In Chapter 4, we adopt the linear regression

method to compensate the linear phase difference φlinear(t) and cancel the φini(t) for

validation.

Phase elimination of CSI Since the impact of phase distortion on CSI

amplitude is negligible, many works [96, 97] eliminate phase noises by calculating

CSI power G(t, f) of a CSI measurement, which is defined as the square of the CSI

amplitude, taking the form of

Graw(t, f) , |Hraw(t, f)|2

= |Hs(f) +Hd(t, f) + ε(t, f)|2

= |Hs(f) +Hd(t, f)|2 + |ε(t, f)|2 + 2Re
{
ε∗(t, f)

(
Hs(f) + H̃d(t, f)

)}
= |Hs(f) +Hd(t, f)|2 + ε(t, f),

(2.8)

with the superscript ∗ denoting the operator of complex conjugate. The operator

Re{·} denotes the real part, and ε(t, f) is defined as the noise term. With the fact

that the magnitude of thermal noise ε(t, f) is usually much smaller than that of

CSI H(t, f), the term ε(t, f) can be approximated as additive white Gaussian noise

(AWGN) with variance σ(f)2 and is statistically independent of Hs(f) + Hd(t, f).
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Based on Eqn. (2.6), the power response can be also calculated as

Graw(t, f) , |Hraw(t, f)|2

= |Hs(f) + H̃d(t, f)|2

= |Hs(f)|2 + |H̃d(t, f)|2 +H∗s (f)H̃d(t, f) +Hs(f)H̃∗d(t, f)

= |Hs(f)|2 + |H̃d(t, f)|2 + 2Re{H∗s (f)H̃d(t, f)}.

(2.9)

In both Chapter 3 and Chapter 4, we exploit the measured CSI power response

sequences over time for sensing.

2.1.4 CSI Preprocessing

Normalization of CSI power response The raw CSI samples are collected

by commercial Wi-Fi devices. As the automatic gain controller affects the reported

CSI amplitude, we preprocess the CSI sequence on the k-th subcarrier by normal-

izing the sample power response over the whole frequency band as

G(t, fk) =
|Hraw(t, fk)|2∑Ns
k=1 |Hraw(t, fk)|2

, for all k, (2.10)

where Ns is the number of subcarriers, and Hraw is the reported CSI.

Outlier removal After normalization, to sanitize the CSI power response

sequence, the well-known Hampel filter is applied for adaptively detecting and re-

moving the outliers [22]. Specifically, Hampel filter computes the median of a sliding

window composed of the samples, recognizes the data points that are far enough
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from the median as outliers, and replaces them with the median, which could be

formulated as

G(t, fk) =


G(t, fk), |G(t, fk)−mt,k| ≤ µSt,k,

mt,k, |G(t, fk)−mt,k| > µSt,k,

(2.11)

where mt,k is the median value from the moving data window {G(t − j, fk), j ∈

[−T, T ]} and St,k is the median absolute deviation (MAD) scale estimate, defined

as

St,k = 1.4826×medianj∈[−T,T ]{|G(t− j, fk)−mt,k|}. (2.12)

In both Chapter 3 and Chapter 4, we utilize the same CSI preprocessing.

2.2 60 GHz Wi-Fi

Nowadays, the increase in bandwidth-hungry wireless applications such as

high-definition uncompressed video streaming, large file transfer, and wireless dis-

play, has driven demand for technologies that can support wider bandwidth [75] and

therefore leads to the emergence of 60 GHz networking radios (e.g., 802.11ad/ay

[6]) as the next-generation wireless communication technique, which allows effi-

cient high-speed throughput (up-to several gigabits) with very low latency. While

60 GHz Wi-Fi is originally standardized communication, it also offers distinct ad-

vantages for sensing applications compared with 2.4 GHz/5 GHz bands: millimeter-

wavelength on a high-frequency band, finer range resolution by large bandwidth, and

highly directional beamforming enabled with a large phased array. When combined
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with signal processing and machine learning techniques, 60 GHz radios can identify

objects, movements, and precise locations. This capability can be harnessed for

finer-resolution wireless sensing applications including target material sensing [88],

multi-user tracking [87], hand-writing interaction [61], vital sign monitoring [77] and

keystroke recognition [27, 28].

Recently, with the rapid development of technologies, 60 GHz radios have

become available on commodity networking devices and are being integrated into

smartphones [2, 7] and cars [8]. With the increasing deployment and the extraor-

dinary sensing capability, 60 GHz radios hold enormous potential to take wireless

beyond speeds and support a new class of user experiences.

2.2.1 CIR on 60 GHz Radio

As shown in Fig. 2.1, our experimental system is built upon a testbed provided

by Qualcomm, which enables a radar mode on a commodity 802.11ad chipset by

attaching an additional antenna array to the chipset. With this, the 60 GHz radio,

under the radar mode, can be transmitted and received on a single networking device

and capture the channel response for precise sensing [98]. The Tx and Rx arrays

both have 32 antennas assembled in a 6 × 6 layout. We use a coordinate system as

illustrated in Fig. 2.1, where the reflected signals impinge on the Rx antenna array

with different azimuths ϕ and elevations θ.

To extract CIR, each Tx antenna transmits a burst consisting of a group of 32

pulses, which are then received by 32 Rx antennas sequentially, and the correspond-
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Figure 2.1: Device and coordinate system. The antenna array contains 32 elements
in a 6 × 6 layout, with 4 reserved locations marked by red crosses.

ing CIR is recorded. The duration of each pulse is Tp = 10µs, and the duration of

each burst is Tb = 10 ms. By analyzing the received signals, we can monitor the ac-

tivities including keystrokes and hand movements. The user can decide the number

of Tx antennas to use. In the mode of Ntx working Tx antennas, each Tx antenna

takes a burst Tb to transmit and it takes Ntx × Tb to finish one period of transmis-

sion. The concept of “tap” is adopted for differentiating targets at different ranges.

To understand “tap”, consider a pair of Tx and Rx antennas and two reflectors

(target 1 and target 2) at different distances as Fig. 2.3 shows. For each pulse, the

two reflections from target 1 and target 2 result in different time-of-arrival (ToA)

due to different path lengths. A single impulse tap represents the smallest ToA dif-

ference that can be separated. Note that our device uses a bandwidth of 3.52 GHz,

leading to a ToA resolution of 0.28 ns. That is, signals whose propagation delays

differ by greater than 0.28 ns are recorded on different taps, which corresponds to a

range resolution of 4.26 cm (for reflecting paths). Therefore, the CIR tap gives an

estimate of the range of the reflector, and each tap is equivalent to a range difference

of 4.26 cm.

25



… …

𝑅𝑅𝑅𝑅1 𝑅𝑅𝑅𝑅2 𝑅𝑅𝑅𝑅32 𝑅𝑅𝑅𝑅1 𝑅𝑅𝑅𝑅2 𝑅𝑅𝑅𝑅32

𝑇𝑇𝑏𝑏 = 10𝑚𝑚𝑚𝑚 𝑇𝑇𝑏𝑏 = 10𝑚𝑚𝑚𝑚

𝑇𝑇𝑝𝑝 = 10μ𝑚𝑚 Burst # 1 Burst # 2

Figure 2.2: Frame structure in mmWave radio.
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Figure 2.3: Concept of the range tap.

In our experiments, we use 1 Tx antenna and a total of 32 Rx antennas. The

CIR reported by the n-th Rx antenna at time slot t can be expressed as

hn(t) =
L−1∑
l=0

gn,l(t)δ(t− τl), (2.13)

where L is the number of range taps. δ(·) is the Delta function which represents the

unit impulse. gn,l and τl are complex channel gain and propagation delay of the l-th

range tap, respectively. Denote the number of antennas as N , for each time slot t,

the captured CIR is an N × L complex matrix.
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Chapter 3: Environment-Independent Passive Fall Detection

3.0.1 Distinct Characteristics of Fall Events

Different types of falls might happen in our daily life. Some are assisted falls

occurring where the subject is assisted by another person or other supporting objects

during the falling process. Unassisted falls occur unexpectedly without any support

due to extrinsic environmental factors such as spills on the floor or intrinsic risk

factors such as impaired gait. Compared with assisted falls, unassisted falls are

closer to free falls and the falling body has a larger speed at the moment of hitting

the ground, leading to a higher risk of causing severe injuries or even death [69].

Therefore the system we propose focuses mainly on detecting unassisted falls and

especially those when the subjects fall from a standing position which produces the

largest speed.

Speed and acceleration are two characteristics that are usually used to describe

motion. Intuitively, fall can be viewed as a type of abnormal indoor event with

abnormal speed and acceleration, and therefore they are both considered as the

unique characteristics that help distinguish falls from other daily activities. The

uniqueness resides not only in the absolute values of speed and acceleration during

a fall but also in how they change over time. More specifically, as a human falls
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Figure 3.1: Indoor rich-scattering model.

to the ground, his/her body will experience a rapid acceleration first. Once the

body hits the floor, the body speed reduces to nearly zero sharply. In fact, most

of the unexpected falls exhibit a similar pattern and this implies the feasibility

of developing an environment-independent system by monitoring the speed and

acceleration variation, which is the foundation of DeFall .

3.0.2 Speed Estimation from WiFi CSI

We capture the human activities through CSI. Since the unique pattern of the

series of speed is utilized, it is critical to have an accurate and reliable estimate of

the speed based on WiFi CSI, which is not trivial due to the multi-path effects of the

indoor propagation. Some device-free CSI-based speed estimators [38, 56, 58] have

been proposed and most of them make use of the Doppler frequency shift (DFS)

to calculate the speed of the human body, which have several limitations. First,

DFS-based methods utilize the reflection model, assuming that the human body

is simplified as a single reflector and produces only one dominant reflection path,
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which usually does not hold in a practical indoor environment with rich multi-path

propagation. Second, to make sure the direct reflection path from human body has

strong enough energy to be perceived, the existing works are limited to the LOS

coverage since the moving body should be able to be “seen” by both Tx and Rx.

Third, as indicated by [56], DFS induced by human motion is not only related to the

motion speed but also depends on the relative location and direction with respect

to the link. In addition, DFS-based speed estimators take CSI phase into account,

while the phase of CSI on commercial WiFi devices cannot be measured accurately

due to the phase synchronization errors between the WiFi Tx and Rx [18].

Inspired by WiSpeed [96], in this work we assume a practical rich-scattering

environment, as shown in Fig. 3.1, and estimate the speed based on a statistical

model of EM wave theory, which only makes use of the CSI magnitude information.

Specifically, the CSI magnitude can be measured through CSI power response

G(t, f), which, according to Eqn. (2.8), is defined as

G(t, f) , |H(t, f)|2 = ξ(t, f) + ε(t, f), (3.1)

where ξ(t, f) = ‖ ~ERx(t, f)‖2, and ~ERx(t, f) denotes the propagated signals. ε(t, f)

denotes the additive noise, and ξ(t, f) and ε(t, f) are assumed to be independent of

each other.

It has been shown in [96] that the speed of a moving object can be reliably es-

timated by evaluating the ACF of G(t, f). The theoretical ACF of G(t, f), ρG(τ, f),
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can be derived as

ρG(τ, f) =
σ2
ξ (f)

σ2
ξ (f) + σ2

ε (f)
ρξ(τ, f) +

σ2
ε (f)

σ2
ξ (f) + σ2

ε (f)
δ(τ), (3.2)

where τ is the time lag of the ACF. σ2
ξ (f) and σ2

ε (f) are the variances of ξ(t, f) and

ε(t, f), respectively. ρξ(τ, f) and Dirac delta function δ(·) are the ACFs of ξ(t, f)

and ε(t, f). When τ 6= 0, we have δ(τ) = 0 and ρG(τ, f) can be further derived

based on the statistical theory of EM waves [25] as

ρG(τ, f) =
∑

u∈{x,y,z}

(C1(f)ρEu(τ, f) + C2(f)ρ2Eu(τ, f)), (3.3)

where C1(f) and C2(f) are scaling factors determined by the power reflected by all

scatterers. ρEu(τ, f) is the ACF of ~ERx(t, f) in u-axis direction where u ∈ {x, y, z}.

For the i-th dynamic scatterer that moves at speed vi along z-axis, the scat-

tered signal is denoted as ~Eiu(t, f). Then the components of its ACF ρEiu(τ, f) in

{x, y, z}-axes can be expressed as the following closed-form equations, respectively:

ρEix(τ, f) = ρEiy(τ, f)

=
3

2

sin(kviτ)

kviτ
(1− 1

(kviτ)2
) +

3

2

cos(kviτ)

(kviτ)2
,

(3.4)

ρEiz(τ, f) =
3

(kviτ)2
(
sin(kviτ)

kviτ
− cos(kviτ)), (3.5)

where k denotes the wave number. Intuitively, the equations above have established

a relationship between the ACF ρG(τ, f) and the presence of motion and also the
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Figure 3.2: Spatial ACF and its differential for EM wave components.

moving speed.

• The relationship between ρG(τ, f) and the presence of motion From

Eqn. (3.2), if motion is present in the propagation environment of WiFi signals,

as τ → 0 we have δ(τ) = 0 and ρξ(τ, f)→ 1 due to the property of white noise

and the continuity of motion [97]. Consequently, ρG(τ, f) → σ2
ξ (f)

σ2
ξ (f)+σ

2
ε (f)

> 0

as τ → 0. If there is no motion, the environment is static and the vari-

ance σ2
ξ (τ, f) = 0 and thus ρG(τ, f) = 0 as τ → 0. Therefore the value of

limτ→0 ρG(τ, f) can indicate the presence of motion in the surrounding envi-

ronment.
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• The relationship between ρG(τ, f) and the moving speed For the simple

case of all dynamic scatterers moving in the same speed and direction, without

loss of generality we can assume the moving direction is in the z-axis and get

the ρG(τ, f) as Eqn. (3.3) with its components expressed in Eqn. (3.4) and

(3.5). Each component and its differential can be visualized in Fig. 3.2(a) and

Fig. 3.2(b), respectively. Observing that the first local valley of 4ρ2Eu(τ, f),

∀u ∈ {x, y}, happens to be the first local valley of 4ρG(τ) as well, we can

extract the speed information of the moving scatterers by locating the first

local valley of 4ρG(τ, f). Fig. 3.2(c) shows an example of 4ρG(τ) over time

for a “walking” event, in which the the first valley locations are marked by

the black dots. Fig. 3.2(d) shows a snapshot of the 4ρG(τ) in Fig. 3.2(c).

In the case where a single subject, e.g., a human, moves within the coverage of

the pair of Rx and Tx, the dynamic signals are dominated by the parts that are

reflected by the human torso. Therefore it is reasonable to assume that in this case,

all dynamic scatterers are moving at the same speed as well as in the same direction,

and we can estimate the speed of the human using the proposed method to further

detect a fall.

3.1 System Design

In this section, we depict the major modules in the DeFall system in detail.

The system mainly consists of two stages as illustrated in Fig. 3.3. In the offline

stage, the speed of a fall is estimated from the WiFi CSI by applying a statistical
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Figure 3.3: An overview of DeFall .

model on the radio propagation in an indoor rich-scattering environment. After that,

DTW-based algorithms are performed to generate a representative template for a

typical human fall. Then a fall event is detected in the online stage by evaluating

the similarity between the patterns of real-time speed/acceleration estimates and the

representative template. In addition, an online motion detection module is added

before the fall detection module as a pre-judgment procedure.

3.1.1 Template-Generating Stage

In the offline template-generating stage, M CSI sequences of fall events are

picked randomly and a “template database” S = {S1, S2, ..., SM} is built based on

the corresponding estimated speed series.
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3.1.1.1 Challenges in Building a General Template

To construct a single representative template, we perform an “average” on

the database. Since the collected data are all time sequences, the result by direct

point-to-point matching and averaging will be easily affected by sequence shift and

misalignment. Therefore, the operation of distance measurement, as well as series

alignment, will be performed in the DTW space [63].

However, there may exist redundant speed segments of other activities before

or after the fall event, and the classic DTW algorithm is sensitive to the endpoints

of the sequences. Therefore, the endpoints of the series should be carefully defined

and the template database cleaning is required.

3.1.1.2 Template Database Sanitization

To remove the redundancy while adapting to the possible variability in event

instances, we resort to the band-relaxed segmental locally normalized DTW (SLN-

DTW) [51]. The basic idea of SLN-DTW is to detect low-distortion local align-

ments between the objective series Sx and a series Sy from the rest sequences

{S1, S2, ..., Sx−1, Sx+1, ..., SM} by dynamic programming [51]. The original SLN-

DTW aims at matching objective series Sx in the testing stream Sy with the as-

sumption that Sx coincides exactly with the target event, which is not suitable since

any of the collected series in S may contain redundancy. Therefore band-relaxed

SLN-DTW in [51] is applied. It relaxes the boundary constraints of SLN-DTW so

that the starting and ending points of Sx can be aligned adaptively and the common
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parts can be retrieved reliably.

To be specific, let i and j represent the indices of the objective sequence Sx and

the testing sequence Sy, respectively. We can construct a grid [1, . . . , i, . . . , L1] ×

[1, . . . , j, . . . , L2], where L1 and L2 denote the lengths of Sx and Sy. With relaxed

boundaries, the starting point of the optimal warping path is allowed to be located

in the starting band {(i, j)|i ∈ [1, Bs]} while the ending point is selected in the

ending band {(i, j)|i ∈ [Be, L1]). Then the accumulative distance matrix D and

the length matrix L can be generated, where the elements of the two matrices,

D(i, j) and L(i, j), represent the total cumulative distance and path length from

a starting point (is, js) to (i, j). And the cost function is defined as the ratio

C(i, j) = D(i,j)
L(i,j)

. The procedure of the band-relaxed SLN-DTW applied for template

database cleaning can be summarized as:

Step 1 Initializing distance matrix D and length matrix L:

For ∀(i, j) where 1 ≤ i ≤ Bs, 1 ≤ j ≤ L2, we have


D(i, j) = d(i, j)

L(i, j) = 1,

(3.6)

where d(i, j) is the Euclidean distance between the i-th point in Sx and the j-th

point in Sy.

Step 2 Iteration:

For ∀(i, j) where 1 ≤ i ≤ Bs and 1 ≤ j ≤ L2, minimize C(i, j) = min
(u,v)

d(i,j)+D(u,v)
L(u,v)+1

where (u, v) ∈ {(i, j), (i−1, j), (i, j−1), (i−1, j−1)}. For each iteration, the updates
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of the corresponding D and L are

D(i, j) =


d(i, j), if (u, v) = (i, j)

D(u, v) + d(i, j), otherwise,

(3.7)

L(i, j) =


1, if (u, v) = (i, j)

L(u, v) + 1, otherwise.

(3.8)

For ∀(i, j) where Bs < i ≤ L1, minimize C(i, j) = min
(u,v)

d(i,j)+D(u,v)
L(u,v)+1

where

(u, v) ∈ {(i − 1, j), (i, j − 1), (i − 1, j − 1)}. For each iteration, update the corre-

sponding D and L as 
D(i, j) = D(u, v) + d(i, j)

L(i, j) = L(u, v) + 1

. (3.9)

Step 3 Trace back:

Find the minimum C(k, j) for k ∈ [Be, L1] and trace back along path (i, j) un-

til i = Bs to extract the optimum path across the central band {(i, j)|i ∈ [Bs, Be]}.

After that, if the cost to the next point is smaller than the current cost, i.e.,

C(inext, jnext) < C(inow, jnow), continue tracing back. Otherwise, stop and produce

the optimum path.

Band-relaxed SLN-DTW is applied between every two speed sequences to ex-

tract their common parts. Therefore, for each objective series Sx ∈ {S1, S2, ..., SM},

there are M -1 possible truncations with M -1 start indices Px,s and M -1 end indices

Px,e. And the part of Sx with indices lying in [med(Px,s),med(Px,e)] is regarded as

the sanitized speed sequence of the fall event in sample Sx, where med(Px,s) and
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Figure 3.4: Applying the principle of SLN-DTW in series sanitization and fall de-
tection.

med(Px,e) are medians of the start indices and end indices, respectively. In this way,

the template database is refined to Ŝ = {Ŝ1, Ŝ2, . . . , ŜM}. Fig. 3.4(a) illustrates an

instance of the sanitized speed series by applying SLN-DTW.

3.1.1.3 Averaging in the DTW Measure Space

The M cleaned speed series in the refined database Ŝ are then scaled to the

same length and averaged in the DTW measure space to construct a single repre-

sentative profile. The problem to find an optimal average can be formulated as an

optimization problem that given a set of template time series Ŝ = {Ŝ1, Ŝ2, ..., ŜM},

the averaged series S̄ is the series that minimizes the sum of squared DTW distances

between S̄ and all of sequences in Ŝ as

S̄ = arg min
S

M∑
x=1

DTW 2(S, Sx). (3.10)
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The DTW distance of two sequences DTW (A,B) is defined as the Euclidean

distance between series A and series B along the optimal warping path as follows:

DTW (A,B) =

√√√√ |P ∗|∑
p∗=1

‖A[ap∗ ]−B[bp∗ ]‖2, (3.11)

where P ∗ is the optimal warping path that minimizes the normalized distance as

P ∗ = min
P

1

|P |

|P |∑
p=1

‖A[ap]−B[bp]‖2, (3.12)

where ap and bp are indices of A and B associated with the p-th point on path P .

To solve the minimization problem (3.10) and get the optimal average series,

DTW barycenter averaging (DBA) algorithm [54] is implemented. DBA is an iter-

ative algorithm that refines an average sequence S̄ on each iteration following an

expectation-maximization scheme, whose convergence has been proved in [55]. The

optimal speed time series S̄, produced by DBA, is then considered as the speed

template.

Besides speed, acceleration depicts the motion during a fall from another dif-

ferent point of view. To get a more comprehensive description of the fall events, we

derive an acceleration series S̄ ′ from the speed template S̄ and combine them by

point-to-point stitching to generate a 2-D template S̄2D. The efficacy of utilizing

the 2-D combined template S̄2D rather than a single 1-D template S̄ or S̄ ′ will be

discussed in Section VI.
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3.1.2 Decision-Making Stage

As mentioned in Section 3.0.1, fall events experience distinct speed and accel-

eration patterns which could be used for distinguishing falls from other indoor daily

activities. However, a high sampling rate is needed for speed estimation [96]. To

save energy and computation cost, in the decision-making stage, a low-rate motion

detection (MD) module is included in addition to the fall detection (FD) module.

3.1.2.1 Motion Detection Module

As indicated in Section 3.0.2, limτ→0 ρG(τ, f) could be utilized as a criterion

for MD. In practice, due to the limitation of the sampling rate, we could only use

ρG(τ = 1
Fs
, f) to approximate τ → 0.

For the purpose of efficient energy-saving, the MD module with a low sampling

rate is added as a pre-detection of human motion prior to the FD module, and the

FD module is triggered only in the presence of motion.

3.1.2.2 Fall Detection Module

In the FD module, we apply a sliding windowW on the incoming CSI stream.

The testing speed sequence T is estimated from the CSI series in window W . The

acceleration sequence T ′ is further derived from T , followed by a combination oper-

ation to form a 2-D pattern T2D.

Then fall events can be detected by comparing the testing time series T2D

with the template S̄2D. The corresponding similarity of the two series is evaluated

39



in DTW space to adapt to the misalignment of the two sequences in the time domain.

Since the fall events involving different people may experience different dura-

tion, the series segmented by a length-fixed sliding window may also include other

activities before or after the target event, which cannot be handled by the tradi-

tional DTW, and thus we adopt the SLN-DTW [51] again to localize the start and

end instances of an event, as Fig. 3.4(b) illustrates. Regarding the template S̄2D as

the objective series and T2D as the testing series, we set the lengths of starting and

ending bands of S2D to be 1 since the template S̄2D is already sanitized.

By implementing SLN-DTW, the similarity of the testing stream T2D and S̄2D

is evaluated. When the DTW distance between the testing series and the reference

template is less than a preset empirical threshold γ, the testing sequence T2D has a

similar pattern to the reference fall template S̄2D and the detector will alert that a

fall occurs, where γ is empirically decided by experiments as well as the requirement

of FAR and DR.

In the real-time monitoring, MD module keeps running with a lower sampling

rate and as long as the motion is detected, the FD module starts working with a

high sampling rate to estimate the speed and detect fall events. When the similarity

between T2D and S̄2D stays lower than some threshold for a long enough time, it

switches back to MD module to save power consumption and computation cost.
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Figure 3.5: Illustrations for (a) devices for data collection and (b) examples for real
falls including forward, lateral and backward falls.

3.2 Experimental Results

To build our DeFall system, we employ two laptops (Thinkpad T420) equipped

with off-the-shelf WiFi network interface cards (Intel 5300) as the Tx and Rx, as

shown in Fig. 3.5(a). We use the Linux 802.11n CSI Tool [24] to collect CSI

measurements. Each of them is equipped with three omnidirectional antennas and

the CSI stream over each pair of antennas has a total of 30 subcarriers. By default,

the system works on WLAN channel 153 with a carrier frequency of 5.805 GHz and

bandwidth of 40 MHz. In the MD module, the sampling rate is set to be 30 Hz. For

FD module, to achieve a better speed estimation resolution to capture the high-speed

motion, the Tx sends sounding frames with a channel sampling rate of 1500 Hz.
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Figure 3.6: Experimental environments.(a) Environment 1: typical office environ-
ment. (b) Environment 2: different rooms and placements in the typical office. (c)
Environment 3: typical apartment environment.

3.2.1 Experimental Environments

We evaluate DeFall with extensive experiments under various conditions (e.g.,

LOS and NLOS) at different locations in both office and home environments, with

multiple volunteers involved. The detailed settings are shown in Fig. 3.6 with the

locations of the Tx, the Rx, and the falling person marked. The data by a human-

like dummy in environment 1 (Fig. 3.6(a)) is used for template-generating as well

as detection algorithm verification. Then real fall/non-fall activities are performed

by volunteers in all environments to further evaluate the impacts of environment

diversity, user diversity and also types of falls. The ground truth is recorded by

video.

In each environment, we change one of the Tx/Rx and conduct experiments

with different placements under both the LOS and NLOS scenarios. Under the LOS

scenario, Tx and Rx could both “see” the subject, while in the NLOS case, there

does not exist any direct link between the subject and one or more devices, which is

very common for an indoor environment. Specifically, in environment 1 (Fig. 3.6(a))

and environment 3 (Fig. 3.6(c)), the Tx is deployed on positions Tx1/Tx2 under
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Figure 3.7: Instances of speed and acceleration patterns for “walk-then-fall” and
“walk-then-sit”. (a)(e): Speed and acceleration for “walk-then-fall” under LOS;
(b)(f): Speed and acceleration for “walk-then-fall” under NLOS; (c)(g): Speed
and acceleration for “walk-then-sit” under LOS; (d)(h): Speed and acceleration
for “walk-then-sit” under NLOS.

LOS/NLOS conditions. In environment 2 (Fig. 3.6(b)), only Rx1 is under the LOS

scenario, while the other placements correspond to the NLOS cases.

3.2.2 Data Collection

The data collection is carried out on different days lasting for more than three

months, during which the surrounding propagation environment keeps changing,

including the changes of the placements of furniture, the opening or closing of doors

and windows, etc. To verify the feasibility of DeFall , we first use a human-like

dummy to collect both the template data and testing data. After that, the samples

from real human falls, as illustrated by Fig. 3.5(b), are further studied to evaluate

the effectiveness of the system.

In the verification experiments, we consider both separate fall events and con-
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tinuous motion followed by falls. “Stand-then-fall”, which represents falling from a

stationary standing posture, is realized by first letting the dummy stand straight and

then making it fall freely; while “walk-then-fall”, indicating the falls happen after the

continuous walking motion, requires the experimenter to walk around the standing

dummy at a normal speed and then make it fall. Instances of the speed/acceleration

patterns for “walk-then-fall” and “walk-then-sit” under both LOS and NLOS sce-

narios are presented in Fig. 3.7, where we can observe the distinct patterns between

falls and other activities such as sitting and walking. After the long-term data col-

lection, there are 846 fall samples from the dummy and 814 non-fall samples for

verification in total as Table 3.1 illustrates.

In order to prove that our system can work well in real world, we further eval-

uate its performance based on real human falls. We first involve three volunteers

(1 female, 2 males) for multiple long-term experiments to study the impact of envi-

ronment diversity, the presence of ambient motion, and the types of falls (forward,

backward and lateral falls). To investigate the impact of user heterogeneity, we

involve 7 more volunteers at different ages to perform different falls.

3.2.3 Generated Templates

In the offline template-generating stage, we build the template dataset on the

fall samples from the dummy. There are two factors to be selected in the DBA

algorithm, i.e., the size of template database and the number of iterations. The

investigation of these two factors can be seen in Fig. 3.8. In Fig. 3.8(a), the average
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Figure 3.8: Investigation of DBA factors.
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Figure 3.9: Templates.

DTW distance gets more stable as the size of template database increases to 25,

while in Fig. 3.8(b) it converges after around 15 iterations. Therefore the number

of iterations and the size of the template database are reasonably set to be 20 and

40, respectively.

The generated template after refinement and averaging is presented in Fig.

3.9. As we can observe, the template has the same tendency as expected. The

speed rises to a peak value first and then drops, while the acceleration is positive

first and then becomes negative. Also, it can be found that the templates of LOS

and NLOS are highly consistent with each other. Since the speed estimation in
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DeFall is based on the rich-scattering model, as long as the target is within the

coverage of the radios, the system can capture the speed accurately using either the

LOS or NLOS link, preserving not only the average speed but also the precise speed

changes. Due to the high consistency between the LOS and NLOS scenarios, we use

both LOS and NLOS data for template-generating and apply the overall template

in the detecting phase.

3.2.4 Performance Evaluation

3.2.4.1 Evaluation Metrics

The evaluation metrics of the system performance are detection rate and false

alarm rate. Detection rate, shorted as DR, is defined as the percentage of correctly

detected falls among all falls:

DR =
# of detected falls

# of total falls
, (3.13)

while false alarm rate, simplified as FAR, is the percentage of non-falls that are

mistaken as falls among all non-falls:

FAR =
# of wrongly detected nonfalls

# of total nonfalls
. (3.14)
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Figure 3.10: ROC curves for (a) different scenarios and (b) comparison with
threshold-based method in WiSpeed.

3.2.4.2 Receiver Operating Characteristic (ROC) Curve

The threshold γ in the decision-making stage plays an important role in de-

termining the boundary between fall and non-fall events, and therefore it has to

be selected carefully. To evaluate the performance of DeFall , instead of propos-

ing the specific threshold directly, we first calculate the DR and FAR with various

thresholds and generate the overall ROC curve as illustrated by Fig. 3.10(a). We

also investigate the ROC curves in LOS and NLOS scenarios, respectively. As seen,

there exists a trade-off between DR and FAR. If the threshold is high, then there

tends to be fewer speed sequences to reach the standard, i.e., the higher threshold

is, the lower the DR is, while also getting a lower FAR. Note that the ROC curves of

LOS and NLOS overlap with each other. Also, both of them are highly similar to the

overall ROC trend, verifying the consistency of the proposed system in LOS/NLOS

scenarios.
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3.2.4.3 Effectiveness of the DTW-based Pattern Matching

In the previous work WiSpeed [96], a simple threshold-based method is applied

to detect falls based on the maximum speed. In DeFall , we use the same CSI-based

speed estimator as Wispeed but improve the detection performance by adding the

DTW-based pattern matching for making a decision. To show the effectiveness

of the DTW-based detection module, we also get the ROC curve of WiSpeed and

compare it with DeFall as shown in Fig. 3.10(b). As Fig. 3.10(b) illustrates, at the

same level of FAR, the DR of DeFall is higher than WiSpeed. The area under the

curve (AUC) of the ROC of DeFall is larger as well, proving a better performance.

In particular, when the FAR is less than 1.5%, DeFall can still achieve a high DR

over 95% while the corresponding DR of WiSpeed drops to a level less than 75%.

3.2.5 Robustness to Indoor Activities

For a fall detection system, DR is very crucial due to the high risk of missed

detection. On the other hand, FAR is also essential since other daily activities are

performed most of the time in practice. Thus a system that yields a low FAR while

keeping a reasonable DR is preferred. In this work, the threshold yielding an overall

FAR 1.47% is selected for further system evaluation and the corresponding overall

DR is 97.28%.

The results of DR and FAR for all types of events are summarized in Table 3.1.

According to the results, DeFall succeeds in performing a high DR and low FAR

under both LOS and NLOS scenarios. Comparing the results of different fall events,
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Scenario Events Number DR/FAR (DeFall) DR/FAR (WiFall) DR/FAR (FallDeFi)

LOS
Fall

Stand-then-Fall 424 97.40%
97.10%

75.71%
74.32%

91.04%
89.58%

Walk-then-Fall 94 95.74% 68.09% 82.98%

non-Fall
Walking 167 0.00%

1.45%
16.77%

17.73%
10.18%

12.79%
Sitting down 177 2.82% 18.64% 15.25%

NLOS
Fall

Stand-then-Fall 270 98.15%
97.56%

70.37%
69.82%

85.19%
84.45%

Walk-then-Fall 58 94.83% 67.24% 81.03%

non-Fall
Walking 212 0.47%

1.49%
15.09%

17.23%
8.96%

10.43%
Sitting down 258 2.33% 18.99% 11.63%

Overall - 97.28%/1.47% 72.58%/17.45% 87.59%/11.43%

Table 3.1: Comparison results with WiFall and FallDeFi.

we can notice a higher DR on “stand-then-fall” events than “walk-then-fall” events

since “walk-then-fall” may introduce interference to the speed estimation at the

beginning of falls. Also, among the non-fall events, as “sitting-down” experiences

an acceleration followed by a deceleration, which is more similar to the fall pattern

than “walking”, it is can be observed that FAR of “sitting-down” is slightly higher

than that of “walking”.

We implement WiFall [83] and FallDeFi [53] for the comparative study. WiFall

extracts seven different features for classification based on the variation of CSI am-

plitude over time, while FallDeFi selects features from the STFT spectrogram and

the power burst curve (PBC). To make a fair comparison, we optimize the param-

eters in these two works to adapt to our dataset. We apply 40 fall samples to
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generate the template in DeFall , while we use 80 samples (40 falls and 40 non-falls)

to train the classifiers in WiFall and FallDeFi. The results in Table 3.1 demonstrate

that DeFall outperforms both WiFall and FallDeFi with a higher overall DR (24.7%

higher than WiFall and 9.69% higher than FallDeFi) and a lower FAR (15.98%

lower than WiFall and 9.96% lower than FallDeFi). In addition, under both LOS

and NLOS scenarios, DeFall also performs better in terms of the corresponding DR

and FAR. The reasons for this performance enhancement can be attributed to the

environment resilient speed information extracted by DeFall and the DTW-based

pattern matching which adapts to the consecutive activities. More specifically, the

features extracted in WiFall are based on the signal variation and could be different

in different settings, while the speed estimated in DeFall is an inherent property of

falls. Although compared with WiFall, FallDeFi devises more robust features us-

ing time-frequency analysis, its spectral features are partly dependent on the signal

strength and do not take the detailed change pattern of falls into consideration. We

also observe that the performance of WiFall and FallDeFi degrades especially for

consecutive events such as “walk-then-fall”. This is because WiFall and FallDeFi

either assume segmented activities or apply the “event duration” as a feature, which

can easily lead to misclassifications if falls and other normal activities cannot be sep-

arated reliably, while DeFall employs a sliding window combined with the pattern

matching approach which is more flexible to handle consecutive activities.

To take all possible daily activities into consideration and test the robustness

of the system in practice, we further run the system in the same apartment (Fig.

3.6(c)) for four days. Specially, we deploy two pairs of transceivers to cover the main
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motion areas - living room and dining room, respectively. The participant stays

in the apartment every day and may perform any daily activities in the monitored

areas. No fall happens during the testing. We apply the same template and detection

algorithm to the collected speed series. The experiment results for the long-term

continuous test can be found in Fig. 3.11. The detection is output every second and

the corresponding false alarms are counted. We have only 12 and 19 false alarms in

total during the four-day testing in the living room and dining room. On average, we

have 3 and 4.8 false alarms per day, which is acceptable considering the complicated

daily activities.

3.2.6 Robustness to Falling Objects

There are fall-like events that may cause false alarms, such as falls of chairs

and dropping a small object to the ground. To test the robustness of the system

against the interference from these events, extensive fall experiments are conducted

on objects with different sizes and different materials. For small objects, each of

them is lifted up and then dropped from a height of 1m, which is repeated 50 times

at various locations to evaluate a reliable FAR. We also repeat testing a falling

wooden chair. The corresponding result listed in Table 3.2 presents that all the

FARs are 0.0%, verifying the robustness of DeFall . This is because common objects

which can be lifted up are usually much smaller than a human body and therefore,

even if dropped from a high position, they produce fewer dynamic scatterers and

cause less disturbance to the environment. In such a case, the speed or acceleration

51



Objects Material Size/Weight FAR

Bottle Plastic, water 0.5 kg 0.0%

Bag Nylon 1 kg 0.0%

Plate Plastic Radius=12 cm 0.0%

Plate Metal Radius=10 cm 0.0%

Book Paper 22 cm × 18 cm 0.0%

Box Paper
17 cm × 17 cm
× 25 cm, 0.8 kg

0.0%

Chair Wood
50 cm × 40 cm
× 58 cm, 3 kg

0.0%

Table 3.2: Impact of falling objects.

values cannot be detected or the values are not continuous. For falling chairs, they

always fall with lower centers of gravity and have smaller speeds than human falls.

3.2.7 Types of Falls

Three volunteers are involved in the experiments of real falls. In this subsec-

tion, we study the impact of the orientation of a fall, i.e., forward, backward and

lateral. Each of the three volunteers performs 5 forward falls, 5 backward falls and

5 lateral falls in all settings. To better mimic real-world falls, the subjects first

perform normal activities, either walking or standing still, and then fall in differ-

ent directions under each setting. The overall results are summarized in Table 3.3.

Taking the experiments in all environments into account, we find that the falls in

all the considered directions can achieve a detection rate above 95.00%. The results

are as expected because the proposed approach is independent of the moving/falling

directions.
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Forward Backward Lateral Average
User 1 96.67% 95.56% 94.44% 95.56%
User 2 94.44% 96.67% 93.33% 94.81%
User 3 95.56% 97.78% 97.78% 97.04%
Average 95.56% 96.67% 95.19% 95.80%

Table 3.3: Detection rates on different fall types.

Env. 1 Env. 2 Env. 3
LOS NLOS LOS NLOS LOS NLOS
Tx1 Tx2 Rx1 Rx2 Rx3 Rx4 Rx5 Tx1 Tx2

Loc 1 97.78% 95.56% 100% 97.78% 91.11% 95.56% 93.33% 97.78% 95.56%
Loc 2 - - - 100% 93.33% 93.33% 91.11% - 95.56%
Loc 3 - - - - 97.78% 97.78% 93.33% - 97.78%
Average 97.78% 95.56% 100% 98.89% 94.07% 95.56% 92.59% 97.78% 96.30%

Table 3.4: Detection rates in various environments.

3.2.8 Environment Diversity

To validate the robustness of DeFall to diverse environments, extensive exper-

iments are carried out in both office and home environments. Also, the locations

of Tx and Rx are changed. During the experiments, each subject performs 15 falls

in different directions on different positions marked in the floorplan shown in Fig.

3.6. As reported in Table 3.4, a minimum detection rate of 91.11% can be achieved

in different environments. The high detection rates are as expected because the

proposed approach is environment-independent.

We also highlight such independence by comparing it with WiFall and FallDeFi.

As Table 3.5 indicates, when we classify the data collected in a different environment

from the training dataset, DeFall outperforms both of WiFall and FallDeFi with a

higher detection rate.
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Training/Template Testing DR (DeFall) DR (WiFall) DR (FallDeFi)
Env. 1 Env. 1 96.67% 72.22% 90.00%

LOS in Env. 1 NLOS in Env. 1 95.56% 53.33% 82.22%
Env. 1 Env. 2 95.37% 56.11% 81.30%
Env. 1 Env. 3 96.67% 52.78% 76.11%

Table 3.5: Impact of environmental changes.

User 1 User 2 User 3 User 4 User 5
DR 95.56% 94.81% 97.04% 91.67% 97.22%
weight (kg) 77 50 84 70 62
height (cm) 174 166 168 172 175

User 6 User 7 User 8 User 9 User 10
DR 94.44% 97.22% 100% 94.44% 97.22%
weight (kg) 60 90 70 91 53
height (cm) 169 178 171 170 160

Table 3.6: Detection rates of different users.

3.2.9 User Diversity

As different users have different heights, body shapes and gait styles, and a

reliable fall detector should not be affected by the diversity of users, it is non-trivial

to investigate the impact of the user heterogeneity on the performance. To do this,

during a two-week experiment, 7 more volunteers with ages ranging from 23 to 59

are asked to perform falls at various locations in environment 2. Similar to the

previous experimental procedure, the volunteers perform random activities before

falling. Each volunteer falls three times (1 forward, 1 backward and 1 lateral) under

each setting. Combining the experiments of different displacements and different

locations, we focus on studying the impact of user diversity and summarize the

results in Table 3.6. For Users 1-3, we have 270 samples each, while for Users 4-10,

36 samples are collected by each user. The users have weights varying from 50kg to

91kg and heights varying from 160 cm to 178 cm. Among all the ten subjects, User
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w/ other moving person

motion
w/o other

light motion heavy motion
3-5 m > 5 m 3-5 m > 5 m

LOS 12/15 15/15 8/15 15/15 15/15
NLOS 13/15 15/15 6/15 14/15 15/15

Table 3.7: Detection results with ambient motion.

7 is the tallest and User 9 is the heaviest while both User 7 and User 9 experience

missed detection. Therefore, although a greater height and weight indicate more

dynamic scatterers on the torso for signal propagation, we cannot conclude that

there is an obvious monotonic relationship between users’ heights or weights and

the detection performance based on the samples from ten subjects.

3.2.10 Impact of Ambient Motion

In this part, we investigate the robustness of the DeFall system when a second

subject is moving in the vicinity of the first falling subject, with both LOS and NLOS

cases considered. Intuitively, two factors may affect the performance, the distance

between the two subjects (“distance”) and the motion strength of the second subject.

To study their impacts, we conduct experiments with a distance of 3-5 m and >5 m

between the two subjects while for the motion strength, we consider heavy motion

(walking) and light motion (reading and typing). Under each setting, 15 fall events

occurred with different fall orientations, and the results are presented as the ratio of

the number of detected falls to a total of 15 falls in Table 3.7. As we can see, when

the second person is walking, the detection rate degrades as the distance decreases

due to the interference from the other person. Nevertheless, some falls can still be

detected even when the walking person is close. This is because the system estimates
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speed by localizing the first valley as Fig. 3.2(d) shows, which always corresponds

to the highest speed of the massive scatterers. Therefore, the high speed associated

with a fall can still be captured. Also, the motion strength of the interfering person

has a significant impact on the performance, and a light motion by the second person

has much less interference than a strong motion.

In fact, fall detection mainly aims at protecting the elderly people who live

alone by sending alarms to remote caregivers when the subject being monitored falls.

If there is another person nearby, timely assistance is available and the harm to the

subject experiencing a fall will be greatly reduced. Therefore, the slight degradation

in the multi-user has little impact on the applicability of DeFall as it ensures great

performance for a single-user case and the cases when another user is relatively still

or far away.

3.2.11 Coverage

It is important to provide a large coverage for a real-world fall detection system.

For this purpose, we have conducted experiments in a large empty hall to evaluate

if falls that are far away from the devices can be detected. As shown in Fig. 3.12(a),

for the NLOS setting, the Tx is deployed at the center of a room with size 6.2 m ×

3.5 m, the Rx is in the hall and 10m away from the Tx, and falls are performed at

four corners with the corresponding DR and FAR shown in Table 3.8 given the pre-

selected threshold in Section 3.2.5. For the LOS setting, in order to find the impact of

the distance between the subject and devices, we first sample uniformly on positions
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(b) Setting 2: LOS scenario.
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(c) Setting 3: LOS scenario.

Figure 3.12: Settings for analyzing coverage.
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Figure 3.13: DR and FAR under setting
2 & 3.

DR FAR
A 95.45% 1.28%
B 91.30% 1.33%
C 95.45% 2.56%
D 90.91% 0.0%

Table 3.8: DR and
FAR under setting 1.

marked with “X” along the circle centered around Tx with a changing radius as

shown in Fig. 3.12(b). In the second LOS setting shown in Fig. 3.12(c), falls occur

along lines parallel to the direct link. Massive fall samples are collected using the

human-like dummy and a real human performs non-fall activities. Illustrated by

Table 3.8, the system under setting 1 can cover an area as large as a normal office.

Also, revealed by Fig. 3.13, DR and FAR both decrease as the distance between the

subject and devices increases.
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3.3 Discussion

In this section, we will discuss the result of applying 2-D template comparing

with that of using only 1-D speed template and 1-D acceleration template, which

demonstrates the necessity of combining the features into 2-D space. Also, we will

study the impact of the sampling rate and investigate the speed distribution of

activities. In addition, we evaluate the computation cost.

3.3.1 Necessity of 2-D Space

The 2-D combining step integrates the information contributed by speed and

acceleration. The combination is based on different weights α and realized by S̄2D =

((1 − α)S̄, αS̄ ′). By setting α = 0, we can get the single speed template while the

single acceleration template can be obtained through setting α = 1. For 2-D space,

we set α to be 0.5. The performance of the separate 1-D templates and combined

2-D template can be found in Fig. 3.14(a). As shown, the 2-D combined template

outperforms any single template as it provides a more comprehensive description of

the events.

3.3.2 Impact of Sampling Rate

As described in Section 3.1, the sampling rate is a critical factor affecting the

performance of our system. We now revisit the experimental results in Section 3.2

and evaluate the performance with different sampling rate Fs. The DR and FAR

are studied under different sampling rates 1500 Hz, 750 Hz and 500 Hz, and their
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Figure 3.14: ROC curves for (a) comparison on 2-D template and 1-D separate
templates and (b) different sampling rates.

corresponding ROC curves are plotted in Fig. 3.14(b). As illustrated, the overall

trends for all the cases are the same, in which FAR increases as DR increases.

However, the decrease of the sampling rate leads to a degradation in the performance

of DeFall . This is because as the sampling rate gets reduced, the resolution of the

ACF-based speed estimator degrades correspondingly, which will introduce more

estimation errors and harm the detection accuracy.

3.3.3 Speed Distribution of Activities

Although the maximum speed of the template can be up to around 5 m/s,

it does not mean the system can only detect falls with speeds reaching as high as

5 m/s. This is because the proposed template-based method not only depends on

the single maximum speed value but also relies on the trend of speed, which relaxes

the decision boundary compared with a hard-thresholding method.

To understand the system capability better, we divide our real fall/non-fall
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Figure 3.15: Maximum speed distribution and DR/FAR for each maximum speed
interval.

samples into different intervals (0 1 m/s], (1 m/s 2 m/s], · · · , (5 m/s 6 m/s] based

on their maximum speeds. The corresponding distribution is shown in Fig. 3.15(a).

Then we apply the same overall template and decision boundary and evaluate

DR/FAR in each individual interval, where the DR/FAR is the ratio of detection to

the total falls/non-falls in that specific interval. As we can see, the maximum speeds

of fall and non-fall series samples are distinct with a small overlapped part. The

FAR and DR both increase with the speed, as illustrated by Fig. 3.15(b). However,

even if the falls and non-falls have the maximum speeds in the same interval, our

system can still distinguish most of them with reasonable DR/FAR because of their

distinct patterns over time.
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Stage Module
CPU time

(s) (%)

Offline template
generating (dataset
size: 40)

Speed estimation 8.571322 96.23
Database sanitization 0.168743 1.895
DBA for average 0.165920 1.863
2D representation 0.001251 0.014
Total 8.9072

Online computation
for each output

Motion detection 0.000535 2.355
Speed estimation 0.004661 20.52
SLN-DTW & Detection 0.017519 77.13
Total 0.0227

Table 3.9: Processing time of DeFall .

3.3.4 Computation Cost and Real-Time Realization

In the real-time scenario, as the extracted speed feature is independent of the

environments, the offline stage can be completed ahead of time. Then the pre-trained

template can be applied directly in the decision-making stage.

To evaluate the system computation effort, we repeat the process using MAT-

LAB on a desktop with Intel Core i7-9700K processor and 32 GB memory. We record

the average processing time. Table 3.9 illustrates the CPU time for each module

in the offline and online stages. Note that we do not require a massive amount of

data for template generating, which significantly reduces the computation cost. The

total pre-training process only takes an average CPU time of 8.9 s. In the online

stage, to produce a decision output, it costs only 0.0227 s with a speed estimation

module and a simple DTW-based similarity calculation, which is short enough for

real-time applications.
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3.3.5 Limitation

Since we only focus on the hard falls which may cause serious injuries, our

approach only deals with unexpected falls such as stumbles or slips due to weak

gait. Other types of falls such as falls slowly from a lower height, may result in

a different speed pattern from what is described in the sections above. To solve

this problem, we need more analysis on the action decomposition to get a better

understanding of the entire process of various falls. In this case, multiple templates

and deep learning techniques may be required.

Another limitation is that since the algorithm can only estimate the approx-

imate average speed of the moving objects in the environment, our system works

well when there is a single person or no strong ambient motion close to the subject.

However, this is fully compliant with the goal of our system to protect the elderly

who live alone.

3.4 Summary

In this chapter, we propose DeFall , a novel environment-independent indoor

fall detection system using commercial WiFi devices. The system extracts speed

information to detect falls even through the walls with a single pair of transceivers.

A real prototype is built to validate the feasibility and evaluate the performance in

various environments. The results show that DeFall achieves a detection rate higher

than 95% on real falls while maintaining a false alarm rate lower than 1.50% under

both LOS and NLOS scenarios, without any scenario-tailored prior training.
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Chapter 4: Robust Passive Proximity Detection using WiFi

4.1 Statistical Proximity Sensing

We first analyze the statistical behavior of each component of the received

CSI power response under certain statistical assumptions and link them with the

distance of motions to antennas.

4.1.1 Characteristics of CSI Power Decomposition

To eliminate the phase distortion of CSI on commercial Wi-Fi devices, we take

the CSI power which, according to Eqn. (2.9), is defined as

G(t, f) , |Hs(f)|2 + |H̃d(t, f)|2 +H∗s (f)H̃d(t, f) +Hs(f)H̃∗d(t, f). (4.1)

Among them, the component of the static signal Hs(f) keeps constant and so as

its power |Hs(f)|2. Based on the assumption of circularly symmetric Gaussian

distribution of H̃d(t, f), H∗s (f)H̃d(t, f) and Hs(f)H̃∗d(t, f) both have zero means.

To further investigate the statistical characteristics of G(t, f), we have three key

observations:

Remark 1 Compared with the amplitude of the static signal |Hs(f)| which is the

63



sum of reflections from large static objects, the amplitude of dynamic signals |H̃d(t, f)|

is very small, thus the component |H̃d(t, f)|2 is negligible [36, 59].

Remark 2 Denote H̃d(t, f) as

H̃d(t, f) = Ãd(t, f)ejφ̃d(t,f), (4.2)

where Ãd(t, f) and φ̃d(t, f) are the amplitude and phase of H̃d(t, f), respectively. At

two frequencies f1 and f2 with f2 → f1, we have H̃d(t, f2) → H̃d(t, f1) due to the

continuity of CSI in frequency domain, i.e., Ãd(t, f1) → Ãd(t, f2) and φ̃d(t, f1) →

φ̃d(t, f2) for dynamic signal components. With the assumption that φ̃d(tn, f) is

uniformly distributed over [0, 2π) in time domain at any fixed f , the summation

φ̃d(tn, f1) + φ̃d(tn, f2) also follows a uniform distribution over [0, 2π) after phase

wrapping.

Remark 3 Denote Hs(f) as

Hs(f) = As(f)ejφs(f), (4.3)

where As(t, f) and φs(t, f) are the amplitude and phase of Hs(t, f), respectively. At

two frequencies f1 and f2 with f2 → f1, we have Hs(f2)→ Hs(f1) due to continuity

and thus φs(f1)→ φs(f2) for static signal components.

We validate these remarks via CSI data collected in a real-world environment.

The validation requires separate complex-valued Hs and H̃d. However, due to the
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Figure 4.1: |H̃d||Hs| (a) in static environment and (b) with nearby motion.

significant CSI phase distortion, it is difficult to perform a perfect phase sanitization

to obtain the true Hs and H̃d. To eliminate the phase offset as much as possible, we

adopt a linear-fitting method for calibration [57, 66]. Then Hs is estimated by taking

the average of phase-cleaned CSI, while H̃d is the residual after mean subtraction.

Although the cleaned phase still contains noise, it does support the validation of the

aforementioned remarks in the following analysis and derivation.

To verify Remark 1, we collect data in an empty environment and in an en-

vironment with motion, and compute the ratio of |H̃d||Hs| , respectively. Fig. 4.1 shows

the distributions of |H̃d||Hs| . As we can see, in the static scenario, |H̃d| only contains

noise component and |H̃d||Hs| is smaller than 0.022. Further, even when there is nearby

motion, most of the ratios of |H̃d||Hs| remains lower than 0.12 as Fig. 4.1(b) presents,

implying that the component of |H̃d(t, f)|2 in Eqn. (4.1) is negligible.

Remarks 2 and 3 need to be verified under the condition of f2 → f1. In prac-

tice, however, different frequency components of CSI are recorded over subcarriers

and f2 → f1 is not a practical condition to achieve. Nevertheless, we consider the

65



0 2
0

0.01

0.02

0.03

0.04

(a)

-0.05 0 0.05
0

0.05

0.1

0.15

0.2

(b)

Figure 4.2: (a) Distribution of phase summation of H̃d over adjacent subcarriers;
(b) Distribution of phase difference of Hs between adjacent subcarriers.

CSI power response on neighboring subcarriers as a weak alternative to the require-

ment f2 → f1. To verify Remark 2, Fig. 4.2(a) shows the distribution of the phase

summation of H̃d over adjacent subcarriers with frequencies f1 and f2, which is

wrapped into [0, 2π). As shown, the samples are nearly uniformly distributed in

[0, 2π) and satisfy the assumption in Remark 2. At last, to verify Remark 3, the

distribution of phase difference of Hs between adjacent subcarriers is presented in

Fig. 4.2(b). As shown, the phase difference, corresponding to φs(f1) − φs(f2) in

Eqn. (4.6), is small between adjacent subcarriers and consistent with the Remark

3.
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4.1.2 Statistical Proximity Metrics

Based on Remark 1, the covariance of G(t, f) between subcarriers, denoted as

γG(f1, f2), is calculated as

γG(f1, f2) =
〈
G(t, f1)−

〈
G(t, f1)

〉
, G(t, f2)−

〈
G(t, f2)

〉〉
=
〈
H∗s (f1)H̃d(t, f1) +Hs(f1)H̃

∗
d(t, f1), H

∗
s (f2)H̃d(t, f2) +Hs(f2)H̃

∗
d(t, f2)

〉
=H∗s (f1)H

∗
s (f2)

〈
H̃d(t, f1), H̃d(t, f2)

〉
+Hs(f1)Hs(f2)

〈
H̃∗d(t, f1), H̃

∗
d(t, f2)

〉
+

H∗s (f1)Hs(f2)
〈
H̃d(t, f1), H̃

∗
d(t, f2)

〉
+Hs(f1)H

∗
s (f2)

〈
H̃∗d(t, f1), H̃d(t, f2)

〉
=2Re

{
H∗s (f1)H

∗
s (f2)

〈
H̃d(t, f1), H̃d(t, f2)

〉}
+

2Re
{
Hs(f1)H

∗
s (f2)

〈
H̃∗d(t, f1), H̃d(t, f2)

〉}
,

(4.4)

where
〈〉

stands for the ensemble average over all realizations, and Re{·} denotes

the operation of taking the real part of a complex number.

Based on Eqn. (4.2), component
〈
H̃d(t, f1), H̃d(t, f2)

〉
can also be represented

as

〈
H̃d(t, f1), H̃d(t, f2)

〉
=

1

N

N∑
n=1

Ãd(tn, f1)Ãd(tn, f2)e
j
(
φ̃d(tn,f1)+φ̃d(tn,f2)

)
, (4.5)

where N is the number of samples for ensemble average calculation. Accord-

ing to Remark 2, wrapped φ̃d(tn, f1) + φ̃d(tn, f2) in Eqn. (4.5) follows a uniform

distribution over [0, 2π) which is independent of amplitudes. That is, we have〈
H̃d(t, f1), H̃d(t, f2)

〉
≈ 0 for adjacent subcarriers with frequencies denoted as f1
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and f2 respectively. In such a case, Eqn. (4.4) can be approximated as

γG(f1, f2) ≈ 2Re
{
Hs(f1)H

∗
s (f2)

〈
H̃∗d(t, f1), H̃d(t, f2)

〉}
= 2As(f1)As(f2)Re

{
ej(φs(f1)−φs(f2))

〈
H̃∗d(t, f1), H̃d(t, f2)

〉}
= 2As(f1)As(f2)

[
cos
(
φs(f1)− φs(f2)

)
Re
{〈
H̃∗d(t, f1), H̃d(t, f2)

〉}
+ sin

(
φs(f1)− φs(f2)

)
Im
{〈
H̃∗d(t, f1), H̃d(t, f2)

〉}]
,

(4.6)

where Im{·} denotes the operation of taking the imaginary part of a complex num-

ber. The coefficient 2As(f1)As(f2) is a positive constant coefficient related to the

amplitudes of static signals at frequencies f1 and f2. According to Remark 3, on ad-

jacent subcarriers f2 → f1, we have φs(f1)−φs(f2)→ 0 and sin
(
φs(f1)−φs(f2)

)
→ 0

while cos
(
φs(f1)−φs(f2)

)
has a positive value. Thus, we further simplify Eqn. (4.6)

as

γG(f1, f2) ≈ C(f1, f2)Re
{〈
H̃∗d(t, f1), H̃d(t, f2)

〉}
, (4.7)

where C(f1, f2) , 2As(f1)As(f2) cos
(
φs(f1) − φs(f2)

)
is a positive constant, and〈

H̃∗d(t, f1), H̃d(t, f2)
〉

calculates the covariance between H̃d(t, f1) and H̃d(t, f2). By

separating the components of dynamic signals Hd(t, f) and noise ε(t, f) and em-

ploying the relation between the covariance and correlation, we further represent

γG(f1, f2) as

γG(f1, f2) ≈ C(f1, f2)
[
σd(f1)σd(f2)Re

{
ρd(f1, f2)

}
+ σε(f1)σε(f2)δ(f1, f2)

]
, (4.8)

with σ2
d(f) and σ2

ε(f) denoting the variance of the dynamic signals and noise, re-
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spectively. ρd(f1, f2) is the correlation coefficient between Hd(t, f1) and Hd(t, f2),

while δ(f1, f2) is the correlation between ε(t, f1) and ε(t, f2). The corresponding

correlation coefficient ρG(f1, f2) between G(f1) and G(f2) can thus be written as

ρG(f1, f2) =
γG(f1, f2)√

γG(f1, f1)
√
γG(f2, f2)

≈C ′(f1, f2)
[ σd(f1)σd(f2)Re

{
ρd(f1, f2)

}√
σ2
d(f1) + σ2

ε(f1)
√
σ2
d(f2) + σ2

ε(f2)
+

σε(f1)σε(f2)δ(f1, f2)√
σ2
d(f1) + σ2

ε(f1)
√
σ2
d(f2) + σ2

ε(f2)

]
,

(4.9)

where C ′(f1, f2) , cos(φs(f1)− φs(f2)) is a positive constant and C ′(f1, f2)→ 1 as

f1 → f2. In order to realize the proximity detection, we need to investigate how

γG(f1, f2) and ρG(f1, f2) change with the distance between motion and antennas.

To do this, we look into each component in Eqn. (4.8) and (4.9). It is known that

term σd(·) is the reflected dynamic energy from the human body, which decreases as

the distance between motion and devices increases. To explore how the component

Re{ρd(f1, f2)} behaves, we then resort to the multipath model in communication

field.

4.1.3 Understanding Proximity Features

To investigate how the CSI correlation over frequencies is impacted by the

surrounding motions, we first look into the concept of power delay profile (PDP)

because the frequency-domain correlation and the PDP behaves as a Fourier trans-

form pair. PDP evaluates the statistical characteristics of multipath propagation
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Figure 4.3: Power delay profiles.

and is given by the square of CIR as

Ph(t, τ) = |h(t, τ)|2, (4.10)

which characterizes the connection between transmission delay and channel gain.

Without loss of generality, we assume the energy of MPCs at a specific time

t follows the exponential envelope with decay rate α for simplicity yielding β2
i (t) =

β2
1(t)exp(−ατi), where β2

1 is the energy of the first tap corresponding to the direct

path between Tx and Rx. The Fourier transform of the PDP gives the frequency

correlation function of H(f), denoted as RH(t,4f) =
∑∞

i=1 Ph(t, τi)e
−j2π4fτi , where

4f is the frequency difference. The normalized correlation coefficient ρH can then

be evaluated as

ρH(4f) =
RH(t,4f)

RH(t, 0)
=

∑∞
i=1 β

2
i (t)e

−j2π4fτi∑∞
i=1 β

2
i (t)

=
1− e−α4τ

1− e−(α+j2π4f)4τ
,

(4.11)
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Figure 4.4: Generalized multipath model.

whose real part increases with the positive decay rate α at fixed 4f and 4τ .

When the Tx is close to the Rx, the LOS signal along the direct link between

the Tx and the Rx dominates the propagation as a primary component, while the

power of the other NLOS components decays very fast, producing a larger α as Fig.

4.3(a) shows and thus a larger Re{ρH(4f)} for a fixed 4f . As the Tx moves away

from the Rx, the influence of the primary components decreases at the Rx side due

to amplitude attenuation, and the amplitudes of the reflected and scattered signals

relative to the direct path become larger, which leads to the decrease of the decay

rate α as Fig. 4.3(b) illustrates [74]. Therefore, Re{ρH(4f)} decreases at a larger

Tx-Rx distance. In other words, Re{ρH(4f)} indicates the Tx-Rx distance.

As Fig. 4.4(a) shows, when a person moves near an Rx, attenuated and delayed

copies of the original signal are generated by the reflections from the body, and trans-

mitted through different paths. Therefore, the moving human body can be viewed

as a dynamic virtual transmitter, denoted by Tx′. Then the term Re{ρH(4f)} in

Eqn. (4.11) can be replaced with Re{ρd(4f)}, the frequency correlation function
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Figure 4.5: CSI power responses of two adjacent subcarriers over time (a) in empty
case and (b) when motion is close to the Rx.

between different frequencies of CSI dynamic component Hd(t, f). By evaluating

Re{ρd(4f)}, we can know if the human body is far away from the Rx. A larger

Re{ρd(4f)} at a fixed 4f indicates a closer moving human body. Therefore, based

on the relationship in Eqn. (4.9) and (4.8), ρG(4f) and γG(4f) also increase with

the decrease of human-Rx distance with a small enough 4f while the 4f is mea-

sured as the frequency difference of the adjacent subcarriers. To explicitly show

such a monotonic relationship, the static and dynamic cases of G(t) of two adjacent

subcarriers are illustrated by Fig. 4.5(a) and Fig. 4.5(b), respectively. As expected,

when there is no motion in proximity, the fluctuations of G(t) on two subcarriers

are random, while human movements nearby affect the CSI power responses on suc-

cessive subcarriers similarly, implying a high positive correlation and covariance of

G(t) between these two subcarriers.

Further, Fig. 4.6 shows the correlation matrices among subcarriers when the

person is moving at different distances to the Rx. As expected, ρG(4f) degrades as

the human body moves away especially for the near-diagonal elements that reflect
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Figure 4.6: Correlation matrices when the human body moves at distance 1 m (left),
3 m (middle) and 5 m (right).
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Figure 4.7: Covariance matrices when the human body moves at distance 1 m (left),
3 m (middle) and 5 m (right).

the correlation between neighboring subcarriers. Similarly, based on Eqn. (4.8) and

the analysis in Section 4.1.1, the covariance between subcarriers γG(4f) can also

indicate Tx′-Rx distance. As Fig. 4.7 shows, the smaller the Tx′-Rx distance, the

larger the diagonal and near-diagonal elements of the frequency covariance matrix.

That is, γG(4f) indicates the nearby motion, especially with a small 4f .

Besides the distance-based proximity detection, features ρG and γG can also be

used in detecting proximity in the same room. When motion occurs in the same room

as the Rx, the LOS path between the moving target and the Rx will dominate the

propagated signals, leading to a higher correlation between neighboring subcarriers
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compared with the motions that have no direct link to the devices.

Note that although frequency correlation and covariance have been exploited

in other works [52, 56, 57, 84, 106], they are used for either subcarrier selection or

general motion detection with sophisticated eigen-decomposition and none of these

approaches explores the effectiveness of these features for proximity detection. In

addition, they are merely data-driven and lack insight of how frequency correlation

reflects the physics of motion. Differently, in this work, we explore the underlying

RF characteristics and link the frequency correlation/covariance with detecting the

proximity of motion theoretically [26].

4.2 Proximity Detector

The proximity detector follows an end-to-end pipeline to detect motion in

proximity, as Fig. 4.8 illustrates. In pre-processing module, CSI is normalized over

power response. Then the correlation and covariance across adjacent subcarriers are

extracted as the detection features, followed by a threshold-based detection rule to

make final decisions.
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4.2.1 CSI Preprocessing

4.2.2 Feature Extraction

Subcarrier correlation. The correlation between adjacent subcarriers in-

crease as the subject gets closer, as illustrated by Fig. 4.6. Inspired by such patterns,

we average the correlation coefficients over adjacent subcarriers to detect motion in

proximity, which is calculated as

Mρ =
1

Ns − 1

Ns−1∑
k=1

ρG(fk, fk+1), (4.12)

where k is the index of subcarrier and fk is corresponding subcarrier frequency.

Subcarrier covariance. As previously shown in Fig. 4.7, the Tx′-Rx dis-

tance information is embedded in the covariance between neighboring subcarriers.

Similar to Eqn. (4.12), to capture the joint variability of CSI in different subcarriers,

we take the near-diagonal elements in γG into account and average them as

Mγ =
1

Ns − 1

Ns−1∑
k=1

γG(fk, fk+1), (4.13)

which is the second feature for motion proximity detection.

4.2.3 Detection Rule

With the monotonic relationship between the human-Rx distance and features

Mρ and Mγ, thresholds can be applied on Mρ and Mγ, respectively, to detect the
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proximity of motion. To select proper thresholds, an offline step can be involved to

construct a database of the featuresMρ andMγ, which includes the samples collected

with a single nearby motion, faraway motion as well as the empty case. Then the

corresponding ROC curve can be obtained to illustrate the diagnostic ability. At

the selected detection rate/false alarm level, we can determine the corresponding

discrimination thresholds. In this work, we mainly focus on the feasibility study

and characterize the features through the overall behavior of the ROC curves.

Since these two metrics are highly related, both measuring of the joint variabil-

ity of CSI power at neighboring subcarriers, we use them separately and generate the

detection based on either Mρ or Mγ. Both metrics perform well in the experimental

evaluation and we also make a comparison on them in the next section.

4.3 Experimental Evaluation

4.3.1 Benchmark Studies

In this section, we conduct an in-depth investigation of the capability of the

proposed features in detecting the proximity of motion. We prototype our scheme

using off-the-shelf Wi-Fi devices at a carrier frequency of 5.808 GHz with a 40 MHz

bandwidth. The default sampling rate is set to 30 Hz. In the following, we first

study the effect of human (Tx′)-Rx distance and compare the proposed features

with other baseline features. Then, we study the impact of the directions, user

diversity, motion speed, sampling rate and reveal the channel reciprocity in the

same Tx/Rx setting. Later, we also investigate the performance in different settings
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by changing the Tx-Rx locations and environments.

4.3.1.1 Human Movement at Different Human-Device Distances

As shown in Fig. 4.9, we first place a pair of Wi-Fi transceivers in a typical

office environment. The transceivers are placed 16m apart from each other, with 2

antennas on both Tx and Rx. To quantitatively investigate the motion at different

Tx′-Rx distances, a volunteer is asked to perform normal walking on the spot at

pre-fixed distances 1 m, 2 m and 3 m. We use a sliding window of 2 s to calculate

Mρ and Mγ from CSI. Fig. 4.10a-b show the distributions of the feature values

obtained at each location, respectively. Consistent with the analysis in Section 4.1,

it is observed that the smaller the distance between the human and the Rx, the

larger the values of Mρ and Mγ.
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Figure 4.10: Probability distribution function (PDF) of Mρ, Mγ, motion statis-
tic proposed in WiDetect [97] and the variance of variances of amplitudes of each
subcarrier proposed in SIED [43].

4.3.1.2 Comparative Study

Previous works have studied human motion sensing by extracting features

in the temporal domain. Here, we compare the proposed metrics with features

in two state-of-art systems, WiDetect [97] and SIED [43], using the same dataset

described above. WiDetect devises a “motion statistic” based on the observation

that the sample ACF of CSI power response increases in presence of motion; SIED

captures the variance of variances of amplitudes of each subcarrier. We use the same

parameter setting including sampling rate and window size for feature calculation.

Fig. 4.10 shows an illustration of the behavior of Mρ, Mγ and the motion metrics
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proposed in WiDetect and SIED under different scenarios. We can observe the

distinct gap between empty (i.e., no motion) and motion cases for all features in

Fig. 4.10a-d, which validates their ability to sense human motion. However, when

it comes to the same motion at different distances, there does not exist such a stable

gap to discriminate between them in Fig. 4.10c-d. This is because the ACF of the

CSI power in the time domain and the variance of variances of amplitudes of each

subcarrier have no clear relationship with the human-Rx distance and therefore they

are insensitive to the human-Rx distance.

4.3.1.3 Difference between Mγ and Mρ

According to the definitions of correlation and covariance, the two metrics Mγ

and Mρ are closely related. Both of them are sensitive to the proximity of motion.

However, since Mρ has been normalized to the range [-1,1], it is easier to devise a

universal threshold for Mρ and generalize it to different environments, while Mγ does

not have a range limit and requires more careful tuning in various environments.

On the other hand, Mγ is the product of Mρ and
√
σ2
d(f2) + σ2

ε(f2), both increasing

as human-Rx distance decreases, therefore Mγ amplifies the impact of human-Rx

distance and is particularly sensitive as Fig. 4.10(b) indicates, especially at a shorter

distance.
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Figure 4.11: Impact of direction.

4.3.1.4 Impact of Direction

Since users can approach the Rx from different directions, it is necessary to

investigate the impact of direction. Therefore, as Fig. 4.11(a) shows, we conduct

experiments with the user moving at different angles to the Tx-Rx link, ranging

from −135◦ to 180◦ with an increment of 45◦. The obtained distributions of the

metrics are illustrated in Fig. 4.11, where we can see that values of the metrics

decrease with the increasing human-Rx at each angle. It is worth noting that when

the user is on the side closer to the direct link, Mγ becomes larger due to a larger

σd in Eqn. (4.13), while the Mρ is more robust. As we can also observe, the gaps

between the features at different human-Rx distances are clear for us to apply a

threshold-based method for proximity detection, although the optimal thresholds in

different directions may slightly vary.
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Figure 4.12: Impact of user diversity.

4.3.1.5 Impact of User Diversity

Since different people have different shapes and gait styles, and the way they

approach the Rx could be different, we also evaluate the robustness of our system

against user diversity. In this set of experiments, we recruit 5 volunteers and ask

them to walk at distances 1 m, 2 m and 3 m to the Rx and repeat multiple times.

These volunteers include 3 females and 2 males with a height range of 160 cm to

183 cm, and a weight range of 50 kg to 76 kg. The obtained metric values are shown

in Fig. 4.12. As we can see, the proposed metrics work well for different subjects

with similar values and clear boundaries between the motions at different distances,

demonstrating the generality of Mγ and Mρ for proximity detection.

4.3.1.6 Impact of Sampling Rate

Sampling rate affects the power consumption and computation cost. To eval-

uate the impact of sampling rate on the system performance, we repeat the above-
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Figure 4.13: Impact of the sampling rate. The sampling rate from top to bottom is
set to 20 Hz, 30 Hz, 60 Hz, 90 Hz and 180 Hz, respectively.

mentioned experiments with varying channel sampling rates. As we can observe from

Fig. 4.13, the averages of both Mρ and Mγ keep the same level as the sampling rate

increases when there exists motion. This is as expected since the two features are

extracted in the frequency domain with the assumption that the motion is a sta-

tionary random process over time. Therefore, for the proposed proximity detector,

a lower channel sampling rate suffices for the sake of better energy efficiency.

4.3.1.7 Impact of Motion Speed

In this section, we study the impact of different body motion speeds. The

experiments are carried out in two scenarios. In the first setting, the volunteer

performs two types of motions - walking and jogging in place at different human-Rx

distances. In the other setting, the user is asked to walk and jog along a circle while
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Figure 4.14: Impact of motion speed.

keeping at a fixed distance to the Rx. The corresponding results are reported in Fig.

4.14(a) and Fig. 4.14(b), respectively. Compared with walking, although jogging

produces higher speeds on the torso and limbs including swinging arms, moving legs

and feet, it still shows similar distributions of both Mρ and Mγ as walking.

4.3.1.8 Motion on the Link

Due to the channel reciprocity, motion near either the Tx or the Rx impacts the

signal propagation. Note that the proposed statistical model considers the moving

human body as a collection of multiple virtual antennas. As Fig. 4.15 shows, when

the human is in the proximity of the Tx/Rx, the motion can be viewed as a set of

virtual Rx/Tx antennas correspondingly and the statistical model still fits. Based

on such reciprocity, we can conclude that the proximity features detect the nearest

motion to either Tx or Rx. An example is shown in Fig. 4.16, which illustrates the

trends of Mρ and Mγ when the user moves from 1 m away to the Rx to 2 m away to

the Tx along the direct link. As expected, the values of Mρ and Mγ decrease first

83



15

Rx

Rx

Tx

Tx

scatterer

scatterer

(a)
15

Rx

Rx

Tx

Tx

scatterer

scatterer

(b)

Figure 4.15: Understanding the symmetric behaviors of Mρ and Mγ using channel
reciprocity. (a) Illustration of wave propagation with many scatterers when human
is close the Rx. (a) Illustration of wave propagation with many scatterers when
human is close the Tx.

Wall
Tx
Rx

Human-Rx distance

15 m1 m

(a) Setup when motion is on the link.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0.4

0.6

0.8

M

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Human-Rx distance (m)

10-6

10-5

M

(b) Spread of Mρ and Mγ .

Figure 4.16: Motion on the link.

as the human moves away from the Rx but increase as the motion gets closer to the

Tx. Note that the values ofMρ and Mγ are not completely symmetric at the same

distances to the Rx and Tx due to the blockage of a wall in front of the Tx. This

also shows that the proximity feature can detect motion in proximity in both LOS

and NLOS scenarios.
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Figure 4.17: Illustration of devices placements in different environments.

4.3.1.9 Performance in Different Settings

To examine the robustness of the proposed metrics, we evaluated the per-

formance in various Tx/Rx locations and distances, for both office (Fig. 4.17a-b)

and home environments (Fig. 4.17c-d). The accessible area within 2 m from the

Rx is considered as the area in proximity. During the experiments, the user is

asked to walk in the proximity area and the rest areas (excluding the area near the

Tx), respectively. Define TPR as the ratio of correctly detected proximate motions

among all movements close to the Rx and FPR as the percentage of faraway mo-
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Environment Office 1 Office 2 Home 1 Home 2 Average

Location 1
Mρ TPR 96.20% 99.07% 96.38% 98.53%

4.98%
FPR:

97.31%
TPR:

FPR 4.98% 5.00% 4.96% 4.97%

Location 2
Mρ TPR 95.56% 98.65% 95.08% 99.03%

FPR 4.97% 4.98% 4.99% 4.99%

Location 1
Mγ TPR 95.89% 99.07% 97.49% 99.12%

4.93%
FPR:

97.90%
TPR:

FPR 4.98% 5.00% 4.96% 4.97%

Location 2
Mγ TPR 95.04% 100% 96.92% 99.68%

FPR 4.97% 4.57% 4.99% 4.99%

Location 1
WiDetect TPR 65.58% 75.93% 65.18% 68.33%

4.98%
FPR:

68.29%
TPR:

FPR 4.98% 5.00% 4.96% 4.97%

Location 2
WiDetect TPR 67.62% 68.92% 58.46% 76.05%

FPR 4.97% 4.98% 4.99% 4.99%

Location 1
SIED TPR 87.97% 95.06% 91.09% 87.10%

4.98%
FPR:

90.14%
TPR:

FPR 4.98% 5.00% 4.96% 4.97%

Location 2
SIED TPR 88.77% 92.57% 88.62% 89.97%

FPR 4.97% 4.98% 4.99% 4.99%

Table 4.1: Performance in different environments.

tions which are mistaken as nearby motions. Table 4.1 summarizes the performance

of all metrics (Mγ, Mρ and metrics proposed in WiDetect and SIED) in different

settings. As shown, Mρ and Mγ outperforms WiDetect and SIED with the average

TPR of 97.31% (29.02% higher than WiDetect and 7.17% higher than SIED) and

97.90% (29.61% higher than WiDetect and 7.76% higher than SIED), respectively

at a similar level of FPR smaller than 5%.

4.3.2 Case Studies on Single Pair of Transceivers

To validate the feasibility and the efficiency of the proposed features, we con-

duct extensive experiments under various settings to emulate real-world applica-

tions. Multiple users are involved in the data collection. Based on the monotonic

relationship between Mρ/Mγ and human (Tx′)-Rx distance, a threshold-based ap-

proach can be applied for detection. To evaluate the proposed metrics, we do not
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Figure 4.18: Settings for case studies. (a) Room identification; (b) Smart panel; (c)
Security camera.

propose specific threshold values but calculate the TPR as well as the FPR with

various thresholds and generate the ROC curves for Mρ and Mγ respectively. Also,

we evaluate the responsiveness of the metrics by comparing with the timestamps

recorded by cameras at millisecond level.

4.3.2.1 Case 1: Room Identification

Room identification is very useful in home automation. For example, a light

or heater inside a room can be automatically turned on once a user is detected to

enter that room, and a smart home can localize a robot through tracking the motion

at room level. In this set of experiments, there are three adjacent rooms, and the

Rx is deployed at the center of the middle room as Fig. 4.18(a) shows. The user

is asked to walk randomly inside three rooms, respectively. The motions located

in the same room as the Rx are considered as the proximate ones, while those in

the other rooms are considered as distant movements. The ROC curves for Mρ and

Mγ to classify proximate and distant motions are illustrated in Fig. 4.19. As seen,

with a FPR smaller than 0.5%, the highest TPRs of both Mρ and Mγ can still reach
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Figure 4.19: ROC curves.

99.11% and 99.62%.

It can be noticed that better performance is achieved in Setting 2 than in

Setting 1. This is because for room environments, the motions in Room 1/Room 3

are under NLOS scenarios to the Rx and produce much more dispersed PDPs than

the motions in Room 2, which increases the distinction between the derived features.

In the corridor setting, the motions to be classified are all under LOS scenarios with

the only difference in distance and thus are not as easy to differentiate.

4.3.2.2 Case 2: Approaching the Rx along Different Paths

In this experiment, we consider the motion approaches the Rx from different

directions with different starting points. There are six walking paths as indicated in

Fig. 4.18(b). The volunteer is asked to walk following the paths at a normal walking

speed and multiple cameras are deployed to record the ground truth. Fig. 4.20 shows

the increases in both Mρ and Mγ as the person walks towards the Rx along different

paths, conforming to the previous theoretical analysis. We also observe that Mγ is

more sensitive to the Tx′-Rx distance with a larger relative increment on the trend
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Figure 4.20: Mρ and Mγ over time while approaching the Rx.

Feature Path 1 Path 2 Path 3 Path 4 Path 5 Path 6
Mρ -0.083s -0.543s -0.371s -0.024s 0.312s -0.446s
Mγ -0.175s -0.357s 0.550s 0.256s -0.423s -0.538s

Table 4.2: Detection delay while approaching the Rx.

while Mρ is more stable as it has been normalized to [-1,1].

To investigate the real-time system latency, we mark the ground truth at dis-

tances 1 m and 2 m to the Rx as shown in the pictures in Fig. 4.18(b). Empirical

thresholds are applied on Mρ and Mγ for proximity detection, respectively. By

comparing with the timestamps recorded by cameras, we evaluate the delays for

detecting the motion within 2 m and summarize them in Table 4.2, where “-” rep-

resents the detection that occurs before the person arrives at a 2-meter distance.

According to Table 4.2, we can conclude that both metrics can responsively detect

the proximity of the human body 2 m away within 0.6 seconds.
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Figure 4.21: Spread and ROC curves of Mρ and Mγ in camera control application.

4.3.2.3 Case 3: Home Security Camera

Existing home security systems mostly rely on video-based solutions, such

as ring cameras on the front door, and detect motions by either PIR sensors or

analyzing sequential frames of live video for differences, which usually requires extra

equipment or suffers from high computation and reduces the battery life [5]. To

reduce the power consumption, we implement the proximity detector in the home

surveillance system so that the camera is turned on only when there is motion in

proximity.

More specifically, we consider the wireless camera as the Rx and enable it to

sense the surrounding motion through capturing and analyzing the variations of CSI.

We attach the camera to the front door of a house and the Tx is placed in the living

room. As Fig. 4.18(c) shows, we consider the 1 m × 2 m deck and the stairs at the

entrance as the target area (brown shadow) and movements in the target area are
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regarded as proximate motions, while the motions in the other areas (gray shadow)

are recognized as faraway motions. Samples are collected when the volunteer walks

in the target area and the surrounding area, respectively. The corresponding Mρ

and Mγ are shown in Fig. 4.21(a), and the performance of the detector is evaluated

by the ROC curves in Fig. 4.21(b).

Compared with the previous indoor cases, the experiments on the ring camera

application are conducted in the semi-outdoor scenario, i.e., the user comes from

outside and therefore produces fewer propagation paths. However, even in such a

semi-outdoor environment, the proposed features work effectively in distinguishing

motions nearby and far away with a TPR of 95% while the corresponding FPR is

lower than 2%.

4.4 Discussion

4.4.1 Impact of Motion Strength

In this work, we demonstrate that the correlation and covariance of CSI power

between neighboring subcarriers act as effective metrics for sensing motion in prox-

imity. Since we focus on detecting a user approaching one sensing device, only

body-level motion (e.g., walking) is taken into consideration. When the user is in

light motion such as reading or typing, the fluctuations caused by motion are small

or even comparable to noise.

As seen in Eqn. (4.8) and (4.9), both features Mρ and Mγ are impacted by

σd, which reflects the dynamic energy level, i.e., the motion strength. The motion
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Figure 4.22: Impact of motion strength.

strength can be affected by the dynamic reflection area. The larger the dynamic

reflection area, the higher the motion strength. To investigate its impact, the user

performs motions at a distance of 2 m to the Rx with different dynamic levels in-

cluding single-hand waving, double-hand waving and full-body motion, which have

increasing dynamic reflection areas and thus, increasing motion strengths. Fig. 4.22

presents the distributions of Mρ and Mγ for these three motions. As illustrated,

larger Mρ and Mγ are observed with a higher motion strength.

4.4.2 Multi-Person Case

Currently, we only focus on the cases when there is a single person or no strong

ambient motion near the Rx. With the presence of multiple persons, the dynamic

signals reflected by different targets can be superimposed together at the Rx side.

Due to the limited Wi-Fi bandwidth (40 MHz), it is difficult for commercial Wi-

Fi devices to separate the reflected signals and derive the real number of moving

targets accurately. For the proposed proximity detection, it can distinguish whether

motion exists around the devices, but cannot tell how many moving persons there
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Figure 4.23: Distributions of Mρ and Mγ when there are a single person at 2 m and
two persons at 2 m and 4 m distances to the Rx.

are. However, as Fig. 4.23 shows, we observe that when more persons walk around

the Rx, the distributions of Mρ and Mγ are centered at larger values than the single-

person case, which can give clues for the solution to multi-person sensing and could

be an important direction for our future work.

4.4.3 Other Metrics Derived from Correlation across Subcarriers

4.4.3.1 The Correlation of Complex-Valued H̃d

Inspired by the model in Section 4.1, the correlation coefficients of complex-

valued H̃d across adjacent subcarriers can be used for detecting motion in the prox-

imity of the devices. The covariance of H̃d across adjacent subcarriers has its real
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Figure 4.24: Correlation and covariance of G(t, f) and H̃d(t, f) between adjacent
subcarriers.

part expressed as

Re{γd̃(f1, f2)} =σd(f1)σd(f2)Re{ρd(f1, f2)}+ σε(f1)σε(f2)δ(f1, f2). (4.14)

The corresponding correlation is

Re{ρd̃(f1, f2)} =
σd(f1)σd(f2)√

σ2
d(f1) + σ2

ε(f1)
√
σ2
d(f2) + σ2

ε(f2)
Re{ρd(f1, f2)}+

σε(f1)σε(f2)√
σ2
d(f1) + σ2

ε(f1)
√
σ2
d(f2) + σ2

ε(f2)
δ(f1, f2).

(4.15)

As implied, Re{ρd̃(f1, f2)} directly indicates the distance between the moving tar-

get and the device as both the coefficient σd(f1)σd(f2)√
σ2
d(f1)+σ

2
ε(f1)
√
σ2
d(f2)+σ

2
ε(f2)

and the term

Re{ρd(f1, f2)} have a monotonic relationship with human-device distance. Fig. 4.24

shows the trends of correlation and covariance of both G(t, f) and H̃d(t, f), respec-

tively. As seen, Re{γd̃(f1, f2)} and Re{ρd̃(f1, f2)} can also differentiate the motion
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Figure 4.25: Distributions of φd̃(f1) − φd̃(f2) with f1 and f2 representing the fre-
quencies of adjacent subcarriers. The figures from left to right correspond to
“empty”,“motion at 1 m”,“motion at 2 m” and “motion at 3 m”.

Case Empty Motion at 1 m Motion at 2 m Motion at 3 m
Kurtosis 2.645 11.6577 8.9844 7.8528

Table 4.3: Detection delay while the human approaches the Rx.

at different distances but are not as distinct as Mγ(f1, f2) and Mρ(f1, f2). This is

because the estimation of complex Hd(t, f) requires dedicated phase cleaning which

introduces noise easily.

4.4.3.2 The Distribution of Phase Differences of H̃d between Adja-

cent Subcarriers

The correlation between complex H̃d on adjacent subcarriers can be reflected

by their phase difference. When there is no motion in the surrounding, only noise

contributes to the phase difference between adjacent subcarriers with frequencies f1

and f2, which exhibits a triangle distribution as the convolution of two uncorrelated

uniform density functions. In contrast, when there exists nearby motion, H̃d(f1)

and H̃d(f2) are highly correlated with each other and their phase difference will

concentrate at zero. We use kurtosis to evaluate the sharpness and concentration

of distribution of the phase difference. Fig. 4.25 presents the distributions of phase

difference φd̃(f2) − φd̃(f2) with motion at different distances. As illustrated, as
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human movements get closer to the device, the distribution becomes centralized

around zero. Quantitatively, the kurtosis, as Table 4.3 shows, increases as the

human-device distance decreases. However, the acquisition of phase φd̃(t, f) involve

the phase calibration preprocessing and can be noisy. In addition, the accumulation

of samples is needed to form the distribution and causes delays in the real-time

monitoring.

4.4.3.3 The Coefficients on Motion Strength

As analyzed in Section 4.1, with human-device distance increases, the inter-

ference from the dynamic target gets smaller, i.e., σ2
d decreases. Therefore, the ratio

coefficient in Eqn. (4.15) can also reflect the distance between the subject and

devices, which, denoted as ζ, is represented by

ζ(f1, f2) =
σd(f1)σd(f2)√

σ2
d(f1) + σ2

ε(f1)
√
σ2
d(f2) + σ2

ε(f2)
(4.16)

Implied by Eqn. (4.16), ζ is confined to the range [0, 1). Compared with Mρ(f1, f2)

and Mγ(f1, f2), ζ(f1, f2) does not require the continuity of subcarriers, i.e., f1 and f2

are not necessarily to be frequencies of adjacent subcarriers. However, to calculate

ζ(f1, f2), phase calibration is required to estimate the complex-valued Hs and H̃d.

Then with the static component Hs subtracted, the ratio σd
σε

can be estimated by

comparing the Hd under empty and motion scenarios. Fig. 4.26 shows the distri-

butions of ζ with different human-device distances. As expected, ζ decreases as the

human-device distance increases, which, however, is not as distinguishable as Mρ
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Figure 4.26: The distribution of ratio coefficient ζ at different distances.

and Mγ due to the calibration error in the processing of CSI phase calibration.

4.5 Summary

In this chapter, we propose two robust and responsive features, the correla-

tion and covariance of CSI power on adjacent subcarriers, for detecting motion in

proximity based on a single pair of commercial Wi-Fi devices and explore the under-

lying radio propagation properties. Extensive experiments in various environments

validate the effectiveness of the proposed feature-based detection scheme.
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Chapter 5: Home Automation Application via On-Device Proximity

Detection

5.1 Background

It has been a few years since the home automation technology spawned. Home

automation is exactly what it sounds like: automating the ability to control items

around the house. Instead of going up to the devices and manually taking actions,

the devices themselves can monitor and even predict the activities and react accord-

ingly.

Home automation is powered by IoT. As Fig. 5.1 shows, through the adoption

of the IoT into homes, all the devices in our life could connect to Wi-Fi, not only

computers and smartphones but everything from small appliances such as lights and

coffee makers to a large refrigerator and even a whole security system.

Many energy-efficient home automation applications involve location-based

services, especially the on-device proximity of motion. For example, smart light

turns on automatically when users get close; security cameras offer benefits through

alarming and opening real-time video when detecting the presence of motion in

the area of interest; a baby monitor near the bed can track babies’ movements
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while they’re sleeping and alert parents to any stillness that may signal a problem.

Further, it is well known that activities are closely related to areas, e.g., cooking in

the kitchen and showering in the bathroom. Through a fusion of proximity detection

on multiple devices, location-based information can be extracted and contribute to

the recognition of activities of daily living (ADL) as well as the customized design of

home routines for whole-home automation. Therefore, on-device proximity detection

is useful in home automation systems.

As discussed in Chapter 1, Wi-Fi sensing plays an important role in IoT ap-

plication realizations thanks to the ubiquitous wireless signals in homes. Due to

the rich information introduced into the Wi-Fi signals by human activities, Wi-Fi

embedded IoT devices can perceive the surrounding motion automatically, which

further reduces manual intervention and make the home “smarter”. Thus Wi-Fi

based on-device proximity detection is particularly attractive to facilitate various

home automation.
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5.2 Challenges

Enabling the on-device proximity detection on multiple devices for real-time

home automation using Wi-Fi signals is not an easy task. Multiple challenges need

to be addressed. First, although the capability of penetrating walls and other obsta-

cles of Wi-Fi radios facilitate the whole-home coverage of Wi-Fi, it is not a benefit

for the purpose of proximity detection. Therefore, it is essential to develop a Wi-Fi-

based feature that is sensitive to the motion near the device within a particular small

range. However, the existing Wi-Fi-based on-device motion detection systems usu-

ally aim at detecting the motions in a large coverage without knowing the distance

of the target motion from the device [43, 97, 107], while existing localization tech-

niques require high deployment efforts and/or do not work robustly [35, 58, 90, 102].

Therefore, they are not practically useful for motion proximity detection. The met-

ric for proximity detection should ideally satisfy the following three requirements to

be utilized in the real-world home automation systems: 1) High sensitivity to the

distance between motion and the target device; 2) Robustness under various sam-

pling rates to accommodate different IoT devices at different sounding frequencies;

3) Low complexity to reduce the computation cost and enable the system to run in

a real-time manner. To address this challenge, we follow our prior work in Chap-

ter 4, implement the feature Mρ from the correlation coefficients between adjacent

subcarriers as the metric to evaluate if the motion is in the proximity of devices or

not.

However, a home automation system may contain a wide range of various smart
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(a) Distribution of Mρ under empty scenario. (b) Distribution of Mρ with nearby motion.

Figure 5.2: Impact of hardware diversity.

home devices. The chipsets in different devices, produced by different manufactures

could be diverse in the sensitivity to dynamics and the number of subcarriers, which

will affect the values of Mρ and also the specific detection boundaries. In addition,

different devices could be customized and assigned with different monitored areas.

Fig. 5.2 shows the distributions of correlation coefficients of 3 different co-located

devices connected to the same CSI Rx. As we can see, under empty and nearby

motion scenarios, different devices may have distinct values of Mρ. To combat

the hardware diversity, a simple training phase is involved to adaptively learn the

detection boundaries for individual devices.

Third, given the detection of each device, it is still difficult to tell where

the moving target is, either at the Tx or Rx side, due to the channel reciprocity.

Fortunately, in a home automation system, we usually have multiple IoT devices

connected to the same home router and therefore, the Rx will receive CSI simul-

taneously from multiple Tx. To overcome the challenge of channel reciprocity, we

integrate the information from individual devices and make the decision based on

the link fusion.
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5.3 Range-aware Home Automation using Multiple Devices

Topology of device placements A home automation system typically con-

nects controlled devices to a central hub with a user interface. The most typical

and realistic topology of the IoT devices placements is taken into consideration, in

which the CSI Rx (i.e., the home router) is placed in the center of the home, while

the IoT devices are placed randomly in the house, connected to but far away from

the central Rx.

Metric Based on the analysis in Chapter 4, two metrics, Mρ and Mγ are

effective in detecting proximity detection while keeping robust under different sam-

pling rates. Extensive experiments show the similar performance of Mρ and Mγ

in different environments and scenarios. We select Mρ as the on-device proximity

detection feature to implement in the home automation applications. Then the

threshold-based detection rule is applied on the calculated Mρ.

System overview Due to the aforementioned hardware diversity, the large

number of various devices connected to the home router and the different detection

areas of different devices, it is difficult to find a universal detection boundary for all

devices. Therefore we apply a simple training step to adaptively find the detection

thresholds. With the obtained boundaries for each individual device, we further

combine all their detection results to localize the target user. Fig. 5.3 shows the

system overview.
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Figure 5.3: System diagram.

5.3.1 Offline Training

A simple offline training phase is involved to determine the boundary of the

proximity detection on each device. The detailed steps are listed as follows.

• Data Acquisition The user walks inside the monitored area around each

device for several minutes (e.g., 2 minutes in our experiments). The CSI is

collected continuously in time.

• Metric Calculation After time sequences of CSI measurements are obtained,

the proximity is evaluated by calculating the corresponding Mρ. As illustrated

by Section 4.2.3 in Chapter 4, we first preprocess the CSI by applying the

amplitude normalization and Hampel outlier removal. Then following Eqn.

(4.12), we get the Mρ values over time. Denote the metric measured on link

Txk-Rx as Mρ,k. For a total of K IoT devices, we can get K sequences of Mρ.

• Metric Segmentation Fig. 5.4 shows an instance of the continuous Mρ

sequence when the user walks in different areas, which presents distinct seg-
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Figure 5.4: Metric segmentation via change point detection.

ments. With the prior knowledge that the motion in the proximity of the target

Tx will produce the largest Mρ, we can separate different segments through

change point detection and extract the segment with the largest mean val-

ues. Given an ordered sequence of data, y1:n = (y1, · · · , yn), the change point

analysis aims to identify a number of points, m, together with their positions,

τ1:m = (τ1, · · · τm) where the statistical property (i.e., the mean of Mρ in our

system) changes. Define τ0 = 0 and τm+1 = n and assume that the change

points are ordered as τ0 < τi < · · · < τm < τm+1. Consequently the m change

points will split the data into m + 1 segments. The problem of change point

identification can be formulated as the minimization of

m+1∑
i=1

[
C(y(τi−1+1):τi

)
] + µm, (5.1)
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where C is a cost function for a segment. µm is a penalty to guard against

overfitting and increases linearly with the number of change points [33]. We

segment data based on the mean and therefore set C(y(τi−1+1):τi

)
= ȳ(τi−1+1):τi .

• Threshold Learning On the k-th device, the threshold for differentiating

between the nearby and faraway motion is determined by

γproxi(k) = αmedtM
1
ρ (t, k) + (1− α)medtM

0
ρ (t, k), (5.2)

where M1
ρ (t) denotes the Mρ sequence with nearby motion while M0

ρ (t) denotes

the Mρ series with motion farther away. α, 0 ≤ α ≤ 1, is a sensitivity coef-

ficient for proximity detection in that the sensitivity of the proposed motion

detector increases as α decreases. In addition, given the Mρ segment corre-

sponding to empty case, the threshold for differentiating between the faraway

motion and empty on the k-th device is determined by

γempty(k) = βmedtM
−1
ρ (t, k) + (1− β)medtM

0
ρ (t, k), (5.3)

where M−1
ρ (t) denotes the Mρ sequence labeled empty. β, 0 ≤ β ≤ 1, is a

sensitivity coefficient to detect the silent period of the k-th device.

5.3.2 Online Monitoring

Timely detection During the online monitoring phase, the IoT devices act

based on the proximity detection on each individual device and their fusion. The
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transition between the states of the k-th device at time t can be written as

Snonactive(t, k)
Dproxi(t, k)−−1−−−−−−−−−⇀↽−−−−−−−−−
Dempty(t, k)−−1

Sactive(t, k) (5.4)

where Dproxi(t, k) and Dempty(t, k) indicate the detection of proximity and empty

around the k-th IoT devices, respectively.

However, when motion happens near the central Rx, all links will have large

proximity features due to channel reciprocity. In addition, when more human sub-

jects move around different IoT devices simultaneously, the corresponding links will

also become active. To accommodate the motion near different IoT devices, we

make an assumption that # of users ≤ # of IoT devices, which is reasonable as

there are usually a large number of IoT devices connected in the same home envi-

ronment. Motion in the proximity of the k-th IoT device is recognized by comparing

the real-time Mρ(t, k) with its own γproxi and integrating multiple links as

Dproxi(t, k) =


1, conditions #1&2&3 are satisfied,

0, otherwise,

(5.5)

where Dproxi(t, k) = 1 indicates the existence of motion nearby, i.e., someone is

moving in the monitoring area, while Dproxi(t, k) = 0 means the environment is

static or the motion is out of the target area. The three conditions for decision rules

are as following:

Condition #1: Thresholding check. At time t0, the proximity metric value on

the k1-th device exceeds its detection boundary, i.e., Mρ(t, k1) ≥ γproxi(k1). With
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Condition #1 satisfied at moment t0, Condition #2 and #3 are further checked.

Condition #2: Distribution check. Intuitively, with the motion in the prox-

imity of the k1-th device, detection by the other devices far away from the target

motion will not be triggered. Under the assumption that # of users ≤ # of IoT de-

vices, there is at least one link having the majority of its Mρ(t) below γempty during

the past duration [t0 − T, t0]. Therefore, we formulate this requirement as ∃k2 6= k1

with
∑t0
t=t0−T

1

(
Mρ(t,k2)<γempty

)
T

> η1, where η1 is the threshold for distribution check.

Condition #3: Similarity check. If there is motion approaching the central Rx,

Mρ on all devices will increase similarly and thus the correlation coefficients across

the Mρ of different links in a past duration T will be high. With the assumption of

# of users ≤ # of IoT devices, at least one of the correlation coefficients between

links is very small if no motion is around the Rx, which is formulated as ∃m 6= n

with ρ
(
Mρ(t, km),Mρ(t, kn)

)
< η2 for t = t0 − T, t0 − T + 1, · · · , t0.

The decision-making rule of obtaining Dempty(t, k) is expressed as

Dempty(t, k) =


1, Mρ(t, k) ≤ γempty(k),

0, otherwise,

(5.6)

where Dempty(t, k) = 1 indicates the absence of motion in the surrounding environ-

ment, while Dempty(t, k) = 0 means the environment is not completely static. Based

on the transition between Snonactive and Sactive, responsive proximity detection can

be achieved during online monitoring.

Location log generation Further, given the state transition over time and
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the location of each device, the location log can be generated accordingly.

The timely detector captures the moment the target enters the area of the

proximity of the device but has delays when the state transfers from “Sactive” to

“Snonactive” in order to reduce the false negative error of wrongly deactivating the

target Tx during the real-time monitoring. The log generation based on the post-

processing, however, allows more delicate state transition and can even detect the

motion around the central Rx. The states transition of the k-th device in the location

log can be expressed as

Lnonactive(t, k)
Dproxi(t, k)−−1−−−−−−−−−−⇀↽−−−−−−−−−−

Dnonproxi(t, k)−−1
Lactive(t, k), (5.7)

where the input Dproxi(t, k) is evaluated by Eqn. (5.5), while Dnonproxi(t, k) is the

non-proximity decision, which is written as

Dnonproxi(t, k) =


1, conditions #4&5&6 are satisfied,

0, otherwise,

(5.8)

and has its three conditions as the reverse of conditions #1, #2, and #3 over time,

respectively, that is,

Condition #4: Thresholding check. If the current state of the k1-th device is

Snonactive switched from Sactive, then trace back along t, t−1, t−2, · · · , until at t0 we

have Mρ(t0, k1) ≥ γproxi(k1). With Condition #4 satisfied at moment t0, Condition

#5 and #6 are further checked.

Condition #5: Distribution check. ∃k2 6= k1 with
∑t0+T
t=t0

1

(
Mρ(t,k2)<γempty

)
T

> η1.
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Condition #6: Similarity check. ∃m 6= n with ρ
(
Mρ(t, km),Mρ(t, kn)

)
< η2

for t = t0, t0 + 1, · · · , t0 + T .

We also have the log of motion surrounding central Rx as

Lnonactive(t,Rx)
Dproxi(t,Rx)−−1−−−−−−−−−−−⇀↽−−−−−−−−−−−

Dnonproxi(t,Rx)−−1
Lactive(t,Rx), (5.9)

where the input decisions Dproxi(t,Rx) and Dnonproxi(t,Rx) are written as

Dproxi(t,Rx) =


1, for ∀k, Mρ(t, k) ≥ γproxi(k),

0, otherwise,

(5.10)

and

Dnonproxi(t,Rx) =


1, for ∀k, Mρ(t, k) ≤ γproxi(k),

0, otherwise.

(5.11)

5.3.3 Experimental Results

5.3.3.1 Experimental Setup

We build a prototype of the home automation system on commercial devices

with 5 GHz carrier frequency and 40 MHz bandwidth. The devices are deployed in

an office environment as Fig. 5.5 presents. There are three Tx connected to the

same home router, i.e., the central Rx, each having its own customized monitored

area. During the testing, the user approaches each Tx and the Rx following different

paths and walks around in the target areas.
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Figure 5.5: Experimental environments.

In order to verify the feasibility and evaluate the performance of the proposed

system in indoor monitoring, extensive experiments have been conducted. To eval-

uate the system responsiveness, we measure the detection delays compared with the

recorded timestamps by cameras. We also plot the generated location log together

with the ground truth for comparison.

5.3.3.2 Single-User Case

Under the presumption of a single person, we can detect if the user enters the

monitored area of each individual Tx using Eqn. (5.5). However, as Section 4.3.1.8

in Chapter 5 indicates, the motion around the Rx will also produce a large Mρ.

Luckily, with information gathered from multiple links, the system can react

based on the fusion decision. Fig. 5.6 shows the distinct patterns when the user is

approaching a specific Tx and the Rx. As illustrated, when the user approaches the
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Figure 5.6: Proximity patterns when the
user approaches Tx, more specifically,
Device #2 (left) and central Rx (right).
From top to bottom are the trends of Mρ

on Device #1, #2 and #3, respectively.

Output + Tx + Rx

ρ(Mρ,1,Mρ,2) -0.2690 0.8770

ρ(Mρ,1,Mρ,3) 0.0309 0.9791

ρ(Mρ,2,Mρ,3) -0.0174 0.9063

R1 1.00 0.175

R2 0.04 0.225

R3 1.00 0.00

Table 5.1: Corresponding correla-
tion across links and distribution on
each link, where “+” represents “ap-
proaching”. ρ and R are the outputs
of similarity and distribution checks.

Rx, values of Mρ(t, k) on all three devices increase at the same time and present

similar trends. Note that the Mρ on different devices may not be triggered at the

same time which may easily cause a false alarm. To reliably decide which Rx is

active, once one of the devices has Mρ exceeding its threshold, we examine the

similarity of Mρ trends in a past duration between all devices. As shown in Table

5.1, when the user approaches the Rx, the correlations between all pairs of links

are high due to the consistent increase of all links. In addition, we also check the

distribution of Mρ on each device as Table 5.1 summarizes. When the user is getting

closer to the single Device #2, all of Mρ on Device #1 and #3 maintain below empty

boundary γempty, while the majority of them exceed γempty as the user approaches

the central Rx.

Fig. 5.7 illustrates the trends of Mρ on multiple devices when the user ap-

proaches different devices as Table 5.2 describes. Table 5.3 records the detection

delays. As shown, each individual device reacts responsively to the motion in prox-
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Figure 5.7: The real-time states of IoT devices and the corresponding location log
under the single-user scenario. From top to bottom the figures show: Mρ(t, 1),
Mρ(t, 2), Mρ(t, 3), the states S and the location log.

Period Description
P1 Person A + Device #1 → Person A - Device #1
P2 Person A + Device #2 → Person A - Device #2
P3 Person A + Device #3 → Person A - Device #3
P4 Person A + Rx → Person A - Rx

Table 5.2: Events with a single user (Person A) at home, where “+” stands for
“approaching” and “-” means “walking away from”.

imity with a delay of less than 0.3 s. For the motion near the central Rx, the

generated location log can recognize it accurately, verifying the effectiveness of the

proposed system.

5.3.3.3 Multi-User Case

With the assumption of # of users ≤ # of IoT devices, while different users

approach different devices, the proposed scheme can detect the users in a timely

manner and generate the location log. However, if the target user approaches the
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Device P1 P2 P3 P4

#1 -0.666s - - -
#2 - 0.256s - -
#3 - - -0.362s -

Table 5.3: Detection delays in 1-user scenarios.
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Figure 5.8: The real-time states of IoT devices and the corresponding location log
under the multi-user scenario. From top to bottom the figures show: Mρ(t, 1),
Mρ(t, 2), Mρ(t, 3), the states S and the location log.

device when there is an existing moving human around the Rx, the motion produced

by the target user will be masked and responsive detection will not be achieved. Fig.

5.8 shows the patterns of Mρ of different IoT devices when two users enter different

areas. There are 5 instances in 5 periods from P1 to P5 with the descriptions listed

in Table 5.4, in which P1 and P2 are the cases when users approach individual IoT

devices, while events in P3 to P5 involve the periods when one of the users approaches

the central Rx. As shown, when there is no motion around the Rx, the system can

still detect the proximity of each IoT device timely with the delay reported in Table
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Period Description

P1
Person B + Device #2 → Person A + Device #1 →
Person B - Device #2 → Person A - Device #1

P2
Person B + Device #2 → Person A + Device #1 →
Person A - Device #1 → Person B - Device #2

P3
Person B + Device #2 → Person A + Rx →
Person A - Rx → Person B - Device #2

P4
Person A + Rx → Person B + Device #2 →
Person B - Device #2 → Person A - Rx

P5
Person A + Rx → Person B + Device #2 →
Person A - Rx → Person B - Device #2

Table 5.4: Events with two users (Person A and B) at home, where “+” stands for
“approaching” and “-” means “walking away from”.

Device P1 P2 P3 P4 P5

#1 -0.030s -0.246s - - -
#2 0.322s 0.276s 0.042s - -

Table 5.5: Detection delays in 2-user scenarios.

5.5. However, when large motion happens around the Rx and produces large Mρ

on all IoT devices, the increasing pattern of Mρ(t, k) on the k-th device will be

masked by the existing large values of Mρ(t, k) and cannot be observed as P4 and

P5 indicates. Nevertheless, the responsive detection can still be achieved as long as

the “approaching the IoT devices” happens ahead of “approaching Rx” as the event

in P3 illustrates.

With the real-time proximity detection of Mρ(t, k) on individual devices and

the prediction of motion around Rx, the location log of multi-user cases can be

generated as Fig. 5.8 presents. Compared with the ground truth (black points), the

location log (pink points) can indicate the active areas under multi-user scenarios

reliably except the case with simultaneous motion at the Rx side, as the motion

around Rx conceals the motion around individual devices.
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5.4 Discussion

5.4.1 Impact on Network Communication

Since the proposed system is built on commercial networking infrastructure,

it is non-trivial to investigate the impact of sensing on the communication function-

alities. We measure and compare the throughput and CPU load before and after

enabling the CSI estimation in the integrated system at a sounding rate of 30 Hz.

The results demonstrate that the CSI capture on each individual device results in

little impact with a decrease of 0.33% on throughput rate and an increase of 5.85%

on CPU load, which reveals the potential of putting such co-resident sensing and

communication systems into practical usage.

5.4.2 Multi-User Sensing

As the results reveal above, the proposed scheme may fail to achieve timely

detection and generate an accurate location log when there is motion around the

Rx under multi-user scenarios. In fact, the passive sensing of multiple targets is a

well-known challenging problem, especially for commercial Wi-Fi based sensing due

to the narrow bandwidth. In addition, continuous tracking of different targets is also

challenging. In the future, we would like to employ a multi-way sensing structure to

obtain responsive on-device proximity detection and utilize the finite state machine

to match the trajectory of each target.
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5.4.3 Motion Strength

As illustrated in Section 4.4.1 in Chapter 4, motion strength affects the values

of Mρ. In the proposed on-device proximity detection scheme, only the large body-

level motion is considered. With various types of daily activities considered, motion

strength and the distance work together on Mρ of the home automation system

components. More metrics should be involved in the future to accommodate diverse

activities. For example, to handle the micro motions with weak motion strength,

we may need to exploit vital sign monitoring to detect the human presence.

5.4.4 Device Grouping

In real-life scenarios, the IoT devices are placed randomly. With an increasing

number of IoT devices at homes, it is very likely that multiple devices are co-located

or have overlapped monitored areas. In such a case, the user-involved labeling is

required in the offline training phase as the change point analysis may not automat-

ically detect and recognize the target segment. In the future, we would like to add a

device-grouping module to deal with the closely located devices and make thorough

decisions.

5.5 Summary

In this chapter, we extend the single-Tx-single-Rx structure of the proximity

detector in Chapter 4 to a multiple-Tx-single-Rx scheme to facilitate the home

automation application. Combining the proximity features from multiple devices,
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the system enables timely on-device proximity detection. Given the locations of

devices, the location log can be further generated over time.
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Chapter 6: Universal Virtual Keyboard using A Single Millimeter

Wave Radio

6.1 Challenges

mmKey overcomes multiple challenges to deliver a practical system on com-

modity mmWave radio. First, before keystroke recognition is possible, it is critical

to design a robust motion detector that can capture the micro motions on the key-

board. To address this challenge, mmKey applies an anomaly detection on the

differential amplitude of the CIR to sense the signal fluctuations and infer the pres-

ence of motions. Due to the high carrier frequency, signals attenuate rapidly over

the propagation distance, and therefore the thresholds for keystroke detection should

adapt to the distances. We achieve an adaptive z-score detector by referring to the

empty CIR measured in absence of targets. We further leverage multiple antennas

and different ranges to improve the robustness.

Second, since keystrokes involve not only the movements of fingers but also

the shifts of palms and potentially arms, it is difficult to distinguish between the

keystrokes (finger motions) and other motions. In addition, there are also irrele-

vant reflections from the background objects, which are mixed together with the
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keystroke motions. To overcome this challenge, we first devise a novel motion filter

by leveraging the sensitivity of CIR phase as well as the differences in the spatial dis-

tribution of dynamic signals between keystrokes and other types of motions. Then

we further employ adaptive background cancellation to extract only the dynamic

reflections by tracking the CIR changes.

Last but most importantly, despite the many antennas of the mmWave de-

vice, the spatial resolution is physically limited due to the small effective aperture

of the receive antenna array. Specifically, the on-chip analog beamforming provides

an angular resolution of 15◦ on our experimental device with an array size of 1.8 cm

× 1.8 cm, which is inadequate to localize and recognize a keystroke, especially when

the key size is very small or simultaneous keystrokes are close to each other. To

boost the spatial resolution, mmKey sysname performs MUltiple Signal Classifica-

tion (MUSIC) algorithm on the received CIR and enables precise localization of the

keystroke. In addition, by initial finger localization we only know the location of

motions relative to the device. To determine the keys pressed by a user, we employ

a low-effort one-time calibration stage upon initial setup, which involves as simple

as three key-presses, so that the estimated locations by MUSIC can be mapped onto

the corresponding keys of the keyboard.

6.2 Virtual Keyboard System Design

This section describe the implementation of mmKey in detail. The system aims

to promptly and robustly recognize the keystrokes from the RF signals reflected from
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Figure 6.1: An overview of mmKey .

not only the fingers but also the hands and other static objects. As illustrated by Fig.

6.1, mmKey addresses the aforementioned challenges by the following procedures:

1) Motion detection that detects the presence of motions adaptively and robustly;

2) Motion distinction that distinguishes keystrokes by fingers from non-interested

motions caused by hands, arms, and others; 3) Adaptive background cancellation that

extracts dynamic reflections from the mixture of the superimposed reflected signals;

and 4) Keystroke localization that localizes the keystrokes with high resolution. Note

that a one-time calibration is used for key-location mapping upon initial setup, yet

the effort is minimized as only three key presses.

6.2.1 Motion Detection

We capture the real-time motion by observing the fluctuations of the CIR

amplitude |hn,l(t)|. The CIR amplitude can be modeled as

|hn,l(t)| = |hn,l(t− 1)|+ adn,l(t) + anoisen,l (t), (6.1)
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where adn,l(t) reflects the variation of amplitude contribution from dynamic signals

and anoisen,l (t) is due to measurement noise. Therefore, the differential CIR amplitude

can be calculated as

4|hn,l(t)| = |hn,l(t)| − |hn,l(t− 1)| = adn,l(t) + anoisen,l (t). (6.2)

When there is no motion, i.e., adn,l(t) = 0 in Eqn. (6.1) and we have4|hn,l(t)| =

anoisen,l (t) in Eqn. (6.2). Without loss of generality, the amplitude change caused by

measurement noise anoisen,l (t) only can be assumed to follow a Gaussian distribution.

Then by collecting a sequence of 4|hn,l(t)| in “no motion” scenario, we are able

to construct a “stationary” frame denoted as 4|href,n,l| and employ the z-score

anomaly detection method to detect motion in real time by comparing the incoming

differential CIR amplitudes 4|hn,l(t)| with 4|href,n,l|.

More specifically, by centering and normalizing 4|hn,l(t)| with the sample

mean and standard deviation of 4|href,n,l|, we evaluate the z-score of 4|hn,l(t)| as

Zn,l(t) =
|4|hn,l(t)| − µ̂ref,n,l|

ŝref,n,l
, (6.3)

where µ̂ref and ŝref are the sample mean and standard deviation of 4|href,n,l|. The

larger the value of Zn,l(t) is, the more the sample diverges from the reference frame,

and the higher chance a motion occurs at time t.

Fig. 6.2(a) presents an instance of the reference frame 4|href,n,l|. z-score

based anomaly detection assumes the reference sample sequence follows a Gaussian
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Figure 6.2: (a) Differential CIR amplitude of stationary reference frame; (b) Q-Q
plot of differential CIR amplitude of reference frame; (c) Differential CIR amplitude
of frame involving keystrokes.

distribution. Thus, we examine the quantile-quantile (Q-Q) plot of the normalized

samples in 4|href,n,l|, as shown in Fig. 6.2(b). As seen, the distribution of normal-

ized4|href,n,l| is very close to a normal distribution and satisfies the requirements of

z-score computation. Fig. 6.2(c) shows 4|hn,l(t)| including six keystroke motions.

Every time there is a keystroke, 4|hn,l(t)| experiences obvious fluctuations, which

can be captured by evaluating 4|hn,l(t)| with a threshold calculated by Eqn. (6.3)

as indicated by the red dotted line.

Motion detection aims to detect the start and end time of a keystroke and its

corresponding range. Instead of relying on the z-score calculated from one single

antenna, we leverage all available antennas and range taps to improve the robustness.

Specifically, we apply a sliding window, with length W , to the incoming CIR stream

and obtain the CIR for each window as a N × L ×W complex-valued matrix. To

reduce the false alarms, we employ majority voting to the corresponding 4|hn,l|

values and construct an indicator matrix I(t) with dimension N ×L×W , in which

each element In,l(t) = 1{Zn,l(t) > υ} where 1 is the indicator function and υ = 3 is
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the commonly used value for z-score anomaly detection. Then motion is detected if

the majority of the elements of I(t) are ones. We further estimate the range tap of

motion as the one that satisfies l̂ = arg max
l

∑N
n=1

∑t0+W
t=t0

Zn,l(t). The start and end

points of motion can be determined by searching the first and last anomaly time

slot over consecutive windows on the l̂-th tap.

6.2.2 Keystroke Distinction

Although the motion detector can identify which range tap is affected by

motion, it cannot distinguish whether the motion is caused by a keystroke or by

hand movements. Our key idea to distinguish keystrokes from hand motions is

inspired by two observations: 1) Hand movements usually involve shifts of hand

location while finger keystrokes do not, and 2) hand movements impact a much

larger reflection area than finger motions. Accordingly, we devise two features for

motion distinction: CIR phase and dynamic level.

6.2.2.1 Raw CIR Phase

Compared with CIR amplitude, CIR phase is more sensitive to tiny location

shifts of reflectors. Note that the CIR phase is already synchronized between all

antennas and all samples. With the carrier frequency operated at 60.48 GHz, the

wavelength is λ = c
f

= 5 mm, meaning that a tiny shift of the reflector of 2.5 mm

towards/away from the radio in the radial direction will produce a change of 2π in

the CIR phase, underpinning accurate classification of large (e.g., hand) and micro
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(e.g., fingertips) motions.

Fig. 6.3 shows the CIR amplitude differential 4|hn,l(t)| as well as the CIR

phase ∠hn,l(t) from a sequence of CIR involving three palm movements indicated by

the red rectangles, each followed by a single finger keystroke indicated by the green

rectangle. As Fig. 6.3(a) shows, based on the evident fluctuations of 4|hn,l(t)|, all

the six motions can be detected. However, from 4|hn,l(t)| it is hard to tell whether

the motion is a finger keystroke or not, which could be more distinguishable by

measuring ∠hn,l(t). As shown in Fig. 6.3(b), hand motions produce much higher

peaks due to larger location changes than finger keystrokes. Therefore, the peak

height acts as a promising feature for distinguishing these two motions. As Fig.

6.3(c) illustrates, we define the peak height as the average of the heights on both

sides of a peak.

Since hand shifts impact more antennas and may cross multiple taps, we in-

tegrate the CIR phase ∠hn,l(t) over all antennas and three neighbour taps (corre-

sponding to a range of about 13 cm) centered at the target tap, i.e., [l̂ − 1, l̂, l̂ + 1].

6.2.2.2 Dynamic Level

Observing that hand shifts also impact a larger reflection area than finger

keystroke, we develop a novel feature of dynamic level to describe such a difference.

Dynamic level is defined as the ratio of non-DC power to the total power of the
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Figure 6.3: Features for motion distinction.
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Figure 6.4: Dynamic level distribution.

CIR. Denoted as γ, it can be calculated by

γ =

∑l̂+1

l=l̂−1
∑N

n=1

∑K
f=1 |Hl,n(f)|2∑l̂+1

l=l̂−1
∑N

n=1

∑K
f=0 |Hl,n(f)|2

, (6.4)

where Hl,n(f) = FFT (hl,n(t)). The denominator is the total power of signals re-

flected from both static background and dynamic hands/fingers, while the numer-

ator is the power reflected only by the moving objects (with the DC components

excluded). Therefore, dynamic level increases as the size of the reflection area in-

creases. In other words, hand movements should yield higher dynamic levels than

finger motions. Fig. 6.4 shows the distributions of the dynamic levels for one-finger

keystroke, two-finger keystroke, three-finger keystroke and hand shift, respectively.

As illustrated, three types of keystrokes share similar dynamic levels while hand mo-

tions experience much larger values, rendering it an effective metric to distinguish

hand and finger motions.

Combining two features together, we distinct the motions with a simple two-

step verification. More specifically, once the motion is detected and segmented,
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Figure 6.5: Adaptive background cancellation.

the CIR frames are evaluated by thresholding both the peak height of raw CIR

phase and dynamic level, and only the motions with both low peak heights and

small dynamic levels are considered as finger keystrokes. In our experiments, this

conservative decision rule can perfectly filter out interference motions by hands with

empirical preset thresholds, but may also cause miss detection of finger keystrokes,

which is measured by detection accuracy and evaluated in Section 6.3.

6.2.3 Keystroke Localization

6.2.3.1 Adaptive Background Cancellation

As Fig. 6.5(a) shows, the received signals are a mixture of the reflections from

all the dynamic and static objects. Hence, we need to eliminate the background

reflections and extract only the dynamic components associated with keystrokes.

For each time slot t, the CIR hn,l(t) can be expressed as the combination of

the CIR hn,l(t − 1) and their differential. From t − 1 to t, the reflections from the
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static background are embedded in hn,l(t − 1), while the change of CIR consists

of the components due to the new dynamic reflection hdn,l(t) and that due to noise

εn,l(t). Therefore, we can cancel the impact of background reflections by subtracting

the term hn,l(t− 1). Assuming hdn,l(t) does not experience significant change for M

successive samples, as illustrated in Fig. 6.5(b), hdn,l(t) can be estimated as

ĥdn,l(t) = hn,l(t)−
1

M

M∑
k=1

hn,l(t− k), (6.5)

where M denotes the number of samples used for background cancellation.

6.2.3.2 Localization with MUSIC

After extracting the dynamic signals contributed by finger keystrokes, we

would like to get the 3-D coordinates of the keystroke locations, which will then

translate into actual keys as detailed in the next section. The spatial resolution

is greatly limited by the small effective aperture of the receive antenna array. To

enhance the spatial resolution and thus accurately localize the keystrokes, mmKey

performs digital beamforming on the received CIR based on the widely adopted

MUSIC algorithm [65]. The basic idea of the MUSIC algorithm is to perform an

eigen-decomposition for the covariance matrix of CIR, resulting in a signal subspace

orthogonal to a noise subspace. MUSIC is typically used for reconstructing the spa-

tial spectrum of sparse signals, which is in line with the goal of localizing less than

10 keystrokes.

We focus on the targeted l̂-th range tap estimated in the previous modules.
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Assume that there are D reflected signals impinging on the receive antenna array

with different azimuths ϕ and elevations θ in the coordinate system shown in Fig.

2.1. Then, the CIR h can be formulated as

h =

[
s(θ1, ϕ1), · · · , s(θD, ϕD)

]

x1

...

xD

+


ε1

...

εN

 , (6.6)

where s(θi, ϕi) is the steering vector pointing to (θi, ϕi), corresponding to the direc-

tion of the i-th reflected signal, i.e., the normalized phase response of the antenna

array for a signal coming from the direction (θi, ϕi). xi denotes the complex value

of the i-th reflected signal and εj stands for additive thermal noise by j-th antenna,

which is assumed to be a Gaussian random variable with zero mean and independent

and identically distributed (I.I.D.) for different receive antennas. A more concise

matrix representation of Eqn. (6.6) can be written accordingly as h = Sx+ε, where

S is defined as the steering matrix. Then, the covariance of h can be evaluated as

Rh = E[ĥĥH ] = SE[x̂x̂H ]SH + E[εεH ] = Rs +Rε, (6.7)

where ĥ = h − E[h], and Rs and Rε are the covariance matrices of the signal and

noise components, respectively. Then, the eigen-decomposition can be represented

as

Rh =

[
Us Uε

]Λs

Λε


Us
Uε

 , (6.8)
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Figure 6.6: Illustration of one-key, two-key and three-key keystrokes and spatial
spectrum.
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Figure 6.7: The MUSIC spectrum for K = 1, 3, 5, respectively.

where Us is signal space while Uε is noise space. The MUSIC spatial spectrum is

expressed as

P (θ, ϕ) =

[
sH(θ, ϕ)UεU

H
ε s(θ, ϕ)

]−1
. (6.9)

Fig. 6.7(a) shows the pseudo-spectrum of a single keystroke motion. Peaks

of the spatial spectrum P indicate the presence of reflected signals due to finger

keystrokes, while low values of P indicate the absence of such reflections. Later we

will also evaluate other spectrum estimation methods in Section 6.3, which shows

MUSIC performs the best.
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6.2.3.3 Location Refinement

Although MUSIC algorithm can achieve a high resolution in localizing the

sources of motion, it requires a-priori knowledge of the number of sources, which

is usually unknown in practice. To handle this problem, we apply a peak selection

module before the target localization. A preset number of targets K is fed into the

MUSIC algorithm to obtain the initial pseudo-spectrum. K peaks will be extracted

from the pseudo-spectrum regardless of the actual number of targets present. A

peak selection module is then designed to remove the false peaks.

Fig. 6.7 shows the pseudo-spectrum of a single keystroke motion with different

preset K. As K increases, more and more outlier peaks present, including (i) lower

peaks in the background (marked in yellow circle (i)) and (ii) higher peaks diffused

from the target peak (marked in white circle (ii)).

To remove the false peaks and determine the number of true targets, we follow

two criteria:

• The peaks with heights lower than a preset adaptive threshold th1 are consid-

ered as the noise peaks and will be filtered out. To be generic, th1 is a propor-

tional function of the height of the highest peak, i.e., th1 = c ·max(p1, ..., pK),

which is determined in the calibration phase.

• For the neighboring diffused peaks, an agglomerative hierarchical clustering

is applied to merge them if the spatial angle distance between these peaks is

within a threshold dth. Observing that the peaks tend to expand more in the
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elevation direction as illustrated in Fig. 6.7bc due to the signals reflected by

the upper parts of fingers, we adopt a relatively smaller weight in the eleva-

tion direction. More specifically, the distance between two peaks (4θ,4ϕ) is

weighted with (a, b) respectively where a < b to tolerate more expansion of the

peak blurring in θ. dth is an adaptive threshold indicating the size of clusters

and is determined by the maximum spatial distance of diffused peaks in the

calibration phase.

After filtering and clustering the detected peaks, the number of keystrokes is

then estimated as the number of clusters, and the highest peak in each cluster is

considered as the representative of the cluster, whose estimated location denoted as

(θ̂, ϕ̂) will be fed in the keystroke recognition module described in the next section.

6.2.4 Keystroke Recognition

The location of the finger keystroke (θ̂, ϕ̂) estimated by the super-resolution

MUSIC algorithm can only reflect the relative position of the keystroke with respect

to the Rx. To map the keystroke location onto the keyboard and infer which key

is pressed, we need the knowledge of the location of the keyboard relative to the

Rx, with which a keystroke at location (θ̂, ϕ̂) can be translated to a specific key.

We employ a simply calibration step to obtain such mapping relationships, which

only needs to be done once upon the initial setup of a keyboard. As mmKey can be

compatible with multiple types of keyboards, such as piano keyboard and computer

keyboard, we start with the 1-D case using the white keys of a piano keyboard as
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Figure 6.8: Geometrical models for keyboard calibration. The user only needs to
press three known keys, as indicated by the red dots in (a).

an example, and extend it to the general 2-D case for the computer keyboard and

phone keypad later.

6.2.4.1 1-D Case

To complete the keyboard calibration with the least effort, the user can ran-

domly pick and press three keys. As seen in Fig. 6.8(a), assuming key w1, w6 and

w10 are pressed during the calibration and the corresponding estimated azimuths by

the MUSIC algorithm are represented as ϕ̂1, ϕ̂6 and ϕ̂10, we have α1 = ϕ̂6− ϕ̂1 and

α2 = ϕ̂10 − ϕ̂6. According to the law of sines, we have

|AD|
sinα1

=
|AC|
sin β1

, in 4ACD ;

|BD|
sinα2

=
|BC|
sin β2

, in 4BCD ;

sin β1 = sin β2,

(6.10)
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where β1 and β2 are two unknown angles belonging to two adjacent triangles and

forming a straight angle. Denoting the ratio of |AC| to |BC| as η, from Eqn. (6.10)

we have

η =
|AC|
|BC|

=
|AD|
|BD|

sinα2

sinα1

. (6.11)

Since the ratio |AD|
|BD| is already known as 5

4
in this example. Assuming all of the

keystrokes occur at the center of the key, we can derive the value of η. Further,

the azimuth boundary of every two adjacent keys can also be derived. For example,

as indicated in Fig. 6.8(b), to calculate the boundary between key w2 and w3, we

apply the law of sines again as

|AE|
sin α̃1

=
|AC|
sin β̃1

, in 4ACE ;

|BE|
sin α̃2

=
|BC|
sin β̃2

, in 4BCE ;

sin β̃1 = sin β̃2,

(6.12)
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where α̃1, α̃2, β̃1 and β̃2 are the angles corresponding to those in Fig. 6.8(a). Then,

we get

sin α̃1

sin α̃2

=
|BC|
|AC|

|AE|
|BE|

=
1

η

|AE|
|BE|

,

α̃1 + α̃2 = α1 + α2.

(6.13)

Based on Eqn. (6.13), the exact values of α̃1 and α̃2 can be obtained since the ratio

|AE|
|BE| is known as 1

5
. Similarly, the boundaries between the other adjacent keys such

as (w1, w2), ... , (w9, w10) can be derived. By subtracting the absolute azimuth of

w1, the boundary azimuths can be calculated for keystroke recognition.

6.2.4.2 Generalized 2-D Case

The geometrical model of the 1-D case can be easily extended to 2-D, where

both the elevation and azimuth angles are used for keystroke recognition. As illus-

trated in Fig. 6.9, three keys “1”, “G” and “M” are pressed for calibration. In the

horizontal azimuth direction, we have 4A1B1C1, from which we can derive all the

azimuth boundaries of keys (orange lines), while in the vertical elevation dimension

we have4A2B2C2 and use it to calculate the elevation boundaries (blue lines). Here

C1 and C2 denote the same location of the device, viewing from the azimuth and

elevation dimensions, respectively.

Given the values of the boundary azimuth and elevation angles of each key,

real-time keystrokes can be easily recognized by mapping the estimated keystroke

position to the target key on the keyboard with a known layout.
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6.3 Experimental Evaluation

We prototype mmKey and conduct real-world experiments using a Qualcomm

sponsored testbed, which reuses a 802.11ad/ay chipset as a radar-like platform. The

default setup is presented in Fig. 6.10, where the device is put down to cover a flat

surface that upholds a printed virtual keyboard. We consider different types of key-

boards, including QWERTY computer keyboard, piano keyboard, and smartphone

keypad. For each keyboard, we print the layout on a paper, maintaining the same

physical size such that users would keep the most familiar typing feeling as on a

real keyboard as Fig. 6.10 shows. Note that with a simple calibration mechanism

and the high directionality of mmWave, mmKey can easily adapt to any keyboards

including user-customized layouts, as long as the geometric arrangement is known.

By default, we set the distance between the keyboard and the device to be around

20 cm such that the keyboard will be confidently within the field-of-view (FoV) of

our device, which is 100◦ for both azimuth and elevation directions. The default

sampling rate is fs = 1
Tb

= 100 Hz, where Tb is the burst duration as shown in Fig.

2.2. The selection of different parameters is further studied in Section 6.3.4.
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We conduct experiments at different locations in both office and home envi-

ronments, with 10 volunteers involved, including 4 females and 6 males aging from

23 to 32. To obtain the ground truth, we perform the experiments in two different

ways: 1) For each keyboard, we generate a random key list covering each key once,

and the participants are asked to press the virtual keys by following the list. Each

participant will repeat multiple times for each key list. 2) The user is asked to type

following a sequence of words/sentences or digits/music scores. Note that partici-

pants press the keys in a nearly natural way. Therefore, the keystroke speed is not

controlled and it may vary over time for different users. During experiments, we

collect CIR series from the testbed when a user is typing and send the data through

an Ethernet cable to a computer for processing in MATLAB.

We mainly use three metrics for evaluation. We use detection accuracy (DA)

and recognition accuracy (RA) to quantify how mmKey correctly detects the keystrokes

and how it localizes and recognizes them, respectively. Based on DA and RA, we

calculate the overall accuracy (OA) as OA = DA × RA. DA and RA are defined as

follows:

DA =
# of detected keystrokes

# of total keystrokes
;

RA =
# of recognized keystrokes

# of detected keystrokes
.

(6.14)

Below, we first evaluate the overall performance of three different types of

keyboards and then report the parameter study in Section 6.3.4.
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Figure 6.11: Performance on virtual computer keyboard.
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6.3.1 Virtual Computer Keyboard

6.3.1.1 Performance on Individual Keys

We first investigate the performance of mmKey for a virtual computer key-

board. The printed standard alphanumeric keyboard has a common QWERTY-

based layout with the distance between neighboring keys 19 mm. We involve the

keys of letter and digit in the experiments and select “1”, “G” and “M” as the

landmark keys for calibration. The OA confusion matrix for recognizing 36 keys (26

letters plus 10 digits) on a virtual computer keyboard is shown in Fig. 6.11(a). As

we can see, mmKey achieves remarkable keystroke recognition with an average OA

of 95.42% for a computer keyboard. As illustrated, there exist some detection errors.

Some samples of certain keys are recognized as the neighboring keys, especially the

one below the real key. This is because there exist reflections from the knuckles

leading to the estimation error in the elevation direction. In real applications when

users are typing typical texts, we believe these errors can be easily recovered by the

mature spell check techniques, as demonstrated in the next section.

6.3.1.2 Word Recovery

We further explore the capabilities of mmKey on recovering the input sentences

and evaluate the accuracy in word level. Adopting the same methods in WiKey [12]

to collect sentences samples, we ask the user to type each of the following sentences

5 times on the printed computer keyboard: S1 = “the quick brown fox jumps over
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the lazy dog”, S2 = “nobody knew why the candles blew out”, S3 = “the autumn

leaves look like golden snow”, S4 = “nothing is as profound as the imagination”,

and S5 = “my small pet mouse escaped from his cage”.

We first run mmKey on the CIR data and obtain the direct outputs, i.e.,

a sequence of recognized keys. Then we feed the outputs into Grammarly1 for

correction, which is a popular commercial English writing tool. Here we calculate

the word-level accuracy (WA) by WA = # of correct words
# of total words

and illustrate the results in

Fig. 6.11(b). It is as expected the WA on the direct outputs of mmKey , which is

about 80%, is not as high as its OA since a single mis-recognized letter will lead to

a wrongly recognized word. With the help of spell check/text correction, the word-

level mis-recognition can be easily corrected with a considerable accuracy greater

than 97%. With the high accuracy, mmKey could promise a ubiquitous virtual

keyboard for mobile and portable usage everywhere in practice.

6.3.2 Virtual Piano Keyboard

In this part, we report the overall performance of mmKey in the recognition

of keystroke on a piano keyboard. To adapt to the system capacity of limited FoV,

we employ a segment of piano keyboard consisting of ten white keys and seven

black keys in between. We denote the white keys and black keys from left to right

as w1, w2, ..., w10 and b1, b2, ..., b7, respectively. Three keys w1, b4 and w10 are

used for calibration. Note that as piano only have two rows of keys, we use the

weighted average of elevation angles of w1, b4, w10 as the elevation boundary, i.e.,

1https://www.grammarly.com
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(b) Accuracy when pressing two concurrent keys.

Figure 6.12: Performance of virtual piano keyboard.
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2
(
θw1+θw10

2
+ θb4). Different from computer keyboards, users may press multiple

keys concurrently when playing the piano. Thus we conduct experiments with two

scenarios: single keystroke and simultaneous multiple keystrokes.

6.3.2.1 Single-Key Keystroke

For single-key keystroke case, the experimenter is asked to press each key 60

times. The pressing order follows a random sequence generated from MATLAB as

stated before.

Accounting for both the white keys and black keys, Fig. 6.12(a) shows the

confusion matrix for single-key keystrokes, where “?” means the miss of detection.

As seen, mmKey achieves a high OA of 99.12%.

6.3.2.2 Simultaneous Multiple Keystrokes

Users may need to press multiple keys simultaneously to play the piano. We

first look at the two-key case. The experimenter is asked to press two keys at the

same time, and each combination of keys is repeated 20 times. The instances of two-

key keystroke spectrum can be found in Fig. 6.6 while the OA for all combinations

can be seen in Fig. 6.12(b). As shown, mmKey recognizes the keystrokes accurately

when two keys are located far enough. However, when two pressed keys get closer

especially for the adjacent keys, the accuracy may decrease due to the co-located

fingers. The overall accuracy for double-key keystroke recognition is 92.54% for all

cases, and the accuracy becomes 96.93% for non-adjacent keys. Also, observing the
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Figure 6.13: Multi-keystroke accuracy.

accuracy along the diagonal, we can find that the OA decreases near the edge of the

keyboard due to the effects of inter-finger blockage at the edge locations.

Now we extend to the cases of > 2 concurrent keys by investigating the OA

with respect to the number of concurrent keystrokes. The results show that the OA

decreases to 76.67% when there are three keys being pressed and further decreases

to 65.94% for four keys. We further examine the detection accuracy, as illustrated

in Fig. 6.13(b). As seen, more keystrokes will lead to more miss detection due to the

blockage between multiple fingers, but do not affect much the recognition accuracy

as illustrated by Fig. 6.13(a). Once a keystroke is detected, mmKey can recognize

it accurately.

6.3.3 Virtual Phone Keypad

We also test mmKey against a virtual phone keypad. Phone keypad is a widely-

used keyboard in daily life due to the proliferation of mobile devices. As shown in

Fig. 6.14(a), the applied keypad has 12 keys including digits 0 to 9 and two special

characters “*” and “#”. The keypad is printed on a paper with the same size as
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Figure 6.14: Performance on virtual phone keypad.

the real phone keypad with an inter-key separation of 1.8 cm in horizontal direction

and 1.6 cm in vertical dimension. In the keyboard calibration phase, key “1”, “8”

and “#” are pressed to estimate the boundaries. In the real-time recognition phase,

the user is asked to press different keys following the random-order list. There are

total 40 samples for each key. The confusion matrix of OA is shown in Fig. 6.14(b).

As we can see, although the keys are close to each other (< 2 cm), the keystrokes

can be recognized accurately and reliably with an OA 98.33%.

6.3.4 Parameter Study

In this section, we benchmark mmKey by studying the impacts of different

parameters. Without loss of generality, we evaluate with the piano keyboard unless

otherwise specified.
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Figure 6.15: Impact of factors on mmKey performance: (a) range, (b) speed and
window length and (c) user heterogeneity.
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6.3.4.1 Impact of Range

The performance of mmKey may vary over the distance from the target to

the device. To investigate the impact, we perform experiments with eight different

keyboard-radio distances, ranging from 15 cm to 50 cm with an increment of 5 cm.

As depicted in Fig. 6.15(a), the increase of distance leads to a degradation in

both DA and RA as expected. This is because both the spatial resolution and the

reflection strengths decrease over range. In other words, the keys become relatively

narrower from the view of the radar and the reflected signals become weaker at

larger distances, which lead to detection and recognition errors.

6.3.4.2 Impact of Keystroke Speed and Window Length

Keystroke speed is another important property that may raise users’ concern.

Since the motion detection and segmentation are applied with the assumption that

finger motions do not overlap with each other, there are two factors that may impact

the DA of mmKey : keystroke speed and length of sliding window W . We benchmark

these two factors by performing experiments with different typing speeds, quantified

by keystroke per minute (kpm). The DA of different combinations of speed and W

are presented in Fig. 6.15(b). As seen, mmKey achieves consistently high accuracy

for 30 kpm and 60 kpm, regardless of the W values. For faster typing speeds,

the detection rate remains high if a short window is used, but it decreases quickly

with larger W since two adjacent keystrokes are easily mistaken as a merged single

keystroke. For performance evaluation, the default W is set to be 0.1s, which can
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handle various typing speeds.

6.3.4.3 Impact of User Heterogeneity

In this part, we study the impact of user heterogeneity. During the experi-

ments, We enroll 10 participants labeled as “User 1” to “User 10”. We use a piano

keyboard for evaluation without loss of generality. Among all the 10 participants,

only one (User 9) is familiar with the piano keyboard and good at playing the pi-

ano, and two of them (User 2 and 3) have some basic knowledge of the piano. Also,

during the data collection, there is no restriction on using one or two hands. Two of

them (User 1 and 9) put both of their hands on the keyboard and type different keys

using different hands while others use one hand. Therefore, these 10 users provide

a reasonable level of diversity in terms of different typing behaviors. We calibrate

the keyboard once at the beginning, and then apply it to all the participants. The

results in Fig. 6.15(c) show a near 100% accuracy for both keystroke detection and

recognition, implying that mmKey can support diverse users with only one-time

calibration pre-processing.

6.3.4.4 Impact of Device Placement

As the typical experimental setup presented in Fig. 6.10, the device is put

“parallel” to the keyboard and the Rx locates at almost the middle of the keyboard,

which looks symmetric. However, in practice, the placement of device is not always

perfect, but with potential distortions due to rotation and translation. Therefore,
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Figure 6.17: Performance for various placements with distortions.

we study the impacts by placing the device with different orientations and offsets,

as detailed below.

Rotation. In this experiment, the device is not perfectly parallel to the

keyboard but deviates with some angle as Fig. 6.16(a) presents. Here we test

deviation angles ranging from −30◦ to 30◦ with a step of 10◦, where “-” represents

the clockwise rotation and “+” is anticlockwise from the front view of users. The

results are shown in Fig. 6.17, which shows remarkable robustness to the orientation
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distortions with consistently high DA and RA retained.

Translation. For the translation case, the device is not aligned with the center

of the keyboard but is moved by a certain distance. As Fig. 6.16(b) illustrates, we

shift the device from the center of the keyboard by different distances. Specifically,

we tested at -8 cm, -4 cm, 0 cm, 4 cm, 8 cm, where “-” and “+” represent the left

and right directions from the front view, respectively. As depicted in Fig. 6.17, the

results show no significant difference among the tested distances in both DA and

RA, indicating that mmKey can adapt to various translation placements.

6.3.4.5 Comparing Spatial Spectrum Estimators

We employ MUSIC to achieve super resolution in space on our device. In

this section, we compare mmKey with existing beamforming techniques, including

conventional beamforming (CBF) and well-known minimum variance distortionless

response (MVDR) beamforming (a.k.a. Capon beamforming).

Fig. 6.18a-c are the spectrum of pressing a single key w1 generated by the

three spatial spectrum estimators. As we can visually compare, for single-finger

keystroke case, the MUSIC algorithm can produce the finest spectrum due to its

super-resolution property. For the double-finger keystroke case, MUSIC also per-

forms much better than the other two. Fig. 6.18d-f illustrate the spectrum of

keystrokes of two adjacent keys w5 and w6. As we can see, only MUSIC algorithm

can detect two neighboring sources while it becomes hard to distinguish the multiple

keystrokes by MVDR or CBF. MVDR is slightly better than CBF in this case, but
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Figure 6.18: Examples of obtained spectrum by three different spatial spectrum
estimators: MUSIC, MVDR and CBF. (a)-(c): Single-key case by MUSIC, MVDR
and CBF, respectively. (d)-(f): Double-key case by MUSIC, MVDR and CBF,
respectively.

is not as focusing as MUSIC.

To quantitatively compare their performance, we apply three estimators on

the same dataset in different scenarios, respectively. Fig. 6.19 shows the OA for

each estimator under each setting. It can be observed that for all the different

keyboards, mmKey based on MUSIC achieves the highest accuracy. The OA drops

with MVDR and CBF due to their limited resolution, especially for the double-key

case, where the MUSIC-based approach outperforms MVDR and CBF significantly

with an over 90% OA.

6.3.5 Subjective Evaluation with User Study

Finally, we carry out a user study on all the participants for their feedback

on user experience. We collect subjective measurements from the ten volunteers
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through an online questionnaire. The users are asked about the perceived experience

of using mmKey as an input tool, including the setup complexity, ease of use,

coverage, portability and so on. The responses from real users are summarized in

Fig. 6.20. All responses are scaled from 1 to 5 where 5 is the most positive rating.

As we see, mmKey is rated positively with the average responses to most questions

greater than 4.0. We note that each volunteer is also asked to give an overall rating

on how he/she likes mmKey . On average, ten volunteers give a positively 4.0+

average rating and two of them express their willingness to experience it in real

applications.

6.4 Discussion

6.4.1 Typing Speed

The average typing speed on a physical computer keyboard is about 37∼40

words per minute, which translates to about 185∼200 characters (keys) per minute.
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Subjective ratings

Figure 6.20: Means and standard deviations of the subjective ratings, all on 5-level
scales where 5 is the most positive rating.

mmKey supports a reasonably good speed of 120 kpm, as people generally type more

slowly on a virtual printed keyboard due to the lack of keypress feedback. However,

the performance of mmKey may deteriorate for fast typing (>120 kpm), during

which the finger motion and hand motion overlap with each other. It is worthwhile

to study the segmentation of the CIR time series and explore new features in order

to support reliable recognition of high-speed keystrokes.

6.4.2 Detection Range

While mmKey can support accurate keystroke recognition (> 90%) at a range

up to 45 cm, which is large enough to cover a computer keyboard given the com-

mon FoV of mmWave radios, the detection range still needs to be improved so as

to support the implementation of a full piano keyboard. As the device-keyboard

distance increases, the reflected signals become weaker and the keys become rela-

tively smaller from the view of the radar, which makes the keystroke detection and
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recognition harder. We keep it as future work to investigate the antenna diversity

for a better resolution and thus larger ranges.

6.4.3 Keyboard Calibration

mmKey needs minimal calibration, i.e., only three key-strokes, to associate the

key locations relative to the device with the actual keys. Except for that, mmKey

does not need any other training, making it deployable anywhere for a ubiquitous

virtual keyboard. The calibration only needs to be done once for a specific setup.

However, it is recommended not to change the relative location between the device

and the printed keyboard; Otherwise, a re-calibration would be needed to associate

the new mapping.

6.4.4 Cost and Device Readiness

mmKey is implemented on a mmWave platform sponsored by Qualcomm.

mmKey itself does not introduce any extra hardware cost. The Qualcomm plat-

form does need some modifications and is admittedly bulky for its current form.

Nevertheless, the platform only uses a single commodity 60 GHz WiFi chipset with

an additional antenna array and thus would be fairly low-cost and tiny once mass

production. And we sincerely hope Qualcomm would publicly release the testbed

soon. In the meanwhile, we plan to extend mmKey , as a software solution, to other

mmWave platforms such as TI mmWave radars.
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6.4.5 Portability

Although current mmKey prototype still requires additional hardware and is

not as portable as wearables and multi-functional keyboards, it enables a virtual

keyboard by reusing a mmWave device wherever it is already available. With the

miniaturization of antennas and chips, it is expected that the mmWave hardware will

become lighter, portable, cheaper and energy-saving as a tiny chipset that will be

widely available on home routers, smartphones [2, 7] and vehicles [8]. Then mmKey

could immediately enable virtual typing around those devices in the integrated IoT

system. Although wearables and hand-equipped sensors allow typing anywhere,

they could not easily input information to the targeted IoT devices in the above

scenarios since the wearables are unlikely connected to the IoT devices.

6.4.6 Potential Applications

As the first virtual keyboard using a single mmWave radio, the core contribu-

tion of mmKey is the processing pipeline that enables accurate localization of micro

motion, which can also enable in-air finger tracking/gesture recognition and similar

interactive applications.

6.5 Summary

This chapter presents mmKey , the first universal virtual keyboard system

using a single mmWave device. mmKey achieves accurate multi-finger keystroke

detection and recognition and supports various keyboard layouts. It employs a
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novel pipeline of signal processing to detect, segment, and recognize keystrokes,

without requiring any training. We evaluate the performance of mmKey on various

keyboards, including virtual piano keyboard, virtual phone keypad and virtual com-

puter keyboard. The results demonstrate an overall accuracy over 95% for single-key

case on different keyboard layouts and a recognition accuracy over 90% for multi-key

scenario, which translates to a word recognition accuracy above 97%.
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Chapter 7: Conclusion and Future Work

7.1 Concluding Remarks

In this dissertation, we first introduce the primer of wireless sensing, including

the techniques to process the CSI estimated by 2.4 GHz/5 GHz Wi-Fi and the basics

of 60 GHz Wi-Fi. Then, we present the following CSI-based indoor wireless sensing

systems:

1. Fall Detection. In Chapter 3, we propose DeFall , a Wi-Fi based passive fall

detection system that is independent of the environment and free of prior

training in new environments. Unlike previous works, our key insight is to

probe the physiological features inherently associated with human falls, i.e.,

the distinctive patterns of speed and acceleration during a fall. DeFall consists

of an offline template-generating stage and an online decision-making stage,

both taking the speed estimates as the input. In the offline stage, augmented

DTW algorithms are performed to generate a representative template of the

speed and acceleration patterns for a typical human fall. In the online phase,

we compare the patterns of the real-time speed/acceleration estimates against

the template to detect falls. To evaluate the performance of DeFall , we built a
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prototype using commercial Wi-Fi devices and conducted experiments under

different settings. The results demonstrate that DeFall achieves a detection

rate above 95% with a false alarm rate lower than 1.50% under both LOS and

NLOS scenarios with one link measurement. The extensive comparison study

verifies that DeFall can be generalized well to new environments without any

new training.

2. Proximity Detection. In Chapter 4, we present a novel technique for detecting

motion in proximity by exploring the physics behind the indoor RF multipath

propagation. We discover that motion in the proximity of the Rx/Tx pro-

duces distinct time dispersion over the radio channel at the Rx/Tx side. By

exploring two novel metrics and linking them with the distance of the motions

to antennas, we are able to precisely distinguish motions in nearby proximity

from the motions far away. Extensive experiments in various real-world sce-

narios demonstrate that the proposed scheme can achieve TPR greater than

95% and 99% in distance-based and room-level proximity detection, respec-

tively while maintaining the corresponding FPR less than 5% and 0.5%. The

detection delays for a detection distance of 2 m are within 0.6 s, which verifies

the responsiveness of the proposed scheme.

3. Home Automation via On-Device Proximity Detection. In Chapter 5, we

present the design, implementation, and evaluation of a home automation

system via on-device proximity detection. With IoT enabled across the home,

the devices can respond to the actions users take. While each individual
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device can react to the proximity of motion respectively, the network of mul-

tiple devices can enable comprehensive decision-making to localize the motion

precisely. We believe the proposed scheme takes a promising step towards

practical technology for ubiquitous proximity detection on multiple connected

devices, allowing for a range of critical applications for smart life.

4. Virtual Keyboard Implementation. In Chapter 6, we present mmKey , the

first universal virtual keyboard system using a single commercial 60 GHz Wi-

Fi radio. By leveraging the unique advantages of millimeter-wave signals,

mmKey converts any flat surface, with a printed paper keyboard, into an

effective typing medium. mmKey enables concurrent keystrokes and supports

multiple keyboard layouts (e.g., computer keyboard, piano keyboard, or phone

keypad). We design a novel signal processing pipeline to detect, segment, and

separate, and finally recognize keystrokes. mmKey does not need any training

except for a minimal one-time effort of only three key-presses for keyboard

calibration upon the initial setup. We prototype mmKey using a commodity

802.11ad/ay chipset, customized to support radar-like operations, and evaluate

it with different keyboard layouts under various settings. Experimental results

with 10 participants demonstrate a keystroke recognition accuracy of > 95%

for a single-key case and > 90% for the multi-key scenario, which leads to a

word recognition accuracy of > 97%.
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7.2 Future Works

In this dissertation, we have demonstrated the capability of wireless sensing

for activity monitoring and detection using prototypes built on commercial Wi-Fi

devices. However, to make the proposed IoT applications more versatile and useful

in real-life scenarios, several critical issues remain to be explored and resolved.

• In our indoor fall detection research, we have demonstrated that falls in dif-

ferent environments at different realizations can be detected by extracting the

inherent speed information. However, we only focused on the unexpected hard

falls that will cause severe injuries. Such hard falls possess a distinct but con-

sistent speed pattern. In real-life scenarios, there are many other types of

falls that may not follow similar patterns. Therefore, in the future, we would

like to collect more fall events data and incorporate multiple templates to

comprehensively describe fall events.

• In the proposed proximity detection system, we only considered the scenario

with a single moving human. However, in real-life scenarios, multiple users

may move around the devices at the same time, which will introduce more dy-

namics to the radio propagation, leading to larger values of proximity features

as Section 4.4.2 in Chapter 4 illustrates. Therefore, to successfully deploy

indoor monitoring systems, we need to study and analyze the decoupling of

multi-user impact in proximity features and develop the corresponding algo-

rithms.
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• In addition, in our study of proximity detection, we investigated the radio

propagation characteristics with the presumption of consistent motion strength

and validate the effectiveness using a single type of motion, walking. However,

in practice, users perform various daily activities indoors including working,

typing, and reading, which have less strength than walking and bring less

interference to the environment. As the discussion in Section 4.4.1 of Chapter

4 indicates, motion strength affects the values of proximity features and the

feature values of light motion are generally smaller than heavy motion at the

same distance to the devices. In the future, it is necessary to devise finer

features to characterize motion strength and differentiate motion types.

• In our virtual keyboard system, we validate the effectiveness of the proposed

signal processing pipeline on detecting, localizing, and recognizing the micro

finger motion including keystrokes. In the future, we would like to apply

the same algorithm to explore other similar interactive approaches such as

in-air finger tracking, gesture recognition eyeblink detection, etc., which will

enable more interesting IoT applications. In addition, it would be of interest

to extract the radio biometrics through measuring “keystroke dynamic”, the

typing manner and rhythm of users for future recognition and authentication.

• Lastly, in all of the IoT applications in this dissertation, we deal with time se-

ries using traditional signal processing techniques and only involve light train-

ing due to the limited data. Therefore, it is urgent to collect more data from

human groups of various diversity, especially for fall detection. Meanwhile,
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with the surge of super computers with high computation powers in the era

of big data, deep-learning models, such as recurrent neural network (RNN),

have successfully been applied to address time series forecasting problems,

which is a very important topic in data mining. They have proved to be an

effective solution given their capacity to learn and automatically extract the

temporal dependencies present in time series such as video and audio streams.

In the future, we would like to develop novel deep learning-based algorithms

dedicated to radio propagation over time and analyze if it will help improve

the robustness in more complicated indoor environments. It is our belief that

wireless sensing based systems can achieve comparable identification accuracy

with the existing passive vision/audio-based approach, but outperforms them

in terms of privacy and restriction of deployment, e.g., no requirement of LOS.

We hope that one day the wireless sensing-based IoT application will become

prevalent in our everyday life.
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