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ABSTRACT

Title of Dissertation: Algorithm-Based Low-Power Digital
Signal Processing System Designs

An-Yeu (Andy) Wu, Doctor of Philosophy, 1995

Dissertation directed by: Professor K. J. Ray Liu
Department of Electrical Engineering

In most low-power VLSI designs, the supply voltage is usually reduced to lower the
total power consumption. However, the device speed will be degraded as the supply
voltage goes down. In order to meet the low-power/high-throughput constraint, the key
issue is to “compensate” the increased delay so that the device can be operated at the
slowest possible speed without affecting the system throughput rate.

In this dissertation, new algorithmic-level techniques for compensating the increased
delays based on the multirate approach are proposed. Given the digital signal processing
(DSP) problems, we apply the multirate approach to reformulate the algorithms so that
the desired outputs can be obtained from the decimated input sequences. Since the data
rate in the resulting multirate architectures is M-times slower than the original data
rate while maintaining the same throughput rate, the speed penalty caused by the low
supply voltage is compensated at the algorithmic/architectural level.

This new low-power design technique is applied to several important DSP applica-
tions. The first one is a design methodology for the low-power design of FIR/IIR systems.
By following the proposed design procedures, users can convert a speed-demanding sys-
tem function into its equivalent multirate transfer function. This methodology provides a

systematic way for VLSI designers to design low-power /high-speed filtering architectures

at the algorithmic/ architectural level.



The multirate approach is also applied to the low-power transform coding archi-
tecture design. The resulting time-recursive multirate transform architectures inherit
all advantages of the existing time-recursive transform architectures such as local com-
munication, regularity, modularity, and linear hardware complexity, but the speed for
updating the transform coefficients becomes M-times slower.

The last application is a programmable video co-processor system architecture that
is capable of performing FIR/IIR filtering, subband filtering, discrete orthogonal trans-
forms (DT) and adaptive filtering for the host processor in video applications. The sys-
tem can be easily reconfigurated to perform multirate FIR/IIR/DT operations. Hence,
we can either double the processing speed on-the-fly based on the same processing ele-
ments, or apply this feature to the low-power implementation of this co-processor.

The methodology and the applications presented in this dissertation constitute a
design framework for achieving low-power consumption at the algorithmic/architectural

level for DSP applications.
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Chapter 1

Introduction

Low-power VLSI design has emerged as a major theme in the electronics industry today.
One reason is due to the growing markets in portable computing and communication
systems. In the past, most research and development efforts focused on increasing the
processing speed and reducing the complexity of the chip design. The power consump-
tion of the chip, on the other hand, is given lower priority during the design phase. The
scenario has been changed since the advent of personal communications/computing ser-
vices (PCS). The common feature of the PCS devices is that they demand high-speed
data/signal processing, which leads to much higher power consumption than traditional
portable applications such as wrist watches and hand-held calculators. Nevertheless, we
have only limited power-supply capability of current battery technology. Hence, we are
motivated to consider low-power design so as to prolong the operating time of those PCS
devices.

The other reason for low-power design arises from the power dissipation problem. As
the clock rate and silicon area of IC designs increase, power dissipation of some individual
IC components has not only reached the limits of current packaging technology but
also affected the reliability/yield in the fabrication process. As an example, the DEC
ALPHA 64-bit CPU [1] consumes up to 30 Watts at a clock rate of 200 MHz. The high

power dissipation calls for extra cooling systems such as cooling fins and fans, expensive



packages, to dissipate the generated heat. As a result, both weight and cost of the system
will be increased. This becomes another driving force for the study of low-power VLSI
design.

In general, low-power VLSI design can be achieved at all levels of the VLSI system
(system, algorithm, architecture, circuit, logic, device, and technology levels). In this
dissertation, we focus on developing a new algorithmic/architectural-level low-power de-
sign technique based on the multirate approach. We apply it to several important
digital signal processing (DSP) applications, which leads to new multirate VLSI architec-
tures that can achieve significant power saving compared with the normal design while
retaining the same data throughput rate.

The organization of this chapter is as follows. In Section 1.1, current low-power
design approaches at different VLSI levels are described. In Section 1.2, we address the
motivation of using the multirate approach in lowering the power consumption at the
algorithmic/architectural level. In Section 1.3, we give an overview of the results that we
obtained by applying this new low-power design technique to the following DSP tasks:
general FIR/IIR filtering, transform coding kernel design, and video co-processor design.

We conclude with the dissertation organization in Section 1.4.

1.1 Low-Power VLSI Design Approaches
The power dissipation in a well-designed digital CMOS circuit can be modeled as [2]
Pxoa-Ce - Vd2d - feiks (1.1)

where « is the average fraction of the total node capacitance being switched (also referred
to as the activity factor), Ceg is the effective loading capacity, V4 is the supply voltage,

and f.y is the operating frequency. On the other hand, the delay of the CMOS device



can be approximated as

Ceg X Vaa Ceg X Vyq

Tp =~ = ,
P I 11Coq(W/L)(Vaa — V)2

(1.2)

where u,Cop, W, L are the device parameters and V; is the threshold voltage of the
devices. (1.1) and (1.2) play the essential roles in low-power VLSI designs. Namely, in
order to lower the total power consumption of the CMOS circuits, we want to reduce
the values of a, V44, Cer, and fey by applying all possible techniques at all levels of
the VLSI system, whereas Tp is not sacrificed for those parameter changes [3][4][5][6][7].

The existing low-power design approaches are summarized below.

e Device/VLSI technology level: Over the last decade, the CMOS feature size
has been reduced from 2 pm to 0.35 um. The advance in IC fabrication technology
also leads the way to low-power design. Smaller transistor size not only improves
the device/circuit speed performance, it also reduces the total silicon area and
capacitances, hence the total power consumption. Besides, the increased level
of integration allows the designer to use the vacated area for extra circuits to
compensate for the device speed reduction due to lower supply voltage (as we
will discuss it later). In addition to the reduction of the feature size, lowering
the threshold voltage V; is another commonly used approach to achieve low-power
consumption at the technology level [4][8]. From (1.1), we can see that the delay
of the circuit is inversely proportional to (Vg — V;)2. Thus it is desirable to reduce
the magnitude of V; either to minimize the degradation of speed caused by lowered

Vad, or to allow further reduction in V.

On the other hand, it is predicted that 1.5V (or lower) operation will be needed
by the year 2001 for portable product [6]. Since the supply voltage of the conven-
tional scaled CMOS technology will reach its limit at a supply voltage of 1.5 V, an
alternate process technology, silicon-on-insulator (SOI), is suggested to replace the

CMOS technology [6][9]. The SOI technology allows power supply reduction to 1V



or less and also greatly simplifies the fabrication process. Those merits have made
SOI the best candidate for future low-power fabrication technology. In general,
the cost of the technology/device approach is most expensive among all low-power
techniques since it requires the investment of new semiconductor equipment and

technology.

Circuit approach: There are numerous options available in choosing the basic
circuit approach and topology for implementing the given logic and arithmetic
functions. As an example, we can employ several design approaches such as carry-
ripple, carry-look-ahead, and carry-select to realize the adder circuit [10]. Each
approach renders different trade-off in the performance of power/speed/area. At
the CMOS circuit level, various circuit design techniques are available; e.g., dy-
namic versus static CMOS logic, conventional static versus pass-transistor logic,
and synchronous versus asynchronous design [3]. As far as power consumption is
concerned, the static CMOS logic and asynchronous design are preferable due to
their less number of switching activities. The pass-transistor logic family is also a
promising candidate since it uses a less number of transistors than the conventional

static CMOS circuits for implementing the same logic function [2, Chap.5].

Recently, the low-power digital circuits based on adiabatic-switching technique was
introduced [11]. By employing the adiabatic-switching circuits, the signal energies
stored on circuit capacitances can be recycled instead of dissipated as heat, which

provides a promising power-saving technology at the circuit level.

Logic-level approach: In CMOS circuits with negligible leakage current, power is
dissipated only when there is a transition at the output of the gate (ZERO to ONE
or ONE to ZERO in logic value). In the logic-based low-power design, the major
focus is to reduce the frequency of energy consuming transitions for given logic

functions, i.e., the activity factor « in (1.1). Existent approaches can be found in



[12][13][14][15]. They basically examine the given logic functions and perform logic
optimization/synthesis in such a way that the total number of logic transitions can
be minimized for most inputs signals. By doing so, a can be reduced, hence the
total power consumption of the circuits. In general, the power saving of the logic

approach is in the range of 20%-75%.

Architectural/algorithmic approach: From (1.1), we can see that the reduc-
tion of the supply voltage is the leveraged way to reduce the total power consump-
tion due to its quadratic dependence. However, the delay will drastically increase
as Vyq approaches V; (see (1.2)). That is, we suffer from a speed penalty as Vyq
goes down. In order to meet the low-power/high-throughput constraint in most
DSP applications, the key issue in algorithmic/architectural-level low-power de-
sign is to “compensate” the increased delay caused by the lowered supply voltage.
Current approaches for compensating the increased delay include the techniques of
“parallel processing” and “pipelining” [3][7]. In this dissertation, we propose a new
compensation technique based on the multirate approach, which will be discussed

in details in the next section.

System-level approach: The system-level low-power VLSI design evolves from
the power-saving techniques which are frequently used in lap-top/notebook com-
puters as well as the energy-saving “green products”. When one of the subsystems
is idle for a period of time, it may switch to one of the modes—Doze, Nap, Sleep—to
save the system power. Recent state-of-the-art CPU designs have employed the
same design concept to manage both dynamic and static power of the CPU [16].
The embedded activity management circuit of the CPU provides the capability to
shutdown portions of subsystems that are not required in current or impending op-
erations. Therefore, significant power saving can be achieved. There are two design

issues involved in the system-level low-power design. One is the partitioning of the



system into submodules that have high interconnection density within themselves.
By doing so, the influence of shutting down one submodule to other submodules can
be minimized. For ASIC designs that use multichip modules (MCMs) implementa-
tion, the partitioning can be done by employing the systematic approach discussed
in [17]. The other is the design of additional hardware/software for monitoring the
working status of each submodule of the chip, which will introduce extra cost and

weight to the system.

Among these low-power techniques, the algorithmic/architectural approach is the most
promising one [7]. Firstly, the algorithmic/architectural low-power design is achieved by
reformulating the algorithms and mapping them to efficient low-power VLSI architectures
to compensate the speed penalty caused by low supply voltage. Basically, we only trade
more chip area for low power consumption under current technology, without invoking
dedicated circuit design, new expensive device materials, and advanced VLSI fabrication
technology. Compared with other approaches, the algorithmic/architectural low-power
design is one of the most economical ways to save power. Secondly, the power saving of
the the algorithmic/architectural approach is in the range of 70%-90% ! (as we will show
it in this dissertation). Therefore, the algorithmic/architectural-level approach provides
the most leveraged way to achieve low-power consumption when both effectiveness and

cost are taken into consideration.

1.2  Algorithmic/Architectural-level Low-Power Design

Using the Multirate Approach

The architectural-level low-power design was first proposed by Chandrakasan et al. [3].

In [3], the techniques of “parallel processing” and “pipelining” were suggested to com-

!The current goal is to reduce the total power dissipation of the electronics systems to two orders of

magnitude less than what would have been with the conventional technology [6].



pensate the speed penalty, and a simple comparator circuit was used to demonstrate how
parallel independent processing of the data can achieve good compensation at the archi-
tectural level. However, in most DSP applications, the problems encountered are much
more complex. It is almost impossible to directly decompose the problems into indepen-
dent and parallel tasks. Therefore, the properties of the DSP algorithms should be fully
exploited in order to develop efficient techniques to compensate the loss of performance
under low-power operations. The main issue here is to reformulate the algorithms so
that the desired output can be obtained without hindering the system performance such
as data throughput rate. We call such an approach the algorithm-based low-power
design.

In this dissertation, we propose a new technique—the multirate approach—to compen-
sate the aforementioned speed penalty. To motivate the idea, let us consider the discrete
cosine transform (DCT) architecture in Fig. 1.1. For most of the existing serial-input-
parallel-output (SIPO) DCT architectures [18][19], the processing rate of the operators
must be as fast as the input data rate (see Fig. 1.1(a)). In our low-power design, the DCT
is computed from the reformulated circuit using the decimated sequences (Fig. 1.1(b)).
It is now a multirate system that operates at two different sample rates. Since the oper-
ating speed of the processing elements is reduced to half of the original data rate while
the data throughput rate is still maintained, the speed penalty is compensated at the
architectural level. Suppose that the Cg is approximately doubled due to the hardware
overhead in the reformulated circuit. Since all the operations are at half of the original
speed, the lowest possible voltage can be reduced from 5 V to 2.9 V [3]. Using the CMOS
power dissipation model of (1.1), the overall power consumption of the multirate design

can be estimated as

(2Cug) (V2 (5F)  0.34B,, (1.3

where Py denotes the power consumption of the original system. Therefore, the multirate

approach provides a direct and efficient way for the low-power design at the algorith-
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Figure 1.1: (a) Original SIPO DCT circuit.

multirate approach.

mic/architectural level.

1.3 Main Contributions

(b) Low-power DCT circuit using the

Based on the proposed new algorithmic/architectural-level low-power design technique,

several significant results are developed in this dissertation and are summarized as fol-

lows:



1. Design methodology for multirate FIR/IIR filtering architectures: We
present a design methodology for the low-power design of any given FIR/IIR DSP
systems. The users can simply follow the design steps to convert a speed-demanding
system function into its equivalent multirate transfer function. Since the data rate
in the resulting multirate filtering architecture is M-times slower (where M is a
positive integer) than the original data rate while maintaining the same through-
put rate, we can apply this feature to either the low-power implementation, or
the speed-up of the DSP systems. The proposed design methodology provides
VLSI designers a systematic tool to design low-power DSP systems at the algo-
rithmic/architectural level. Furthermore, it can be incorporated into the design of

high-level synthesis computer-aided-design (CAD) tools for power minimization.

2. Low-power transform coding architecture design: We demonstrate how the
multirate approach can be applied to low-power but high-speed transform coding
architectures. We start with the derivations of the multirate DCT/IDCT architec-
tures. The resulting multirate low-power architectures are regular, modular, and
free of global communications. Also, the compensation capability is achieved at the
expense of locally increased hardware and data paths. As a consequence, they are
very suitable for VLSI implementation. We also consider the design of low-power
architectures that can lower the power consumption with only O(log M) increase
in hardware complexity. The multirate DCT/IDCT design is extended to a unified
low-power transform coding architecture that can perform most of the existing dis-
crete sinusoidal transforms based on the same processing elements. Moreover, we
perform the finite-precision analysis of the DCT architectures under the normal
and multirate operations. Using the analytical results, we can choose the optimal
wordlength for each DCT channel under the predetermined signal-to-noise ratio

(SNR) constraint. Hence, the total number of switching events and the silicon



area are further reduced, and so is the power consumption of the DCT chip. These
design issues constitute a framework of the algorithm-based low-power design with

an application to transform coding kernel design.

3. Video co-processor design: We present a programmable video co-processor sys-
tem architecture for numerically intensive front-end video/image data processing.
The proposed system is a massively parallel architecture that is capable of perform-
ing most low-level computationally intensive tasks including FIR /IIR filtering, sub-
band filtering, discrete orthogonal transforms (DT), and adaptive filtering for the
host processor in video applications. Since the properties of each programmed func-
tion such as parallelism and pipelinability have been fully exploited in this design,
the computational speed of this co-processor can be as fast as that of ASIC designs
which are optimized for individual specific applications. We also show that the
system can be easily reconfigurated to perform multirate FIR/IIR/DT operations
with negligible hardware overhead. Hence, we can either double the processing
speed on-the-fly based on the same processing elements, or apply this feature to
the low-power implementation of this co-processor. The programmable/high-speed
properties of the proposed design make it very suitable for cost-effective video-rate

applications.

In addition to low-power implementation, the other attractive application of the
proposed multirate architectures is in very high-speed signal processing. In most VLSI
designs, the input data rate is limited by the speed of the adders and multipliers in
the circuit. In the video-rate applications such as HDTV, the speed constraint will
result in the use of expensive high-speed multiplier/adder circuits or full-custom designs.
Thus, the manufacturing cost as well as the design cycle will increase drastically. Since
the multirate architectures are running at an M-times slower operating frequency than

the input data rate, they can process data at a rate that is M-times faster than the

10



maximum speed of the processing elements. Hence, by employing the multirate parallel
architectures discussed in this dissertation, the above-mentioned speed constraint can be
resolved at the architectural level under the same design environment and fabrication

technology.

1.4 Thesis Organization

In this dissertation, we propose new compensation techniques based on the multirate
approach. The effectiveness of this algorithm-based low-power design is demonstrated
by applying it to several DSP problems.

In Chapter 2, the design methodology for deriving low-power FIR/IIR filtering ar-
chitectures is presented. The design and implementation issues of the low-power QMF
chips as well as the simulation results are also discussed in this section.

In Chapter 3, the multirate DCT/IDCT VLSI architectures are derived based on
two different approaches. One is the Chebyshev polynomial approach and the other is
the polyphase approach. The comparison of the proposed multirate architectures with
existing DCT architectures is also considered.

In Chapter 4, we present multirate transform coding architectures that can achieve
low-power consumption with only O(log, M) hardware overhead. We also extend the
multirate DCT/IDCT design to a unified transform coding architecture. It can perform
most of the existing orthogonal transforms based on the same processing elements.

In Chapter 5, we perform the finite-wordlength analysis for the proposed multirate
DCT architectures. The rounding errors and dynamic range of the VLSI architectures
under fixed-point arithmetic are analyzed,

In Chapter 6, we present the system architecture of the video co-processor that is
capable of performing various tasks in video applications. The speed-up of the system

based on the multirate approach is also considered.

11



In Chapter 7, we conclude our work and discuss the future research topics that can

be extended from this dissertation.
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Chapter 2

Design Methodology for Multirate FIR /IIR

Systems

FIR/IIR filtering is the most commonly used operation in DSP systems. In general,
the direct implementation of the system transfer function H(z) (see Fig. 2.1(a)) has
the constraint that the speed of the processing elements must be as fast as the input
data rate. As a result, it cannot compensate the speed penalty under low supply volt-
age. On the other hand, the multirate system in Fig. 2.1(b) requires only low-speed
processing elements at one-third of the original clock rate to maintain the same through-
put. Therefore, it can be used to compensate the speed penalty at the architectural
level. In this chapter, we present a systematic approach for the low-power design of
general linear time-invariant (LTI) FIR/IIR systems based on the multirate approach.
By following the design methodology presented in this chapter, users can easily convert
a speed-demanding FIR/IIR system function into an equivalent multirate transfer func-
tion. The resulting multirate filtering architecture is suitable for either the low-power
implementation or the processing speed-up of the DSP system.

We also design the low-power Quadrature Mirror Filter (QMF) [20] by using the
proposed multirate FIR structure. We consider the architectural design issues for the

QMF such as the employment of power-of-two coefficients to reduce the total chip area
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Figure 2.1: (a) An LTI FIR/IIR system. (b) Its equivalent multirate implementation.

and the choice of most suitable system wordlength for the design. The simulation results
of the implemented chips confirm the parameter values that we use to estimate the power
saving of the multirate design.

The organization of this chapter is as follows: In Section 2.1, we first review some
basic multirate operations that are useful for our derivations. In Section 2.2, we present
the methodology to derive the equivalent multirate implementation of an arbitrary LTI
system. In Section 2.3, the diagonalization approaches to eliminate the global com-
munications of the multirate implementation are discussed. In Section 2.4, the power
estimation of the multirate FIR filtering architecture is considered. The design and

simulation results of the QMF VLSI chips are discussed in Section 2.5,

2.1 Basic Multirate Operations

Given an FIR transfer function

H(z) = Z h(n)z™" (2.1)

n=—oo

14



and any integer M, we can rewrite H(z) as

M-1
H(z) =Y z7'Ey(zM) (2.2)
=0
where
E(z)= ) e(n)z™" (2.3)

with e;(n) 2 h(Mn+1),0<I< M —1. (2.2) is referred to as the Type I polyphase
representation with respect to M, and Ei(z)'s,1 =0,1,..., M — 1, are the polyphase
components of H(z) [21]. Figure 2.2(a) shows an implementation of H(z) based on the
polyphase representation.

The second commonly used multirate operation is the noble identities (Fig. 2.2(b)).
It describes that M unit delays at the original clock rate is equivalent to one delay at
an M-times slower clock rate, and vice versa. The third property that is useful for
our derivation is the equivalent implementation of an (M — 1)-delay element as shown
in Fig. 2.2(c). The multirate structure at the right is also known as “the delay chain
perfect reconstruction system” [21, Chap.5].

he above basic multirate operations provide very efficient tools in the theory and
implementation of multirate systems [21]. Take the decimation circuit depicted in
Fig. 2.3(a), for example. The decimation filter H(z) is in general a low-pass FIR filter
preventing the aliasing effect after the decimation operation. The direct implementa-
tion of Fig. 2.3(a) requires N multipliers and N adders. It has the disadvantage that
the operating frequency of the processing elements must be as fast as the input data
rate. Instead, we can have a more efficient implementation of Fig. 2.3(a) by applying
the above-mentioned multirate techniques: Suppose that M = 3. We first replace the
transfer function H(z) in Fig. 2.3(a) with that in Fig. 2.2(a), which results in Fig. 2.3(b).
Then, we move the decimation operation towards the middle of the parallel paths (see
Fig. 2.3(c)). After applying the noble identity, we have the polyphase implementation

of the decimation circuit as shown in Fig. 2.3(d). Although the total cost is still N
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Figure 2.2: Basic multirate operations: (a) Polyphase decompositon. (b) Noble identi-

ties. (c) Equivalent multirate implementation of an (M — 1) delay element.
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Figure 2.3: Derivation of the polyphase implementation of the decimation circuit, where
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the decimation filter using Fig. 2.2(a). (c) Applying the noble indentity. (d) The resulting

polyphase implementation.
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multipliers and N adders, the operating frequency of the operators has been reduced to
only one-third of the original clock rate.

Next let us consider a decimation circuit with transfer function
2 H(2) = h(0)z P+ h(1)z2 + - + h(N= 1z V. (2.4)
We first rewrite (2.4) as
2 H(z) = 22273Ey(2%) + 27 Ey(28) + 2 2By (). (2.5)

As with Fig. 2.3, we can derive the polyphase implementation of the decimation circuit
with transfer function 271H(z) (see Fig. 2.4). The resulting architecture is similar to
that of Fig. 2.3(d) except that the polyphase components E;(z)’s have been rotated and
one extra delay element is added to Ey(z). Likewise, given the transfer function z—2H(z),
we have

27 2H(z) = (27 3E1(2%) + 271 (273 B (%)) + 272 Ep (2°) (2.6)

and the corresponding decimation circuit is obtained as in Fig. 2.5.

2.2 Multirate Design Methodology

In what follows, we present the design methodology to derive the multirate FIR system
of Fig. 2.1. Without loss of generality, we assume that M = 3 in our derivation. The
results can be easily extended for an arbitrary M.

The Design Procedure

Given an LTI FIR system H(z) with order N and decimation factor M, the design

procedure is summarized as follows (see Fig. 2.6).

Step(a): Insert M — 1 unit delays after the transfer function H(z).
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Figure 2.4: Derivation of the polyphase implementation of the decimation circuit with

transfer function z71 H(z).
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Figure 2.5: The decimation circuit with transfer function z=2H(z).

Step(b): Apply the identity of Fig. 2.2(c) for the inserted delay element, which results
in Fig. 2.6(b).

Step(c): Move H(z) to the right till reaching the decimation operators.

Step(d): Merge the delay elements with the transfer functions. Group the resulting new
transfer functions (H(z), 2 *H(z), and z=2H (2)) with their associated decimation

operators.

Step(e): Substitute each circled diagram shown in Fig.2.6(d) with the results of Figs. 2.3-

2.5. Then we have Fig. 2.6(e).

Step(f): Note that the data inputs at points designated by a are the same, and so are
those at points b and c. After merging the common data paths in Fig. 2.6(e), we

obtain Fig. 2.6(f) in which

Ey(z) Ei(z) E»(z)
E() 2| »1B(2)  Eolz) Eil2) |- @2.7)

z7 VB (2) 2z 'Ea(z) Eo(2)
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The general form of E(z) with an arbitrary decimation factor M can be shown to be

-

E()(Z) E1 (Z) v EM_l(Z)
271 —1lz z) - —a(z
B(z) = Ep-1(2) Ey(2) Ep—2(2) , 28)
I 2 E1(2) 27 Ey(z) --- Ey(z) ]

which is also known as the pseudocirculant matrix in the context of alias-free QMF
filter banks [22].

The design steps described in Fig. 2.6 provide a systematic way to design a low-
power FIR system. Since each E;(z) in Fig. 2.6(f) represents a subfilter of order N/M,
the total hardware complexity to realize the multirate FIR system is M N multipliers
and (MN + M?) adders. Basically, we pay a linear increase of hardware overhead in

exchange for the advantage of an M-times slower processing speed.

2.2.1 Low-Power Multirate IIR System

The above methodology can also be applied to multirate IIR system design. We first

compute the polyphase components E}(z)'s,i = 0,1,...,M —1, of the given IIR function

P .

1+ Zpiz_l
=1

Q
1+ gz
i=1

as follows. For each pole of H'(z), we introduce (M — 1) extra pole-zero pairs that are

N(z) _

B =5 =

(2.9)

of equal angular spacing and have the same radius as that of the original pole. Then

H'(z) can be rewritten as [23]

M-1
N(z) H D(ze?2mk/M) .
H'(z) = — =L - g (iﬁ). (2.10)
D(z) T] D(ze?%/M)
k=0
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Let the Type I polyphase representation of N'(z) be

M-1
N'(z) = ) 2 'Gj(z"). (2.11)
1=0
The polyphase decomposition of H'(z) can be represented as
M-1
H(z) = z7'E(z") (2.12)
=0
with
My & Gi(zM)

Note that the multiplication complexity of D'(zM) is Q, and that of N'(z) is (P + (M —
1)Q). Hence, we need a total complexity of (P+(2M —1)Q) multipliers for the polyphase
implementation of H'(z).

After replacing each E;(z) in Fig. 2.6 with its corresponding E|(z), fori = 0,1,..., M—
1, we can use the methodology of Fig. 2.6 to convert H'(z) into its equivalent multirate
transfer function. Note that the complexity of each E}(z) can be as high as that of the
original transfer function H'(z). Hence, we may pay up to O(M?) hardware complexity

for the implementation of the multirate IIR filter.

2.3 Diagonalization of the Pseudocirculant Matrix

Although the multirate implementation of Fig. 2.6(f) can be readily applied to low-
power design, the global communication of this structure is not desirable in the VLSI
implementation. Therefore, we want to diagonalize the pseudocirculant matrix of (2.8)
so as to eliminate global communication in the multirate implementation.

One way to diagonalize E(z) of (2.8) is to use the DFT approach [24]. For example,
the multirate system of Fig. 2.6(f) can be diagonalized by using 6-point DFT/IDFT
networks as depicted in Fig. 2.7. This DFT requires complex-number operations for the

filtering operations of those subfilters D;(z)’s. Besides, it still requires global communi-

cation in the DFT/IDFT networks.
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Figure 2.7: Diagonalization of the pseudocirculant matrix using the FFT approach.

Besides the DFT approach, the diagonalization approaches based on polynomial con-
volution techniques have been studied in [25][26]. As an example, for the case of the

decimation factor equal to two, (2.8) can be rewritten as [26]:

s o] B 0 0 1 -1
o) B 0  Eo(2)+Ei(z) O 0 1
27 E(2) Eo(z) 011
0 0 Ei(2) z7t -1
A
(2.14)

The resulting structure is depicted in Fig. 2.8, where the downsampling circuit and
the upsampling circuit are used to realize the pre-processing matrix A and the post-
processing matrix B, respectively, of (2.14). This diagonalization approach involves only
real-number operations to process the decimated sequences. However, as M increases,
the derivation becomes complicated and the resulting architecture is highly irregular (as
opposed to the DFT approach) [26]. In the next section, we will use the multirate FIR

structure of Fig. 2.8 for our low-power Quadrature Mirror Filter (QMF) chip design.
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Figure 2.8: Multirate FIR architecture with M = 2.

2.4 Power Estimation for the Multirate FIR Architecture

From (1.2), it can be shown that the lowest possible supply voltage Vj,; for a device

running at an M-times slower clock rate can be approximated by

Via 3y Vad
(Vaa — V2)? (Vaa — V2)?’

(2.15)
where V; is the threshold voltage of the device.

Assume that Vg = 5V and V; = 0.7V in the original system. For the normal FIR
architecture, it requires N multipliers and N adders. For the low-power multirate FIR
architecture depicted in Fig. 2.8 (where M = 2), 3N/2 multipliers and 3N/2 adders are
required. From (2.15), it can be shown that V;; can be as low as 3.1V for the case of
M = 2. Provided that the capacitance due to the multipliers is dominant in the circuit
and is roughly proportional to the number of multipliers, the power consumption of the

multirate FIR design can be estimated as

2 3.1V, 1
(ZCep) (S57)*(5.) = 0.29P, (2.16)

where P, denotes the power consumption of the normal FIR design. Although the
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multirate architecture requires about 50% hardware overhead, it consumes only 29%

power of the original pipelined design. Basically, we trade hardware complexity for

low-power consumption.

2.5 Design of the Low-Power QMF Filter

The Quadrature Mirror Filter (QMF) is widely used in the image compression and

subband coding [20]. Given the low-pass filter of the QMF banks

Hi(z) = 3 hi(n)s™, (2.17)

its associated high-pass filter Hy(2) is given by

N-1 N-1
Hy(z) = Z ho(n)z™ = Z (=1)"h1(n)z"". (2.18)
n=0 n=0

As depicted in Fig. 2.9(a), the FIR structure of H;(z) consists of N multiply-and-add
(MAA) modules. To reduce the long delay in the summation chain, the technique of
pipelining is employed to break down the critical path. Nevertheless, the extra pipeline
stages will increase the hardware complexity. In order to have a good compromise
between the silicon area and the speed performance, we insert one pipeline stage for
every three MAA modules as shown in Fig. 2.9(b). Note that the simple relationship
between Hi(z) of (2.17) and Hy(z) of (2.18) enables us to perform Hy(z) by simply
complementing the odd-indexed coefficients of the FIR architecture. In our design, we
employ the pipelined design of Fig. 2.9(b) to implement the normal FIR filter as well as
the three subfilters shown in Fig. 2.8.

One major application of the QMF is the subband coding of speech and image sig-
nals. Figure 2.10 shows a four-band two-dimensional (2-D) QMF bank. In the following
discussion, we will apply this system to decide the system parameters such as the QMF

coefficients and the system wordlength. The performance index is the peak signal-to-
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Figure 2.9: (a) FIR structure. (b) FIR structure with pipelined design.

noise ratio (PSNR) defined by

N—-1N-1
> max{z(i,5)}
A 1=0 j=0
PSNR & =057
(SL'(’L,j) - :%(7’7.7))2
i=0 j=0

(0) n(1) 2 h(3) (4) I h(N-1)
N7, :{E— seee y(n)

(2.19)

where z(i,7) and £(3,7), 4,7 = 0,1,...,N — 1 denote the pixel values of the original

image and the reconstructed image, respectively.

2.5.1 Choice of QMF Coefficients

The QMF coefficient sets in [20] are well-known for their SNR performance in the sub-

band coding applications. However, since those coeflicients require floating-point mul-

tiplications to have the best performance, the implementation of such a QMF calls for

a large silicon area. In order to reduce the chip area while maintaining the SNR per-

formance, we choose the QMF design with power-of-two coefficients [27] for our chip
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Figure 2.10: The four-band 2-D QMF bank.

implementation. It has been shown [27] that the power-of-two coefficient sets yield com-
parable PSNR results to those of the floating-point counterpart. In our design, for the
purpose of further reducing the hardware complexity (chip area), we modify the QMF
design of [27] by truncating some boundary tap coefficients and by dropping some rela-
tively small components in each coefficient. Shown below are the QMF coefficients used

in our FIR chip design:

R(10) = h(11) = 27242744276 AK(5) = h(16) = 277 +278,
R(9) = h(12) = 27%+278, h(4) = h(17) = —276_277
h(8) = h(13) = —27*-277 h(3) = h(18) = —278,
h(7) = h(14) = -273, h(2) = h(19) = 275,
h(6) = h(15) = 2754277, R(1) = h(20) = O,

h0) = h(2l) = —277

(2.20)
Its frequency response is shown in Fig. 2.11. To verify the performance of this modified
QMF, we carried out simulations by passing the LENA image through the subband
coding structure depicted in Fig. 2.10. Table 2.1 lists the PSNR results. Compared with
the original design of [27], our modified QMF filter has only little degradation in PSNR

but with much less hardware complexity.
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Figure 2.11: Frequency response of the modified QMF filter using power-of-two coeffi-

cients.

normalized fregency

Filter Fixed-point
Filter type PSNR | Coefficient type

length adders
Filter (Type 32D) in [20] 32 44.82 dB | floating-point N/A
Filter in [27] 32 38.79 dB | power-of-two 84
Modified Filter of (2.20) 22 37.01 dB | power-of-two 36

Table 2.1: PSNR results for different QMF’s.
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Figure 2.12: PSNR results for the modified QMF as a function of system wordlength B.

2.5.2 Choice of System Wordlength

Next we want to determine the system wordlength to be used in our chip design. Since
the wordlength would directly affect the resulting chip area as well as the total num-
ber of switching events in the logic circuits, it is important to determine the minimum
wordlength without degrading the PSNR performance. We conducted computer simula-
tions by feeding the LENA image into the subband coding structure under fixed-point
arithmetic. The results are shown in Fig. 2.12. We see that the PSNR curve saturates
around B = 12. Thus, we use the wordlength of 12 bits in our design. Figure 2.13 shows

the original LENA image and the output image under fixed-point operations.

2.5.3 Chip Design and Simulation Results

The modified QMF FIR filter is implemented onto VLSI chips by using two different
architectures. One is the normal pipelined design and the other is the multirate design

of Fig. 2.8. The resulting chip layouts are shown in Figs. 2.14 and 2.15, respectively.
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(a) (b)

Figure 2.13: (a) The original LENA image. (b) The output image of the subband
coding structure based on the modified power-of-two QMF with wordlength B = 12
(PSNR=36.9 dB).

There are four modules in the multirate design. The upper right module realizes the
upsampling and downsampling circuits of Fig. 2.8. The signal data rate is reduced to f,/2
after this module. The other three modules realize the three N/2-tap FIR filters, Ey(z),
E\(z), and Ey(z) + E1(2), of Fig. 2.8, and the operating frequency of these filters is only
fs/2. Their output signals are sent back to the up/downsampling module to reconstruct
the filtering output y(n) running at f;. The chip area of the multirate design is about
50% more than that of the normal design as we expected. Therefore, our estimation of
the effective capacitance in (2.16) is very accurate.

In order to see the effect of supply voltage on the speed of the FIR design, we
conducted SPICE simulation for the critical path of the FIR structure. The simulation
result depicted in Fig. 2.16 shows that the propagation delay is approximately doubled as
the supply voltage reduces from 5V to 3V. This is consistent with the results presented
in [3]. Since the delay in the critical path generally determines the maximum clock

rate of the chip, we can predict that the performance of the filtering operations will be
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Figure 2.14: Final layout of the normal QMF filter. The chip dimension is 4400 X -
6600A? (courtesy of Zhongying Zhang, VLSI Design Automation Labortory, Electrical

Engineering Department, University of Maryland at College Park).
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Figure 2.15: Final layout of the multirate QMF filter.

(courtesy of Zhongying Zhang, VLSI Design Automation Labortory, Electrical
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Engineering Department, University of Maryland at College Park).

35



Delay of a pipeline stage vs. Supply voltage

50 T T T T T
451 B
40+ -
35F E
[2]
=4
=4
530 F -
©
(=]
251 -
20 e
151 =
10 1 1 1 1 1
25 3 3.5 4 4.5 5 5.5

Vdd in volts

Figure 2.16: Timing analysis of one pipelined stage in the FIR design.

degraded by 50% under the 3V supply voltage. Nevertheless, the data throughput rate
of the multirate FIR will not be affected by such a speed penalty since the slowed-down
devices are in the fs/2 region (see Fig. 2.8). The I/O data rate will remain at f; which
is the same as the normal FIR design operated at 5V system. The simulation results
shown in Figs. 2.14 and 2.16 have confirmed the parameter values of (2.16) that are used
to estimate the power consumption of the multirate FIR chip.

Another attractive application of the proposed multirate design is in the very high-
speed filtering. If we do not lower down the supply voltage to save chip power consump-
tion, the maximum speed of the multirate design can be M-times faster than the normal
design. For example, the multirate FIR structure of Fig. 2.8 can process data at 100
MHz rate while only 50 MHz processing elements are required. This property is also
verified by using the IRSIM-a timing analysis CAD tool. The simulation results show

that, under the supply voltage of 5V, the maximum speed of the multirate QMF chip
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can be up to 50 MHz while that of the normal QMF chip is 25 MHz. This again agrees

with our argument for the speed performance of the multirate design.
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Chapter 3

Multirate DCT/IDCT Architectures

In this chapter, we describe two different approaches to derive multirate low-power VLSI
architectures for the discrete cosine transform (DCT) and its inverse transform (IDCT).
One is based on the properties of the Chebyshev polynomial. The Chebyshev polyno-
mial derivation of the DCT/IDCT algorithm was first proposed in [28]. However, the
architecture in [28] needs global communication and requires O(N log N) multipliers.
Here, we treat the transforms as the evaluation of a Chebyshev series. By exploiting
the recurrence property of the Chebyshev polynomial, we can compute the DCT/IDCT
through the decimated sequences with a linear increase of hardware complexity; hence
the speed penalty can be compensated. The other is based on the polyphase decompo-
sition approach. By applying the polyphase decomposition to the IIR transfer functions
of the DCT/IDCT [19], we can also derive multirate DCT/IDCT architectures that are
effective in power saving.

The organization of this chapter is as follows. The derivation of the low-power
IDCT/DCT algorithms and architectures based on the Chebyshev polynomial is de-
scribed in Section 3.1. The multirate DCT/IDCT architectures based on the polyphase
decomposition approach are derived in Section 3.2. The comparison of both low-power

designs with other approaches is discussed in Section 3.3.
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3.1 The Chebyshev Polynomial Approach
The nth order Chebyshev polynomial is defined as [29, Chap. 1]
Tn(n) = cos(nw), cosw=mn, ,—-1<n<1, ©(3.1)
which can be generated from the “three-term recurrence” formula
Toy1(n) = 20 Ta(n) — Tn-1(n) (3.2)
with the initial conditions Ty(n) = 1 and T1(n) = n. Now consider the following Cheby-

shev series
N-1 N-1

1 1
Ye(n) = a0+ > ay cos(kw) = 590 + > axTi(n), (3.3)
k=1 k=1
where ajs, kK =0,1,...,N — 1, are constant coefficients. One efficient way to evaluate

Y.(n) for a given value 7 is the Clenshaw’s algorithm [29, Chap 3] [30, Chap 4], in

which a “backward recurrence sequence” is defined as
br(n) = 2nbry1(n) — bey2(n) +ax, fork=N-1,...,1,0 (3.4)

with the initial conditions by (n) = by+1(n) = 0. After substituting (3.4) into (3.3), and

applying the recurrence formula of (3.2), we can simplify the evaluation of Yc(n) as

N-1
b -b
Ya(n) = X Bu() — 2nbiin(n) + biga(miTin) = 2B (g
k=0
Later in the DCT/IDCT, we will need the evaluation of
N-1 N-1
Y (n) =) apcos(kw) = ) axTi(n). (36)
k=0 k=0

It can be seen that by scaling ag by 2 (a left shift) beforehand, we can evaluate Y/(n)
through the same steps of (3.4)-(3.5). The corresponding architecture to evaluate Y/ (1)
is shown in Fig. 3.1, where gy has been pre-scaled by two. Since b;’s are generated in a
“backward” manner, the input sequence is in reverse order. The second-order recurrence

structure in the middle computes b;’s according to (3.4). After the last input is fed into
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Figure 3.1: Recursive architecture to evaluate Y, (7).

the system, by(n) and by(n) will be available and Y/(n) can be evaluated from (3.5) with
one addition and one right-shift operation.
Other two Chebyshev polynomial properties that will be useful in later derivations

are [29, Chap 3
1. Composition property:
Ts(Tr(n) = Tr(Ts(m)) = Trs(n), (3.7)

which allows us to represent a higher-order Chebyshev polynomial using lower-

order ones, and vice versa.
2. Product-sum relationship:

T, ()T (1) = 5T () + T o), (39

which shows that the product of two Chebyshev polynomials can be decomposed

into the sum of two Chebyshev polynomials, and vice versa.

3.1.1 Chebyshev IDCT Architecture

In order to illustrate the relationship between the Chebyshev polynomial and the trans-

forms, we will begin with the derivation of the IDCT algorithm. Let X(k), k =
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0,1,---,N — 1, be a DCT-domain sequence. The block IDCT to compute the time-

domain sequence z(n), n =0,1,--+, N — 1, is defined as
N-1
_ 2n+ 1)
z(n) = kZ::O C(k)X (k) cos| 5N K], (3.9)
where

Lo ofE=
C(k) = \/; k=0 (3.10)

2 .
\/ 7> oOtherwise

is the scaling factor used in the DCT/IDCT. If we define

A (2n+ D7
- 2N

Wn

(3.11)

and use the definition of the Chebyshev polynomial in (3.1), (3.9) can be written as

N-1 N-1
o) = 3 OUR)X (k) cos(ln) = Y- X(B)Ti (1) (.12
k=0 k=0

where

Tn 2 cos W, (3.13)

and X' (k) = C (k)X (k) is the scaled input data. Comparing (3.12) with (3.6), we see that
the IDCT with index n can be treated as the evaluation of Chebyshev series at 7, with
coefficients X'(k)'s, k = 0,1,...,N — 1. As a consequence, the recursive architecture
in Fig. 3.1 can perform the IDCT at center frequency w, if we replace the multiplier
coeflicient n with 7,.

Figure 3.2 shows the IDCT structure based on the Chebyshev evaluation. It has
two parts: the Reverse Array (RA) and the IDCT module array. The RA consists
of one serial-input-parallel-output (SIPO) register array and one parallel-input-
serial-output (PISO) register array. It provides the capability of reversing the input
sequence and scaling X (0) in a fully pipelined way. The IDCT module performs the
computation of (3.12) at different index n. Since n varies from 0 to N — 1, we need N

IDCT modules to compute the IDCT in parallel. The whole system works in an SIPO
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Figure 3.2: Parallel Chebyshev IDCT architecture.

way and requires only N + 1 multipliers and 3N adders including the scaling multiplier in
RA. The number of multipliers is almost as low as that in Hou’s algorithm [31]. Besides,
there is no restriction on the block size N and the regularity of our IDCT architecture

is more suitable for VLSI implementation.

3.1.2 Chebyshev DCT Architecture

The DCT of the time-domain block data z(n)'s,n =0,1,...,N — 1, is defined as

N-1
X (k) = C(k) Z z(n) cos[(2n + 1)

n=0

As with the derivation of the IDCT algorithm, the DCT can be represented as

Lis

syl k=01l N-1 (3.14)

N-1 N-1
X (k) = C(k) Z z(n) cos[(2n + L)wy] = C(k) E z(n)Ton+1(nk) (3.15)

n=0 n=0

where wy, = 5—]’{, and 7y £ cos wg. Multiplying T (%) on both sides of (3.15) and using

the Chebyshev property in (3.8), we obtain

N-1

Tm)X(®) = O Y " (Do) + Ton ()]
n=0

N

= OO S ) Ton() (3.10)

n=0



where
7' (n) é:1c(n——1)-i—:c(n), n=0,1,...,N (3.17)

with the assumption of z(—1) = z(N) = 0. Recall that T1(nx) = mx and T, (n) =
Trn(To(nx)) (from (3.7)). If we define

A
Mk = Ta(ni) = cos(2wi) = 297 — 1, (3.18)

X (k) in (3.16) can be computed as

N
EEQEZfWHM%% k=0,1,...,N-1. (3.19)

X(k) =
®) = 20 2

Therefore, the DCT at center frequency wy can be obtained by evaluating the Chebyshev

series at the value 7} with coefficients z'(n)'s,n = 0,1,..., N, followed by the scaling of
C(k)

2ng
Note that the DCT of the reversed sequence Z(n) = z(N—-1-n),n=0,1,...,N—1,

is
2n + 1)kn

N-1 N-1 (
= C(k) Z (n) cos[(2n + Dwyi] = C(k) Z z(n) coslkm — 5N 1,
=0 n=0

(3.20)

3

for k=0,1,...,N —1. We can relate X (k) to X (k) by X(k) = (—1)*X (k). As a result,
the RA, which is used to reverse the input sequence, can be eliminated by complement-
ing the odd-indexed X (k)’s while keeping the even-indexed X (k)’s unchanged. Figure
3.3 shows the architecture to implement the Chebyshev DCT algorithm. The overall
Chebyshev DCT architecture needs a total of 2N — 2 multipliers and 3N — 1 adders. It
should be noted that the total number of z'(n)'s is N + 1. Therefore, an extra zero is
appended after (N — 1) for the generation of 2'(n), n =0,1,..., N. After 2'(N) is sent

to the DCT array, we can obtain the DCT coefficients in parallel at the array outputs.

3.1.3 Low-Power Design for the DCT/IDCT

Consider the Chebyshev series of (3.6) and split it into the even and odd series:

Nj2-1 Nj2-1
Y () = > auTeu(n)+ Y, a2ir1Thir1(n)
1=0 1=0
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Figure 3.3: Parallel Chebyshev DCT architecture.
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= Ye(n) + Yo(n) (3.21)

where Ye(n) and Y,(n) denote the even and odd series, respectively. By the use of (3.2)

and (3.7), Ye(n) can be written as

N/2-1 N/2-1
o) = Y. aaTi(Ta(n) = Y. auTi(n) (3.22)
=0 =0

with 7 = 2n? — 1. On the other hand, Y,(n) can be converted into an even series by
following the derivations of (3.15)-(3.19):

N/2

Yo(n) =Y slagi-1 + azip1)Ti(n'). (3.23)
=0

where k = % is a pre-calculated constant coefficient. Now combining (3.22) and (3.23)

together, we have

N/2 N/2
Y. (n) =Y _lagi + s(agi-1 + azip)ITi(n') = Y diTi(n) (3.24)
i=0 i=0

with

A .
d; = ag +k(agi—1 +a241), 1=0,1,...,
~—~ - %

-
even odd

(3.25)

N
>

From (3.24) we can see that the evaluation of an N-point Chebyshev series can be re-
duced to an (N/2 + 1)-point evaluation using the new sequence d;’s which are composed
of decimated sequences. This new evaluation method can be easily applied to the com-
putation of the IDCT/DCT as described in Sections 3.1.1 and 3.1.2. The resulting IDCT
architecture is depicted in Fig. 3.4, where &, = 1/(27,,) and 7}, = 2n2 — 1 with n,, defined
in (3.13). Firstly, a;’s in (3.24) are replaced with X (¢)’s in (3.9), for i = 0,1,... N — 1,
then we use one decimation circuit and one adder to compute the even and odd se-
quences in (3.25) from the X () sequence in a fully-pipelined way (see the left-hand side
of Fig. 3.4). After these two decimated sequences are reversed by the RA, they are
combined together to generate d;’s of (3.25), and d;’s are sent to the IDCT module to

perform the Chebyshev evaluation in (3.24). Once the evaluation is completed, we have
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Figure 3.4: Low-power parallel Chebyshev IDCT architecture with decimation factor of

two.

the IDCT coefficient with index n at the module output. Since the operating frequency
halves after the decimator, we can now use two times slower multipliers and adders in
this IDCT module with some hardware overhead. Meanwhile, the throughput rate is
still retained. Similarly, the multirate Chebyshev DCT architecture can be derived as
shown in Fig. 3.5, where &}, = 1/(2n}), 7 = 2n},> — 1, and 7, is defined in (3.18).

To achieve downsampling by four, we can recursively compute another new (N/441)-

sequence ¢; from d;, which results in

e; = k'K [(a40—3 + Gayt1) + (@4i—1 + @4i43)]) + £/ (@si—2 + agit2) + K(asi-1 + agit1) + asi,

for i:O,l,...,-]L\ll,
(3.26)
where x' = 51, is also a pre-computed constant. One possible realization of (3.26) is

2n
depicted in Fig. 3.6.

Once the e;’s are computed from the decimated sequences a}; ;. s, k = 0,1,2,3, the

evaluation of Y/(n) can be computed as

Y.(n) =) eTi(n") (3.27)
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Figure 3.6: Evaluation of e; using a downsampling circuit.
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Figure 3.7: Low-power parallel Chebyshev IDCT architecture with a decimation factor

of four, where 7/l = 2(n},)? — 1 and &}, = 1/(2.,)-

with 5" = 292 — 1. Likewise, based on (3.26) and (3.27), we can also construct the
multirate IDCT and DCT architectures as shown in Figs. 3.7 and 3.8, in which only four

times slower operators are required to compute the transform coefficients.

Power Estimation for the Low-Power Design

Now let us consider the power dissipation of the low-power architectures. The 16-point
Chebyshev IDCT under normal operation requires 18 multipliers and 48 adders. For
the low-power 16-point IDCT with M = 2, 34 multipliers and 65 adders are required.
Following the arguments in Section 2.4, it can be shown that the power consumption of

this design can be estimated as

34 3.1V

ClICIALTE

) (3f) ~ 0.36F, (3.28)

where P, denotes the power consumption of the original system. Similarly, for the case
of M = 4, the 16-point IDCT needs a total of 66 multipliers and 100 adders. Since the

lowest possible supply voltage can be 2.1V (from (2.15)), the total power can be reduced
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Figure 3.8: Low-power parallel Chebyshev DCT architecture with a decimation factor

of four, where & = 1/} and 0}/ =2(n})? - 1.

to

66 2.1V , 1

(Eceﬁ)(w)z(zf) ~ 0.16P;. (3.29)

Therefore, we can achieve low-power consumption at the expense of reasonable complex-

ity overhead. Such a tradeoff will be considered in Section 3.3.

3.2 The Polyphase Decomposition Approach

Performing orthogonal transforms based on the IIR transfer function approach was stud-
ied in [19]. By considering the transform operator as a linear shift invariant (LSI) system
that maps the serial input data into their transform coefficients, the authors in [19] have
shown that most discrete sinusoidal transforms can be realized by using a unified IIR
structure. In this section, we will show that, in addition to the Chebyshev approach, we
can also derive multirate low-power DCT/IDCT algorithms/architectures by applying
the polyphase decomposition to the IIR transfer functions in [19]. We will see later
that the polyphase decomposition approach provides a systematic way for architectural

low-power design.
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3.2.1 The IIR DCT Algorithm

The one-dimensional (1-D) DCT of a series of input data starting from z(¢t — N + 1) and
ending at z(t) is defined as

N-1
Xpork(t) = C(k) Y cos[(2n +1)

n=0

b

et +n—N+1), (3.30)

fork=0,1,2,..., N —1. A second-order IIR transfer function can be derived from (3.30)
as [19]

Xperk(2) _ (“1)F — 2~N) C(k) coswi(l — 27 1)

31
X(z) 1—2cos2wpz~1 + 272 (3:31)

Hperi(z) =

where wy = ;“—1’\’,, and Xpcrr(z) and X(z) denote the z-transforms of Xpcr x(t) and

z(t), respectively. For block processing, the 2~V in (3.31) can be eliminated because of
the reset operation for every N cycles. The corresponding IIR structure to compute the

kth frequency component of the DCT is shown in Fig. 3.9, in which

To(m) = (~1)*C(k) cos muwy. (3.32)

Once the last serial input z(t) is fed into the module, the DCT coefficients can be
obtained at the module outputs in parallel. The resulting parallel architecture is regular,
modular, and fully-pipelined. Also, the SIPO feature can avoid the input buffers as well
as the index mapping operation that are required in most PIPO DCT architectures
[31][32]. Ome disadvantage of the IIR structure in Fig. 3.9 is that the operation speed
is constrained by the recursive loops. In what follows, we will reformulate the transfer

function using the multirate approach so that the speed constraint can be alleviated.

3.2.2 Low-Power Design of the IIR DCT

Splitting the input data sequence into the even sequence

ze(t,n) =z(t+2n—N+1), n=0,1,...,N/2—1, (3.33)
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Figure 3.9: IIR DCT architecture.
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and the odd sequence

To(t,n) =z(t+2n-N+2), n=0,1,...,N/2 -1, (3.34)
(3.30) becomes
N/2—-1 ke N/2-1 -
Xper x(t) = C(k) Z cos[(4n + l)ﬁ] ze(t,n) + C(k) Z cos[(4n + 3)ﬁ] Zo(t,n).
n=0 n=0
(3.35)

Taking the z-transform on both sides of (3.35) and rearranging it, we have

Ck)((-1)* — 27N
1 —2cosdwgz™! + 272

X ([Xe(z) —Xo(2)27 Y] cos Bwi+[Xo(2) — Xe(2)2 7 cos wk) (3.36)

Xperp(z) =

where X (z) and X,(z) are the z-transforms of z.(t,n) and z,(t,n), respectively. The
parallel architecture to realize (3.36) is depicted in Fig. 3.10. The common circuit at
the left-hand side decimates the input serial data into the even and odd sequences and
generates the common inputs for the module array. The numerator and the denominator
parts of (3.36) are realized by the FIR structure and IIR structure inside each DCT
module at different index k. The overall architecture requires (3N — 3) multipliers and
(3N + 1) adders plus a decimation circuit. Compared with the IIR DCT structure in
Fig.3.9, this multirate DCT structure needs only (N — 1) extra multipliers and (N + 1)
extra adders.

To achieve downsampling by the factor of four, we can split the input data sequence

into four decimated sequences
gi(t,n) B x(t+ @n +i) — N +1), i=0,1,2,3, (3.37)

for n = 0,1,...,N/4 — 1. Following the derivations of (3.35)-(3.36), we can write
Xper(z) as

Clk)((-1)F —2z=NY

1 —2cos8wiz~! + 22

Xperi(z) =
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Figure 3.10: Low-power polyphase IIR DCT architecture with M = 2.

x ([Go(2) — Gs(2)z™"] cos Twi, + [G1(2) — Ga(2)2""] cos 5wy

+  [Ga(2) — G1(2)z ] cos 3wy, + [G3(z) — Go(2)z ! cos wk) (3.38)

where G;(z) is the z-transform of g;(¢,n), i« = 0,1,2,3. The corresponding multirate
architecture is shown in Fig. 3.11.

From Figs. 3.10 and 3.11, we can see that basically the multirate DCT architectures
retain all advantages of the original ITR structure in [19] such as modularity, regularity,
and local interconnections. It is also interesting to note that the increase in hardware
overhead grows only locally rather than globally, and the DCT architecture with M =
4 can be generated by reusing the modules in the M = 2 design (e.g., the FIR/IIR
structures and the lattice structure in the common circuit). Therefore, neither global
routing nor new module design is required in the M = 4 case. The characteristics of
scalability, modularity, and local interconnections make the multirate structures very

suitable for VLSI implementation. Unlike most PIPO DCT algorithms in which the
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Figure 3.11: Low-power polyphase IIR DCT architecture with M = 4.
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Figure 3.12: Low-power polyphase IIR IDCT architecture with M = 2.

interconnections will take up much of the chip area, the feature of local communications
of our design can greatly reduce the power dissipation in the routing area. From the
discussions in Section 2.3, it can be shown that the total power consumption for the
multirate 16-point DCT can be reduced to 0.29P; and 0.11P; for the cases of M = 2
and M = 4, respectively. The significant power savings for the design with M = 4 is

achieved only at the cost of 3N — 3 extra multipliers and 3N + 3 extra adders.

3.2.3 Low-Power Design of the ITR IDCT

The IIR transfer function for the block IDCT is given by [19]

-1)"C(1) sinwy, —(N—
Hipora() = ol CUISIR (00— c)e ™Y, (3:39)

where wy, = 23—;}171 As with the derivations of the low-power IIR DCT, the multirate

transfer function for the IDCT with M = 2 can be derived as

Ximern(z) = T 2(:(()_512)c:i(—11)+ po; (Xe (2) sin 2wy, + (1 + 71X, (2) sinwn)
+ (C0) —Cc(1)z~N-DX(z2). (3.40)
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Figure 3.13: Low-power polyphase IIR IDCT architecture with M = 4,

Similarly, the transfer function for M =4 is

=)*C)

1—2cosdwpz—! + 272

+ (14 27HGa(z) sin 2w, + [G3(z) + G1(2)271) sinwn)

Xipera(z) = (Gol2) sindwn + [G1(2) + Ga(2)2] sin 3wy

+ (C(0) = Cc(1)z~WVX(z). (3.41)

The corresponding low-power IIR IDCT structures based on (3.40) and (3.41) are shown

in Figs. 3.12 and 3.13, respectively, where the multiplier coefficient is defined as

Ts(m) = (=1)"C(1) sin mwp,. (3.42)

As we can see, the low-power IDCT design has similar structures as the low-power DCT
except a few differences in the common circuit. Therefore, it is possible to integrate both
the forward and backward transforms into one architecture by suitably multiplexing the

data path in the common circuit and the coefficients inside the modules.
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3.2.4 Polyphase Representation

In the preceding discussions, we have shown how to perform the multirate DCT and
IDCT by rearranging the z-transforms of the decimated sequences. Here we will show
a systematic way to derive the results by applying the polyphase decomposition to the
original ITR transfer function.

Substitute the identity that

1 _1+2cos 2wzt + 272
1—2cos2wpz=t+2"2 1—2cosdwpz=2+ 274

(3.43)

into the ITR DCT transfer function in (3.31). After rearrangement, Hpcr (2) under

block processing can be written as

_ (=DFC(k) 2 -1 2
Hperi(z) = D) [Ho(z )+ 2" Hi(z )] (3.44)
where
D(z%) = 1—2cosdwrz™2+274,
Ho(z%) = (coswy — cos3wrz™2), and
Hi(2%) = (cos3wy — coswgz 2). (3.45)

(3.44) is the polyphase representation of Hpgr x(2) with M = 2, and its corresponding
polyphase implementation is shown in Fig. 3.14(a). The downsampling operation | N at
the right end denotes that we pick up the DCT coeflicients at the Nth clock cycle and
ignore all the previous intermediate results. Given this polyphase implementation, we
can use the noble identites to distribute the downsampling operation towards the left
and obtain the structure depicted in Fig. 3.14(b), which will lead to the multirate DCT
architecture shown in Fig. 3.10. Thus, we can process the input data at a two times
slower clock rate. After N/2 iterations, the DCT coefficients are available at the output
ends. Similarly, the case of M = 4 can be achieved by performing another polyphase

decomposition on D—(lzg—) in (3.44). After some algebraic simplifications, we can obtain
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Figure 3.14: (a) Polyphase representation of Hper x(2). (b) Polyphase representation

of Hpcr (%) after applying the noble identity.

(3.38) and its corresponding implementation allows us to operate at a four times slower

clock rate. The polyphase decomposition can also be used to derive the results for the

multirate IDCT. In the next chapter, we will apply this methodology to obtain the

low-power architecture of logarithmic complexity as well as the unified transformation

module design.

3.3 Comparisons of Architectures

In this section, we will discuss the hardware complexity of the two algorithm-based low-

power approaches (the Chebyshev polynomial approach and the polyphase decomposi-
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Normal Operation | Downsampling by 2 | Downsampling by 4 Extra

(M =2) (M =4) iteration
Multiplier | Adder | Multiplier | Adder | Multiplier | Adder
Chebyshev DCT 2N -2 3N -1 3N -3 4N 5N —-5 6N +3 Yes
Chebyshev IDCT N+2 3N 2N +2 4N +1 4N +2 6N +4 No
IIR DCT 2N -2 2N 3N -3 3IN+1 5N —5 5N +3 No
IIR IDCT 2N +1 3N 3N +1 4N +1 5N +1 6N + 2 No

Table 3.1: Comparison of hardware cost for the DCT and IDCT architectures with their

low-power designs in terms of 2-input multipliers and 2-input adders.

tion approach) proposed in this chapter. Also, we will compare the proposed multirate
SIPO architectures with the existing SIPO and PIPO architectures [19](32]. Table 3.1
summarizes the hardware costs for all the proposed architectures under normal operation
and under multirate operation (M = 2,4). As we can see, the hardware overhead of the
low-power design is linear complexity increase for the speed compensation. As to the
two approaches (Chebyshev and polyphase), the Chebyshev IDCT requires (N — 1) less
multipliers than the IIR, IDCT in both normal and multirate operations. This saving
is in particular preferable for the applications which require cost-effective IDCT such as
HDTV receivers. On the contrary, the Chebyshev DCT has almost the same complex-
ity as the IIR DCT. Since the Chebyshev DCT needs one more iteration to finish the
transform, the polyphase IIR DCT is a better choice for the implementations.

Next, we will compare our low-power DCT architecture with those proposed in [32]
and [19]. The architecture in [32], which utilizes the factorization method to perform fast
DCT, is a typical representative of the PIPO fast algorithms. The IIR structure proposed
in [19], on the other hand, is a good example of the SIPO algorithms. A comparison
regarding their inherent properties is listed in Table 3.2. The advantages of the SIPO

approach over the PIPO approach in their VLSI implementation, such as local commu-
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nication and linear hardware complexity increase, have been discussed thoroughly in [18]
and [19]. Nevertheless, when the speed compensation capability is of concern, the PIPO
is also a good choice since the block PIPO processing with a block size N is equivalent
to decimating the input data by a factor of N. However, this advantage is obtained at
the price of globally increased hardware and routing paths. Besides, the block size is
usually restricted to be power of two due to the “divide-and-conquer” nature of those
PIPO fast algorithms. From Table 3.2, we can see that our multirate SIPO approach is a
good compromise between the other two approaches. Basically, the multirate approach
inherits all the advantages of the existing SIPO approach. Meanwhile, it can compensate
the speed penalty at the expense of “locally” increased hardware and routing, which is
not the case in the PIPO approach. Although some restriction is imposed on the data

size N due to the downsampling operation, i.e.,
N=Mk, keZz* (3.46)

(M is the decimation factor and Z* denotes any positive integer), the choice of N is
much more flexible compared with the PIPO algorithms.

The other advantage of the SIPO approaches is in the computation of the pruning
DCT [33]. In DCT-based signal compression algorithms, the most useful information of
the signal is kept in the low frequency DCT components. Therefore, retaining only Ny <
N coefficients is sufficient for the lossy data compression. Although the pruning DCT can
be computed from the PIPO DCT architecture by removing the unnecessary data paths
and computational operators [33], the global communication is still the major drawback
for its implementation as N increases. On the contrary, the SIPO architecture in {19} and
our low-power design can be readily applied to the pruning DCT by simply implementing

the first Ny DCT modules for the computation of the first Ny DCT coefficients.
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Liu et. al. [19] | Proposed multirate IIR Lee [32]
DCT with M =4
Data processing rate fs fs/M fs/N
No. of Multipliers 2N -2 (M + 1)N (in order) (3—21!) log, N (in order)
No. of Adders 2N (M + 1)N (in order) (5)logy N
Latency N N flogs N(logy N —1)}1/2
Restriction on transform size N No Mk, ke Zz+ 2k ke zt
Requirement for input buffer No No Yes
Index mapping No No Yes
Communication Local Local Global
I/O operation SIPO SIPO PIPO
Speed compensation capability N/A Good Good
( at the expense of ( at the expense of
locally increased globally increased
hardware overhead hardware overhead
and local routing ) and global routing )
Power consumption Negligible Negligible Noticeable
in routing as N increases
Application to pruning DCT Direct Direct Needs many modifications

and global interconnections

Table 3.2: Comparison of different DCT architectures, where f; denotes the data sample

rate, M denotes the programmable downsampling factor, and N is the block size.
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Chapter 4

Logarithmic Low-power Design and Unified

Low-Power Transform Coding Architecture

In the previous chapter, we showed that the power consumption can be reduced pro-
vided that we can perform the DCT/IDCT from the decimated-by-M input sequences
at O(M) increase in hardware complexity. In practice, the O(M) overhead may not be
desirable when M is large and total chip area is limited. Therefore, the search for com-
pensation scheme with less hardware overhead is desired. In this chapter, we will show a
scheme to perform the polyphase decomposition in such a way that only O(log M) over-
head is required to compensate the speed penalty. The resulting structure reduces the
operating frequency on a stage-by-stage base: In each stage, the operating frequency is
reduced by half. After reaching to the (log M )¥ stage, we can operate at M-times slower
clock rate of the original data rate. We shall refer to this as logarithmic low-power
design. This multiple operation frequency environment allows us to perform different
speed compensation at each stage; i.e., different low supply voltages can be used to lower
the power consumption. In general, the power savings of the logarithmic architecture is
between the normal IIR architecture [19] and the full multirate architecture presented
in the previous chapter.

Next we extend the low-power DCT/IDCT design to a larger class of orthogonal
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transforms. We start with the low-power design of the Modulated Lapped Transform
(MLT) and Extended Lapped Transform (ELT). The MLT and ELT, which belong to
the family of Lapped Orthogonal Transforms (LOT), are very attractive in the applica-
tions of transform coding since they can diminish the blocking effect encountered in low
bit-rate block transforms [34][35][36]. Recently, Frantzeskakis et al. [37] proposed the
time-recursive MLT and ELT architectures that are suitable for VLSI implementation
due to their modularity and regularity. However, since the updating of the MLT and
ELT coeflicients should be as fast as the input data rate, those architectures cannot
compensate the speed penalty under low supply voltage. In this chapter, we will derive
the low-power time-recursive MLT and ELT structures. By applying the polyphase de-
composition to their IIR transfer functions, the MLT/ELT coeflicients can be updated at
an M-times slower rate with linear hardware overhead; hence, the low-power operation
is allowed. Later, based on the derivations of the MLT and ELT, we propose a unified
low-power transform coding architecture. It can perform most of the existing discrete
orthogonal transforms by simply setting the multiplier coefficients of the computational
modules as well as the data paths of the module outputs.

The organization of the this chapter is as follows: Section 4.1 presents the low-power
DCT architecture of logarithmic complexity. In Section 4.2, we derive the multirate MLT
and ELT algorithms and architectures. In Section 4.3, the unified low-power transform

coding architecture is described.

4.1 Low-Power Architecture of Logarithmic Complexity

In this section, we will show how to achieve low-power consumption with only logarithmic
complexity overhead. The basic principle is to repeat the polyphase decomposition in a
certain way instead of fully expanding them. By doing so, the lower-rate operations can

be obtained while the complexity will grow slower. The price paid is that the resulting
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architecture will be operated at multiple low frequencies rather than at the uniform low
frequency as discussed in the previous chapter. Nevertheless, the multiple frequency
environment enables us to perform different speed compensations at different stages of
the design. Therefore, different low supply voltages can be applied according to the given
speed constraint, and the total power consumption can be still reduced. In what follows,
we will derive the logarithmic low-power DCT architecture. The results can be extended

to other low-power transformation designs to be discussed in Section 4.2 and 4.3.

4.1.1 Low-Power DCT Architecture of Logarithmic Complexity

The multirate IIR DCT transfer function with M = 2 can be written as

(=1)*C(k)

BIE) [Ho(?) + 27 Hy ()] (4.1)

Hper(z) =

where C(k) is the scaling factor of the DCT and

D(z%) = 1—2cosdwpz? +274,
Ho(2%) = (coswy — cos3wgz™2), and
Hi(2%) = (cos3wy —coswpz™2). (4.2)

Substituting the polyphase decomposition

1 Hy(zY +272H{(z*)

= 4.3
D(2?) D'(z%) (43)
with
D'(z*) = 1-2cos8uwpzt+278,
Hi(zY) = 142z7% and
Hi(z") = 2cos4wy, (4.4)

into (4.1) and rearranging, we can rewrite Hpcr x(z) so that the DCT can be com-

puted at four times slower clock rate. Nevertheless, this multirate design requires O(M)
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hardware overhead to directly lower the input clock rate by four. In order to save the
hardware complexity, we may rewrite (4.1) in a cascade form after the substitution is

made, i.e.,

1

Hpor(2) = (~1)FC(k) [Ho(2?) + 2~ Hy ()] [Hy(e*) + 272 H] (%)) - IEL

(4.5)

Figure 4.1(a) shows the polyphase implementation of (4.5), which leads to the cascade
multirate DCT architecture depicted in Fig. 4.1(b). There are two major blocks. One
operates at 50% sample rate and the other at 25% sample rate. Due to the special form
of the denominator of the transfer function, we can repeatedly perform the polyphase

decomposition on the denominator and retain the cascade form. We then have

log M—1 .
H [(1 + Z—2l+1) 19,72 cos(2i+1wk)]
Hpori(z) = (~1)FC(k) [Ho(?) + Hy (%)) —=2

1 —2cos(2Mwy)zM + z—2M
(4.6)

for any M, M € 2% . The resulting architecture decimates the operating frequency on
a stage-by-stage base: In each stage, the operating frequency is reduced by half. After
reaching the (log M)* stage, we will have M times slower clock rate of the original data

rate.

4.1.2 Power Consumption

When low-power implementation is taken into consideration, the feature of multiple
operating frequencies in the above architecture implies that different supply voltages
will be used according to the slowest allowable operating speed. That is, the operators
to realize Hy(z?) and Hi(2%) in (4.5) can be operated at 3.1V due to the two times
slower clock rate, while all other operators to realize Hj(z*) and H}(z*) can be operated
at 2.1V due to the four times slower clock rate (from 2.15). As a consequence, the power

consumption of the 16-point low-power DCT architecture in Fig. 4.1(b) can be estimated
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Figure 4.1: (a) Polyphase representation of Hpcr x(2) in cascade form. (b) Multirate

DCT architecture with logarithmic complexity.
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Normal DCT Logarithmic low-power Full low-power DCT
architecture in [19] DCT architecture architecture in Chap. 3
Multipliers 2N -2 (log M + 2)N (in order) (M + 1)N (in order)
Adders 2N (2log M + 1)N (in order) (M + 1)N (in order)
Power consumption
Py 0.24P, (M = 4) 0.11P (M = 4)
for 16-point DCT

Table 4.1: Comparison of hardware cost and power consumption of the logarithmic

low-power DCT architecture with other approaches.

as

N: AV N, .
(RO PG + (RO (o V) ~ 024, (47)

where Ny = 30 is the total multipliers used in the normal DCT (M = 0); N> = 30 and
N4 = 30 are the number of multipliers in the M = 2 stage and M = 4 stage, respectively.
From (4.7), we can see that the overall power consumption of the logarithmic low-power
design will be in between M = 2 and M = 4 of the full multirate DCT systems discussed
in the previous chapter.

On the other hand, by examing (4.6), we can see that in order to have M-times
slower operating frequency at the final stage, we need a total of (log M + 2) multipliers
to realize the multirate transfer function. The comparison of the logarithmic low-power
architecture with other approaches is listed in Table 4.1. Although the total power
savings of the logarithmic structure is less than that of the full multirate structure given
the same decimation factor M, the O(log M) hardware overhead is preferable when we
want to achieve low-power consumption without trading too much chip area.

The multiple-frequency feature of the cascade low-power architecture also allows us
to achieve more power and area savings at the arithmetic level. For example, we can use
look-ahead adders in the M = 2 region to match the data throughput rate, whereas we

can employ low-speed carry-ripple adders in the M = 4 region due to the much relaxed
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speed constraint.

4.2 Low-Power MLT and ELT Architectures

4.2.1 The IIR MLT Algorithm

The MLT operates on segments of data of length 2N, z(t+n—2N+1),n =0,1,.--,2N —

1, and produces N output coefficients, X7 x(t), k =0,1,---, N — 1, as follows [35]:

22t g 1 ™ 1 1 N
XMLT’k(t)=S(kJ) N Z Slnﬁ(‘n'FE)COS[N(IC-I'E)(TL'FE‘F—2‘-)]:E(t+n—2N+1)
n=0

(4.8)
where S(k) = (—1)*+2)/2 if [ is even, and S(k) = (—1)*~D/2 if k is odd. After some

algebraic manipulations, the MLT can be decomposed into [37]

Xurrk(t) = =SE) Xog+1(t) + Xsk(t) ], (4.9)

where
A L-1
Xex(t) = B E cos[(2n + Dwg + O|z(t +n — 2N + 1), (4.10)
n=0
L-1
Br D sin[(2n + Dwg + Gglz(t +n — 2N + 1), (4.11)

n=0

X i (2)

with block size L = 2N and

and 6,2 7k + %). (4.12)

g L, ark
1 \/:Wa k oN’
The IIR transfer functions for (4.10) and (4.11) can be computed as

cos((2L — 1)wy + O) — cos((2L + V)wy, + O;) 2!
1 —2cos2wiz= 1 + 272

sin((2L — 1)wg + 0%) — sin((2L + 1wy + 0 )zt
1—2cos2wpz~1 + 272

How(z) = B(l—27F)

, (4.13)

Hgp(z) = A(l-z7")

. (4.14)

The corresponding IIR module for the dual generation of X¢ 1 (t) and Xg x(t) is depicted

in Fig. 4.2, where

Ty = By cos((2L — 1wy +6%), Ty = —f1 cos((2L + 1wy +6%),

1>

T3 2 Bisin((2L — Dwp+0;), Tz 2 By sin((2L + 1wy +6%). (4.15)
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Figure 4.2: IIR MLT module design.

This IIR module can be used as a basic building block to implement MLT according
to (4.9). Figure 4.3 illustrates the overall time-recursive MLT architecture for the case
N = 8. It consists of two parts: One is the IIR module array which computes X¢ (%)
and Xg y(t) with different index % in parallel. The other is the combination circuit

which selects and combines the outputs of the ITR array to generate the MLT coefficients.

4.2.2 Low-Power Design of the MLT

As with the low-power DCT, we can have a low-power MLT architecture if each MLT
module can compute X¢ ;(t) and Xg(t) using the decimated input sequences. Af-
ter performing the polyphase decomposition on (4.13) and (4.14), we can compute the

multirate IIR transfer functions for H¢ x(2) and Hg y(2) as
ﬁl(l _ z_L/2)
1 — 2cos(4wg)z™1 + 272
([cos((2L — 3)wi + 0;) — cos((2L + Dwy, + k)2 1 Xe(2)

Hep(z) =

+ [cos((2L — 1)wy + ) — cos((2L + 3wy + Hk)z_l]Xo(z)) ,  (4.16)
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Figure 4.4: Low-power ITR MLT module design.

and
,31(1 _ Z_L/2)
1 —2cos(dwg)z~L + 22 X
([sin((ZL — 3wk + 0k) — sin((2L + Dwy, + 0k) 2~ ] Xe(2)

Hsp(z) =

+ [sin((2L — D + ;) — sin(2L + 3wk + 0)2 ) Xo(2)) . (4.17)
The parallel architecture for (4.16) and (4.17) is shown in Fig. 4.4, where

Tie = Prcos((2L — 3)wr+0k), Tae=—F cos((2L + 1w +0k),
(( ( )

I's e = Brsin((2L — 3)wi+0k), [y = —B1 sin((2L + Dwg+6),

(4.18)
Fl o= COS((2L - 1)wk+0k), ]._‘2,0 = —[3; cos (2L + 3)wk+0k ,
(

( )
T3, = Br1sin((2L — Vwi+0x), T4 = —PF1sin((2L 4 3)wp+0k).

It consists of two MLT modules in Fig. 4.2. The upper module computes part of the
Xcx(t) and Xg(t) from the even sequence, while the lower one computes the remaining

part from the odd sequence. The two adders at the right end are used to combine
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Normal Operation | Downsampling by 2 | Downsampling by 4

Multiplier | Adder | Multiplier | Adder | Multiplier | Adder

IIR MLT SN SN 10N 11N 20N 23N

ITR ELT 6V 6N 11N 12N 21N 24N

Table 4.2: Comparison of hardware cost for the MLT and ELT with their low-power

designs in terms of 2-input multipliers and 2-input adders.

the even and odd outputs. Through such manipulation, only decimated sequences are
processed inside the module. Hence, the MLT module can operate at the half of the
original frequency by doubling the hardware complexity. The comparison of hardware
cost is shown in Table 4.2. Suppose that Py denotes the power consumption of the MLT
module in Fig. 4.2. From the CMOS power model, it can be shown that the power
consumption for the low-power MLT modules are 0.38F; and 0.17F, for the case of
M = 2 and M = 4, respectively. Basically, this savings is obtained at the expense of

linear increase in hardware.

4.2.3 Low-Power Design of the ELT

The ELT with basis length equal to 4N operates on data segment of length 4N, z(t +
n—4N +1),n = 0,1,---,4N — 1, and produces N output coefficients, Xgrr x(t),k =
0,1,---,N — 1. One good choice for the ELT is as follows [38][36]:

4N—1
Xz a(?) \/72[2\[ te N(n—i—%)]cos[%(k+%)(n+%+%)]a:(t+n——4N+1)
(4.19)

By the use of some trigonometric identities, we can rewrite (4.19) as

Xprrp(t) = —Xsp1(t) + V2Xcop(t) + Xsp_1(8), (4.20)
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where

L-1 R
Xex(t) = B0 cos[(2n + L)) + 6] z(t +n — AN + 1), (4.21)
n=0
5 L-1
Xsp(t) = B2 sin[(2n+ 1wy + 03] z(t +n — 4N + 1), (4.22)
n=0
with
L=4N, B2 —— w2 (k+l) and 0,270k 1 1 (4.23)
— ) 2_2/—2N’ k‘_2N 2) k_z 2 .

Define the relationship in (4.9) and (4.20) as the combination functions. After com-
paring (4.9)-(4.12) with (4.20)-(4.23), we see that the MLT and ELT have identical
mathematical structures except for the definitions of parameters and the combination
functions. Therefore, the IIR MLT module in Fig. 4.2, as well as the low-power MLT
module in Fig. 4.4, can be readily applied to ELT by simply modifying those multiplier
coeflicients. Also, the overall ELT architecture is similar to the MLT architecture in
Fig. 4.3 except that the combination circuit performs according to (4.20).

Moreover, it can be verified that Xg_i(t) = —Xs,0(t) and Xgn(t) = X n_1(t).

Hence, we can compute the 0 and (N — 1)t* ELT coefficients from

Xprro(t) = —Xs1(t) +V2Xco(t) — Xs,_1(t),

Xprrn-1(t) = —Xsn-1(t) + V2Xen-1(t) + Xsn_2(t), (4.24)
instead of implementing two extra ELT modules for Xg _;(¢) and Xg y(¢). The hardware
cost for the ELT can be found in Table 4.2. Since the number of multipliers of the ELT
is about the same as that of the MLT, the power savings for both transforms are similar.

4.3 Unified Low-Power Transform Coding Archiecture

From the transform functions described in (4.9)-(4.12) and (4.20)-(4.23), we observe

that the low-power MLT module in Fig. 4.4 can be used to realize most existing discrete
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sinusoidal transforms by suitably setting the parameters and defining the combination

functions. For example, X ¢ x(t) in (4.10) is equivalent to the DCT by setting

L= N, ,61 = C(k}), Wk and Ok =0. (4.25)

- T
2N’
As a result, the multirate MLT module in Fig. 4.4 can compute the DCT with different
index k in parallel.
The other example is the discrete Fourier transform (DFT) with real-valued inputs.

With the following parameter setting

| _k
L= N, /81 = ﬁ’ W = -——]VW', and ek = —Wk, (426)
(4.10) and (4.11) become
Xeal® = = 3™ cos(“ km) a(t 4m - N 4 1) (4.27)
= Tn b .
C,k N — N ’
Xs () = = 5™ sin( "2 km) st 4 m— N 4 1) (4.28)
sk(t) = —= in(—=—kn - : :
N n=0 N

which are the real part and the imaginary part of the DFT, respectively. The discrete
Hartley transform (DHT) can be computed using the same parameter setting as the

DFT except that the combination circuit in Fig. 4.3 performs as

Xpuarx(t) = Xop(t) + Xsx(t). (4.29)

The parameter settings as well as the corresponding combination functions for other
orthogonal transforms are summarized in Table 4.3.

The programmable feature of the unified low-power module design makes it very
attractive in transform coding applications. Firstly, the unified structure can be im-
plemented as a high-performance programmable co-processor which performs various
transforms for the host processor by loading the suitable parameters. Secondly, by

hard-wiring the multiplier coeflicients of the modules to preset values according to the
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I g 0 Combination
1 We k
Function
DCT N | ct) s 0 Xperk(t) = Xo k()
XmpeT k(t) = Xo )+
IDCT N | cq) | &k+3 —wi ’ '
(C(0) — C())z(n — N +1)
DST-IV . .
‘ N | o) | ZE+1) 0 XpsT.k(t) = Xg 1 (t)
in [39]
IDST-IV - \
N | cq) | &k+3) 0 XipsT k() = X5 (1)
in [39]
MLT 2N | Az kx Tk+3) Xpmrr k() = =S(R) Xo k41 (t) + X5,k (1) ]
ELT AN | == | sgk+3) | 3+ 3) | Xppra(®) = —Xses1(t) + V2Xe k() + Xsk-1(0)
DFT N 1 —kn Wk Re{XDF'T,k(t)} = Xc,k(t))
VN N -
Im{Xprr ()} = Xg (1)
DHT N | 4 == ~w XpHT k() = X0k (8) + X5,1(8)-

Table 4.3: Parameter settings for the unified low-power IIR transformation architecture,
where Re{Xprr i(t)} and Im{Xppr (t)} denote the the real part and the imaginary

part of the DFT, respectively.
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transformation type, we can perform any one of the discrete sinusoidal transforms us-
ing the same architecture. This can significantly reduce the design cycle as well as the

manufacturing cost.
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Chapter 5

Finite-Precision Analysis of The Low-Power

DCT Architectures

In low-power VLSI implementation, the choice of wordlength is an important issue since
it will directly affect the total switching activities inside the operators as well as the
total effective capacitance. Besides, an underestimated wordlength will degrade the
system performance due to the increased rounding errors. Therefore, we should carefully
determine the minimum allowable system wordlength that meets the accuracy criteria
for cost-effective and power-saving VLSI implementations.

In this chapter, we perform the finite-wordlength analysis for the proposed low-power
DCT architectures. The results can be easily extended to other transform architectures.
We start with the DCT architecture under the normal operation, then the analysis is
extended to the low-power design with M = 2. The general results for arbitrary M is
also presented. Throughout the derivations, the “statistical error model” for fixed-point

analysis is used [40, Chap.6]:

1. The rounding error is treated as wide-stationary additive white noise with magni-

tude uniformly distributed over one quantization level.

2. Rounding error occurs only in multiplication.
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3. All errors are uncorrelated with the input signal, and are independent of each other.

The organization of this chapter is as follows. In Section 5.1, we describe the two
basic issues in finite-precision analysis; i.e., the rounding error and dynamic range. The
analyses of the normal ITR DCT architecture using direct form I structure and direct
form II structure are discussed in Section 5.2 and 5.3, respectively. The analyses of
the multirate IIR DCT architecture are presented in Section 5.4. In Section 5.5, the

proposed analytical results are verified by extensive computer simulations.

5.1 Basic Considerations in Finite-Precision Analysis

There are two basic considerations in the fixed-point analysis. One is the rounding
error behavior. It occurs when we multiply two (B + 1)-bit numbers together while only
(B 4 1)-bit product is kept. The mean and variance of the rounding error are given by

[40, Chap.6)
9-2B

12’

mg =0, 0% = (5.1)

respectively. Understanding the rounding error behavior will allow us to minimize the
wordlength to achieve a desired output signal-to-noise ratio.

The other is the dynamic range issue. In fixed-point implementation, each number
in the system is treated as a fraction. The magnitude of each node in the circuit cannot
exceed one, otherwise overflow occurs and will result in great distortion in the final
output. Therefore, to prevent overflow, a suitable scaling of the input signal is usually
employed according to the dynamic range of the system. In practice, the signal-to-noise
ratio of the scaled system, SNR', will be degraded by the scaling process and is given by
[40, Chap.6]

SNR' = s2SNRy, (5.2)

where s is the scaling factor and SNRy is the signal-to-noise ratio of the original sys-

tem. This implies that knowing the dynamic range will enable us to perform minimally
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Module M} ,k=12,...N-1

Figure 5.1: Rounding error in the IIR DCT architecture.

necessary scaling to prevent further degradation in SNR.

5.2 IIR DCT Using Direct Form I Structure

5.2.1 Rounding Errors

Using the statistical error model, the rounding error of the IIR DCT structure can

be modeled as (see Fig. 5.1)

e(t) = ex(t) + ex(t) (5.3)

where e;(t), i = 1,2 is the rounding error caused by the i*» multiplier in the circuit !.

Then the actual output of the DCT circuit after N iterations can be represented as

Xpori(t) = Xpor k() + £(t) (5.4)

where f(t) is the output error due to the noise error e(?).
Let Hc;(z) denote the transfer function of the system from the node at which e(?)

is injected to the output, and hef(n) be the corresponding unit-sample response. From

Since the 0% channel of the DCT is computed by a simple add-and-accumulate operation, we will

not consider the finite-wordlength effect of this channel.
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Figure 5.2: Dynamic range of the IIR DCT architecture.

Fig. 5.1, Hef(2) is given by

1

H = .
o (2) 1 —2cos2wgz—t + 272’ (5:5)
and h.f(n) can be derived as

hep(n) sin[(n + 1)2wg]u(n) (5.6)

- sin(2wy)

where u(n) denotes the step function. Since only N iterations are performed in the IIR

circuit, the mean and variance of f(t) of the k** DCT channel can be computed as

N-1 N-1
1 .
my = Me Z hef(n) = me Z msmKn + 1)2wy], (6.7)
n=0 n=0
N-1 2 N-1 2
2 2 2 Oe 2 Oe N
= h = 1 = —5— 1 = .
b = ot X )t = s S sl D2en) = s (5) 69
where
me = FE{e(t)} =0, (5.9)

o? = Bt} = B{(er(t)?} + E{(e2(t))?} = (L + Ny(k)) -0},  (5.10)

and N,(k) is the number of the noise sources contributed by the multiplier My =
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2 cos(2wg) in the IIR loop:

4,  if [2cos(2wg)| > 1,
Ns(k) =14q 1, if |2cos(2uwy)| < 1, (5.11)

0, if |2cos(2wg)| = 1.

When |2 cos(2wy)| < 1, a normal multiplication is performed and E{(e2(t))?} = 0%. In
the case of |2 cos(2wg)| > 1, since a left-shift is performed after the multiplication with
cos(2wy), the rounding error is amplified by two and its power becomes E{(2e5(t))?} = 4.
0%. In the case of |2 cos(2wy)| = 1, no multiplication is performed, hence E{(es(t))?} = 0.
Now using (5.7)-(5.11), we can represent the total noise power at the kt* DCT channel

as

o, o N(Nsk)+1) <2_2B> . (5.12)

Fr=mitor= = aeam) \ 12

As we can see, given the system wordlength B, the rounding error grows linearly
with the block size N. This indicates that we will have 3 dB degradation in the SNR as
N doubles; however, such degradation can be compensated by adding 1/2 (in average)
bit in the wordlength. On the other hand, the noise power is inversely proportional to
sin?(2wg). That is, the effect of the rounding error in each channel of the IIR DCT
greatly depends on the pole locations of the IIR transfer function. The closer 2wy is to 0
or 7, the larger the rounding error is. As a consequence, the first and last DCT channels
suffer most from the finite-wordlength effect, while the middle channels have good SNR
in terms of rounding error. This phenomenon is quite different from what we have seen

in other DCT algorithms (cf, Fig. 7 in [41]).

5.2.2 Dynamic Range

In fixed-point arithmetic, the input sequence z(t) is represented as a fraction and is

bounded by |z(t)| < 1. Hence, the dynamic range of the circled nodes in Fig. 5.2 can be
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x(t) ~ XporT,k(t) + f(t)

Module M} ,k=12,...,N-1

Figure 5.3: IIR DCT using the direct form II structure.
computed as

Dy =92, (5.13)
D, = max{Xperk(t)} = max{C(k) N-Lcos[(2n + D)wg]z(n)}

= C(k) S5 leos[(2n + Vwy]| - max{z(n)} = C (k) TaZy leos[(2n + 1)wy]| (5.14)
and the dynamic range of the overall architecture is given by
D= ma,x{Dl, DQ}. (515)

Suppose that a one-time scaling scheme is provided at the input end to avoid overflow,

and it is done by shifting the data to the right by K bits. We have

K = [logy D], (5.16)
and the scaling factor s is given by
1
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5.2.3 Optimal Wordlength Assignment

Assume that the input sequence z(t) is uniformly distributed over (—1,1) with zero

mean. From (5.2), (5.12), and (5.17), we have

S2E{(XDCT,k(t))2}_ 8 sin*(2wy) . 92B-2K

SNR' = P, = N0 + (5.18)
where the fact that [41]
E{(Xpcrx(1))’} = E{z*()} =1/3, k=1,2,...,N -1, (5.19)

is used. If we want to achieve a performance of 40 dB in SNR for the k** DCT component,

the optimal wordlength By, for that channel can be computed from (5.18) as

4 — lOglo[Sin2(2Wk) . mmssﬁm] + X
2 -logp 2

By = (5.20)

As an example, the By’s for the case N = 8 and 16 under the constraint SNR = 40 dB
are listed in Table 5.1(a), where B4 denotes the average system wordlength. As we can
see, B4 = 12 bit is sufficient to meet the accuracy criteria. Compared with the DCT
implemenation in {42], in which B4 was chosen to be 16 bit based on the experimental
simulation results, our system wordlength is much shorter. Suppose that the silicon area
of the multiplier is dominant in the chip and the size of the multipliers is proportional
to (B4)?. Using the optimal wordlengths in Table 5.1, we can reduce the total chip area
to 56% of the original design without degrading the SNR performance. This shows that
our analysis approach provides more insights to determine the architectural specifications
than the experimental approach. Moreover, in the applications of transform coding, we
can shorten the wordlengths for the high-frequency channels since the human vision
system is less sensitive to these components. Thus, the total wordlength can be further

reduced.
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DCT channel 1 2 3 4 5 6 7 8 l 9 | 10 | 11 | 12 | 13 I 14 \ 15 By
By,
12 | 11 | 10 9 10 | 11 | 12 N/A 10.7
(N=8)
By,
13 |12 (12 ] 11 | 11 10|10 |10 |10 | 10 | 11 | 11 12 { 12 | 13 11.2
(N = 16)
(a)
DCT channel
1 2 3 4 5 6 7 8 9 10 {11 [ 12 | 13 | 14 | 15 Ba
(M =2)
By,
10 9 10 | 11 10 9 10 N/A 9.9
(N=8)
By,
12 11 10 10 10 11 12 12 12 11 10 10 10 11 12 10.9
(N = 16)

(b)

Table 5.1: Optimal wordlength assignment under the constraint SNR = 40dB, where B4
is the average wordlength. (a) Normal IIR DCT. (b) Low-power DCT with M = 2.
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5.3 IIR DCT Using Direct Form II Structure

Given the IIR DCT transfer function, we can also implement it using the direct form
IT structure as shown in Fig. 5.3. Following the above derivations for the direct form I

structure, the fixed-point analytical results can be derived as:

1. Rounding error:

2-—2B
P; = (Ng(k) +1) TH (5.21)
2. The dynamic range:
1 N-1
D, = — sin[(2n + Dwg]|,
1 ‘Sln(2£dk)| nz:%| [( ) k]l
Dy, = 2,
D = max{Dl,DQ}. (5.22)

In contrast to the direct form I structure, the dynamic range of the direct form II struc-
ture is affected by the factor W%TIJ in Dy; that is, we will have non-uniform dynamic
ranges for different DCT channels. This feature is not desirable in real implementations
even though the SNR results of both structures are comparative to each other (see sim-
ulation results in Section 4.5)-It not only requires different scaling scheme in each DCT
channel, but also makes the data interface between VLSI modules complicated (e.g., 2-D
DCT in which two DCT modules are connected [43].). Therefore, the direct form I is a

better choice for the VLSI implementation of the IIR DCT structures.

5.4 Analysis for the Low-Power IIR DCT with M =2

In the low-power IIR DCT architecture with M = 2, the injected rounding error can be
modeled as (see Fig. 5.4)

e(t) = e1(t) + e2(t) + es(t) (5.23)
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Figure 5.4: Rounding noise in the low-power IIR DCT architecture with M = 2.
and its power is given by
0?2 = E{e2(t)} = (2 + Ny(k))o%. (5.24)

Note that
1

H =
o (2) 1 —2cosdwpz™! + 272’

(5.25)

and the total iteration is reduced to N/2. Thus, the total power of the rounding error

at the output becomes

Nj2-1 9

_ _ o N _(2+Ns(k‘))Na2
=t ¥yl = e (T) = Sy & (629

n=0

From (5.26), we observe that

1. Although the total number of noise sources increases, the total noise power is

compensated by the halved number of iterations.

2. Compared with the factor m in (5.12), the factor m in (5.26) will have

similar effect on the SNR of each DCT channel but with halved period.

Now let us consider the dynamic range of the low-power DCT structure with M = 2.

Given the assumption that the input sequence z(t) is an i.i.d. sequence, the decimated
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inputs z.(t) and z,(t) are also i.i.d. sequences and are uncorrelated with each other.
Thus, we can apply the technique of “superposition” to analyze the dynamic range of

the system as follows.

Setting z,(t) to zero, Fig. 5.4 is reduced to the IIR structure depicted in Fig. 5.5,

where w;(t), 1 = 1,2, are the nodes that may have overflow. It is easy to see that
D1 e = max{w;(t)} = C(k) (| cos wg| + | cos 3wy ]) . (5.27)

From the transfer function of ws(¢)

Wa(2) cos 3wy, — cos wyz*
H = = 2
2(2) Xe(2) C(k) 1 —2cosdwgz=t + 22’ (5:28)
we can derive the unit-sample response as
ha(n) = C(k) cos[(4n + L)wi]u(n). (5.29)
Thus,
Dy, = max{wsy(t)}
N/2-1
= C(k) Z |cos[(4n + 1)wg]| - max{z(n)}
n=0
N/2—-1
= C(k) Z |cos[(4n + 1)wy]| . (5.30)
n=>0

Similarly, by setting z.(t) = 0, we can derive the dynamic ranges of the two circled

nodes, D1, and Dy, as

Dy, = C(k)(|coswg|+ |cos3wgl), (5.31)

Dao = C(&) SN2 cos|(4n + 3)wi]] .

Combining (5.30) and (5.31) together, we can write the overall dynamic range of the

multirate DCT architecture as

Dy = Die+ Dyo=2C(k)(|coswy| + | cos3wg|),
N/2-1
Dy = Dye+Doo=C(k) D> (lcos[(4n + L)wi]| + [cos[(4n + 3)wg]l)
n=0
D = max{Dy,D3}. (5.32)
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Figure 5.5: Reduced IIR DCT architecture with M = 2.

Using the analytical results in (5.26) and (5.32), we can also find the optimal wordlengths
for N = 8 and 16 under the 40dB SNR constraint. The results are listed in Table 5.1(b).
It is interesting to note that the average wordlengths of the multirate DCT architectures
are even less than those of the normal DCT architectures. This is due to the fact that
the number of the iterations in the IIR loop will be reduced to N/M. As M increases,
the accumulation of the rounding errors becomes smaller and thus less wordlength can
be allocated. This indicates that the multirate DCT architecture can not only reduce
low-power consumption, its numerical properties also become better as M increases.
The above analyses can be extended to the low-power DCT design with decimation

factor equal to M (M > 2, M € 2%%). The results are given by

Py = (M + Ny(k)) (=~ % (5.33)
= $ 2mt17gin?(gmtly,)’ '
and
M-1
D, = M- -C(k) Z |cos[(2n + 1)wg]!,
n=0
T-lM—1
Dy = C(k) Z Z lcos[(2m+1n+2i+1)wk]l,
n=0 i=0
D = max{Dy,Ds}. (5.34)

with m = log, M.
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5.5 Simulation Results

To verify our analytical results, computer simulations are carried out by using the afore-
mentioned DCT architectures. The input sequence is a random sequence with uniform
probability distribution over the interval (-1,1). All the results are based on the average
of 1000 independent DCT computations.

Fig. 5.6 shows the average SNR as a function of the DCT channel number k. As
we can see, there is a close agreement between the theoretical and experimental results.
Basically, the SNR distribution is affected by the factor sin?(2™*1wy) in (5.33) so that
its period varies with the decimation factor M. It should be noted that although Fig. 5.6
(a) and (b) yield similar SNR results, the uniform dynamic range of the direct form I
structure makes it a better choice for VLSI implementations.

Fig. 5.7 shows the relationship between the average SNR and the wordlength for
N = 16. Compared to the simulation results in [41], the three IIR DCT architectures
give comparative SNR performance to the DCT architectures by Hou [31] and Lee [32]
under fixed-point arithmetic. It is worth noting that the multirate DCT architectures
have better SNR results than the normal IIR DCT architectures; i.e., the multirate DCT
has better numerical properties under fixed-point arithmetic, which is consistent with
what we have seen in Table 5.1.

In summary, the analytical results presented in this section can be used as a good
index for future applications as N and/or M changes. Furthermore, we can assign the
optimal wordlength for each individual DCT channel given the SNR criteria, while this
is not the case in the fast-algorithm based PIPO DCT structures [31][32]. Due to the
characteristics of global interconnections in the PIPO DCT structure, each operator at
each stage will affect part or all of the outputs. Therefore, it is not easy to find optimal

wordlength for each channel in the PIPO structure.
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Figure 5.6: Average SNR as a function of DCT channel number under fixed-point arith-
metic (N = 16, B = 12). (a) Normal IIR DCT using direct form I structure. (b)
Normal IIR DCT using direct form II structure. (c) Low-power DCT with M = 2. (d)

Low-power DCT with M = 4.
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Figure 5.7: Average SNR as a function of wordlength under fixed-point arithmetic

(N=16). The multirate low-power architectures have better SNR as M increases.
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Chapter 6

Video Co-Processor Design

Modern communication services such as high-definition TV (HDTV), video-on-demand
services (VOD), and PC-based multimedia applications call for computationally inten-
sive data processing at video data rate which includes low-level tasks like DCT and
filtering/convolution operations as well as medium-level tasks like motion estimation
(ME), variable length coding (VLC), and vector quantization (VQ). All these tasks
require millions of additions/multiplications per second to ensure the real-time perfor-
mance of those video applications. As a consequence, the traditional general-purpose
programmable DSP processor is not sufficient enough under such a speed constraint.
Although the performance of the DSP processor can be improved by utiiizing advanced
VLSI technology and special arithmetic kernels [44][45], the manufacturing cost as well as
the complexity of the design will be enormously increased. On the other hand, dedicated
VLSI application-specific integrated circuit (ASIC) chips, which are optimally designed
for some given functions, can handle the demanding computational tasks. However, since
a collection of ASIC chips are required to perform various different tasks, both manu-
facturing cost and system complexity will be increased. Therefore, we are motivated to
design a programmable video processor with the flexibility of a general DSP processor
while meeting the stringent speed requirement in the ASIC designs.

In this chapter, we present a universal programmable architecture which integrates
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the rotation-based FIR/IIR architecture, Quadrature Mirror Filter (QMF) lattice struc-
ture [22], discrete transform (DT) architecture [46][37], adaptive recursive least square
(RLS) lattice structure [47]. It can serve as a co-processor in the video system to perform
those front-end computationally intensive functions for the host processor. We will first
examine the inherent properties of each function, then design a programmable rotation-
based computational module that can serve as a basic processing elements (PE) in all
functions. The resulting system consists of an array of identical programmable modules
and one programmable interconnection network. Each programmable module acts as a
basic PE in each programmed function by setting suitable parameters and switches. The
interconnection network is used to connect the modules and to combine the appropriate
module outputs according to the data paths. Since the properties of each programmed
function such as parallelism and pipelinability have been fully exploited, the processing
speed of the proposed co-processor design can be as fast as dedicated ASIC designs.
Besides, the proposed architecture is very suitable for VLSI implementation due to its
modularity and regularity.

Next, we will show how to improve the speed performance of the system by using the
multirate approach. In video signal processing, the major constraint is the processing
speed of the video processor. Such speed constraint will result in the use of expensive
high-speed multiplier /adder circuits or full-custom designs. Thus, the cost and the design
cycle will increase drastically. We will show that we can map the multirate FIR/IIR /DT
operations onto our video co-processor design. As a result, we can double the speed
performance of the co-processor on-the-fly by simply reconfigurating the programmable
modules and interconnection network. This feature can also be applied to the low-power
implementation of this co-processor

In the last part, we will show how to incorporate the feature of adaptive filtering
into our co-processor design. The recursive least-squares (RLS) filter, which is widely

used in channel equalization, system identification, and image restoration, has become
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another important computationally intensive component in portable video equipment
since wireless communication requires fast adaptation to highly non-stationary mobile
channels. We will show that, with little modification to the programmable module
design, the proposed co-processor can also perform the QR-decomposition based RLS
lattice algorithm (QRD-LSL) [47] in a fully pipelined way.

The organization of the this chapter is as follows: Section 6.1 presents the pro-
grammable co-processor design for the FIR, IIR, QMF filtering, and discrete transforms.
In Section 6.2, the speed up of the co-processor design based on the multirate approach
is discussed. Later the incorporation of the QRD-LSL array into our co-processor de-
sign is presented in Section 6.3. The comparison of our co-processor with other existent

approaches is discussed in Section 6.4.

6.1 Video Co-processor Design for the FIR/QMF /IIR /DT

In this section, the design of the video co-processor under normal operation (without
speed-up) is discussed. We first examine the basic operations of the FIR filtering, QMF
bank, IIR filtering, and discrete orthogonal transforms (DT), to integrate their basic
computational modules. Later, a universal programmable module which integrates those
basic computational modules in FIR/QMF/IIR/DT is derived. We will show that, by
setting appropriate parameters to the modules and connecting them via a programmable
interconnection network, we are able to perform all functions in the FIR/QMF /IIR/DT

in a fully-pipelined way.

6.1.1 Basic Module in FIR

The finite impulse response (FIR) filter is widely used in DSP applications. In addition
to the multiply-and-accumulate (MAC) implementation of the filtering operation, an

alternative realization of the FIR filter is the lattice structure as shown in Fig. 6.1
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Figure 6.1: (a) Basic lattice filter section with |k;| < 1. (b) Basic lattice filter section

with |k;| > 1. (c) Lattice FIR structure.

[48]. It consists of N basic lattice sections that are connected in a cascade form. The
advantages of the lattice structure over the MAC implementation is its robustness to

the coefficient quantization effect and the smaller dynamic range due to the orthogonal

operation used in each lattice.

Given a Nth-order FIR transfer function

N-1
H(z)y=1- Z amz— M),

m=0

the FIR lattice parameters can be computed as follows [40]:

(N-

1. Initialization: am,

1)

=a,, m=0,1,...

,N — 1.
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2. Fori=N-1,N-2...,0

k;

ag,’;'l)

end

where the parameter k;’s, ¢ = 0,1,...,

as,i) + k;a

L,

(i)

- m=0,1,...,(:-1).

(6.2)

b

N -1, are known as the reflection coefficients,

or the PARtial CORrelation coefficients (PARCOR) in the theory of linear prediction

[49]. After k;’s are computed, the lattice section of the FIR filter can be described by

Lout _ 1 —k; Lin , (63)
x,out ’_ki 1 xlm
or equivalently
1. For |k;| < 1,
o » _
Tout _ l—k'z l—klz \/1—](71-2 0 Tyn
xlout ] —_Ti;; 711—_k? i 0 v1-— k‘? .’L‘;n
cosh @, sinhé; V1-—k? 0 Tan (6.4)
sinh #; coshé; 0 V1—k2 z,
with
0; = tanh_l(—ki). (6.5)
2. For |k;| > 1,
Ik, | —sign(k,)
[ Tout | _ k21 \/k2-1 [ —sign(k,)/k? — 1 0 ] l: z,, }
Tl _—‘"i\/%f # 0 —sign(k,)y/k% — 1 Tyn
_ coshf, sinhé, —sign(k,)/k2 — 1 0 z
= sinh#, coshé, 0 —sign(ky) /——k? 1 - ! (66)
where sign(k;) denotes the sign of k;, and 6 is defined by
01' = tanh—l(—l/ki). (6.7)
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The lattice modules to realize (6.4) and (6.6) are depicted in Fig. 6.1(a) and (b), respec-
tively. Each module is composed of two scaling multipliers and one rotation circuit. In
general, the rotation circuit can be implemented by using either general-purpose multi-
pliers/adders or the CORDIC processor in hyperbolic mode [50]. Note that we need
to swap the two inputs for the case of |k;| > 1 since the input vector is inverted in (6.6).

These two basic modules constitute the FIR lattice structure as shown in Fig. 6.1(c).

6.1.2 Basic Module in QMF

The Quadrature Mirror Filter (QMF) plays a key role in image compression and subband
coding [51][52]. Recently, the two-channel paraunitary QMF lattice was proposed [22].
It possesses all the advantages of the lattice structure such as robustness to coefficient
quantization, smaller dynamic range, and modularity. Such properties are preferred
to as the MAC-based realization when the filter bank is implemented using fixed-point
arithmetic. Fig. 6.2 shows the QMF lattice structure, where part (c) is the analysis bank
and part (d) is the synthesis bank. We can see that the QMF lattice is very similar to
the FIR lattice except that the inputs of the lattice become the decimated sequences
of the input signal and two scaling multipliers are set to one. If CORDIC processor is
employed to realize the rotation circuit in the QMF lattice, it works in the circular
mode to perform the necessary rotations.

It has been shown in [22] that every two-channel (real-coefficient, FIR) paraunitary
QMF bank can be represented using the QMF lattice. Given a pre-designed power-
symmetric FIR analysis filter Hg(z) with unit sample response ho(n),n = 0,1,..., N,

we can first find the unit sample response of the other analysis filter H;(z) by
hi(n) = (=1)"ho(N — n). (6.8)
Then the rotation angle 6; in each QMF module can be computed by [21, Chap.6):

1. Initialization: HS"(z) = Hy(z) and H\" () = H;(z) with N = 2J + 1.
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2. Fori=J,J—1,...,0

1+ H ) = B (@) - el (2),
(1+ad)2 2B (2) = aHY (2)+ B (2),

0; = tan"la, (6.9)
end

The coefficient o; is computed by setting the highest power of 2~ in Héi) (2) —a;H 1i)(z)

equal to zero.

6.1.3 Basic Module in ITR

Next we want to consider the basic module in infinite impulse response (IIR) filtering.
The lattice structure for an IIR system (all-pole and ARMA) [48] is shown in Fig. 6.3.
Although the basic lattice module in IIR filters is similar to the one in FIR lattice, the
opposite data flow in the ITR module makes it difficult to be incorporated into our unified
design. Besides, the modularity of the lattice structure no longer exists if we want to
implement a general ITR (ARMA) filter (see Fig. 6.3(b)). Therefore, we are motivated
to find an IIR lattice structure that has similar data paths as in the FIR/QMF lattice

while retaining the property of modularity.

Second-order IIR Lattice Structure

Fig. 6.4 shows the lattice structure that can be used to realize a second-order IIR filter.
It is also known as the “couple-form” of the second-order IIR filter which is robust to
the coefficient quantization error under fixed-point arithmetic [40, Chap.6]. It can be

shown that the transfer functions of the two outputs are given by

~ _ Yo(2)  r(kocos + kisinf) — r2koz!
Holz) = X(z) ~ 1-=2rcosfzl+r2z-2 (6.10)
~ _ Yi(2)  r(kicosf — kosinf) — rlkiz7t
Hy(z) = X(z) ~ 1—2rcosf@z=1 +12z-2 (6.11)

99



X(n) ). N
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x(n)

Figure 6.3: (a) All-pole IIR lattice. (b) General IIR (ARMA) lattice.

Now given an even-order real-coefficient IIR (ARMA) filter H(z), we can first rewrite it
in the cascade form:
N/2-1
H(z)=K [] Hi2), (6.12)
i=0

where K is a scaling constant ! and each subfilter H;(z) is of the form

14+ ¢zt +diz™?

Hi(z) = 1+ a2t + bz=2
_ 1 | ¢ +dizt
1+aiz=t + bjz2 1+ aiz—l+ bz—2
= Aio(z) + 271 A;1(2). (6.13)

Comparing (6.10) and (6.11) with (6.13), we see that A;o(z) and A;1(2) can be
realized by either Ho(z) or Hy(z) with appropriate settings of the parameters ko, k1,7,
and 6. The conversion of the parameters is derived as follows, where Hy(z) is chosen for

the realization.

'Here we assume that K = 1. This simple scaling operation can be done by the host processor after

it collects the outputs from the video co-processor.
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Figure 6.4: Second-order IIR lattice architecture.

x(n) &b — s —> y(n)
Ao,o(Z) Al,o(z) 4%_1,0(z)
I%‘EI Hzﬂ I%'B
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Figure 6.5: IIR (ARMA) structure based on the second-order IIR lattice module.
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Fori=0,1,...,N/2 -1,

1. Find the poles of H;(z):

—a; + \/a% — 4b; —a; — af — 4b;

Pos; = ) y Pl = 3 . (6.14)

2. (a) For the case y/a? — 4b; < 0 (complex conjugate poles at r;e*?), compute

the radius r; and phase 6; of the poles:
r; = mag(po,), 0; = arg(poy). (6.15)

(b) For the case y/a? —4b; > 0 (two real poles at py; and p;;), compute 7;

and 8; by equating
2r;cos0; = po; + p1,

(6.16)
ri2 = Po,i - P1,i,
which yields
ri = /Do Pl
' v . (6.17)
ai = cos_l 2p\/0;0,141.711),11,‘b .
3. Solve kg and k; used in A;(z) by setting
r;(kocos6; + k1 sinf;) =1
(6.18)
—-’I‘?ko =0
which yields
ko=0
(6.19)
kl = 1/(’!‘1 Sinei).
4. Solve kg and k; used in A;;(2) by setting
i (ko cos 8; + k1 sinf;) = ¢;
(6.20)
—rf‘ko = di
which yields
ko = —d; /12
0= difri (6.21)

k1 = (¢i/ri — ko cos 6;)/ sin 6;.
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end.

Note that all r;’s should be less than one to ensure the stability of the IIR filtering.
There are some limitations in this realization: Firstly, the order of the ARMA filter is
restricted to be even to facilitate the decomposition in (6.12). Secondly, we cannot realize
the second-order IIR which has two multiple real poles or two real poles with opposite
signs (r; in (6.16) cannot be solved). In some cases, this situation can be avoided by
arranging the real poles with the same sign as a pair or imposing such constraints in the
design phase of the filter.

Now based on (6.12) and (6.13), we can realize H(z) using the structure depicted
in Fig. 6.5, in which each stage performs the filtering for H;(z), and A;o, A1, i =
0,1,...,N/2 — 1, are realized by the second-order IIR module in Fig. 6.4. To perform

an N*-order (N is even) H(z), we need a total of N second-order IIR modules.

6.1.4 Basic Module in Discrete Transforms

In Section 4.3, we have presented a unified tranform coding architecture that is capable
of performing most of the discrete transforms (DTs). However, the IIR-based module
used in Fig. 4.3 is not applicable to the programmable architecture proposed here. In
order to incorporate the unified DT operations into our co-processor design, we need a
rotation-based computational module for the processing element.

In [46][37], a rotation-based module was derived for the dual generation of X¢ ()
and Xg(t) in (4.10) and (4.11) (see Fig. 6.6), where the scaling multipliers and the

rotation operation are given by

[ — fok _ Beos((2L + L)wy, + ni) . (6.22)

fig | Bsin((2L + 1)wy, + nk)

and

cos(2w sin(2w

—sin(2wg) cos(2wy)
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Figure 6.6: Rotation-based module for the dual generation of X¢ x(t) and Xg x(t).

respectively. The rotation-based module works in an SIPO way as the IIR-based Module
in Fig. 4.2. The operation of the unified rotation-based DT architecture is the same as
the unified architecture in Fig. 4.3 except that the IIR-based modules are replaced with

the rotation-based modules.

6.1.5 Unified Module Design

From Fig. 6.1, Fig. 6.2, Fig. 6.4, and Fig. 6.6, we observe that all the architectures
share a common computational module with only some minor differences in the data
paths, the module parameters (multiplier coefficients and rotation angle), and the way
the modules are ;:onnected. We thus can integrate those basic modules into one universal
programmable module as shown in Fig. 6.7. It consists of six switches, four scaling
multipliers and one rotation circuit. The switch set S = [s05152835455] controls the data
paths inside the module. The switch pair s¢ and s; select the input from either ¢n; or
inj: With sgs; = 00, in; becomes the common input of the lattice which is required in
the first stage of FIR and in the IIR module. Using sos; = 10, we can swap the inputs
for the FIR lattice when |k;| > 1. Switches sy and s3 decide if the delay element is used
or not: With sgs3 = 01, the lower-left delay element is included in the data path, which

is required in the FIR/QMF lattice (except the first stage in QMF banks). With the

104




0 =
2 |
S4
. Rotation circuit
Sy ! sing
So
i - SinB
B g c0s 6 ! rj
. \ — fan) ~N tl
an_ s fvo) Vv oy i
s1 53 S5
=T
0 121
(a

)
:S—* :E_' Sa Sq S5— S5
Si Si
S4=1 S5=0 S5=1

S1=0 Sy=1 5420
i=0,1,2,3
(b)
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setting sos3 = 11, the delay element in Fig. 6.5 can be incorporated into the module
Aj 1. Therefore, we do not need to implement it explicitly in the IIR filtering operation.
The last switch pair is s4 and s5. They control the two feedback paths in the module:
When s4s5 = 11, the delayed module outputs will be added with the current inputs as
in the ITR and DT case. The setting s4s5 = 00 will disconnect the feedback paths. The
two multipliers 7;’s at the outputs of the rotation circuit are required only when we want
to incorporate IIR function into this universal design. The parameters f;, r;, and 8; can
be determined from our discussions in Section 6.1.1-6.1.4. The complete settings of the
programmable module for the FIR/QMF /IIR/DT are listed in Table 6.1. Moreover, two
pipelining stages (the dash lines in Fig. 6.7) are inserted after the scaling multipliers fo;

and f1; to shorten the critical path of the programmable module.

6.1.6 Video Co-processor Design

Based on the above programmable module, we are ready to design the video co-processor
that is capable of performing parallel implementation for any function in the FIR/QMF/
IIR/DT. Fig. 6.8 shows the video co-processor architecture under the FIR mode. It
consists of two parts: One is the programmable module array with P identical pro-
grammable modules. The other is the programmable interconnection network
which connects those programmable modules according to the data paths. In the
FIR/QMF/IIR, the data are processed in a serial-input-serial-output (SISO) way. Hence,
the programmable modules need to be cascaded for those operations. For example,
the FIR modules can be connected by setting the interconnection network as shown in
Fig. 6.8. The connections of ITR modules can also be achieved using the network setting
in Fig. 6.9. On the other hand, the DT architecture in Section 6.1.4 performs the block
transforms in an SIPO way. The interconnection network will be configurated according
to the combination functions defined in Table 4.3. The detailed settings of the intercon-

nection network used in the co-processor design (Type I-1X) are described in Table 6.2.
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Figure 6.8: Overall architecture for FIR filtering.

The operation of the co-processor is as follows: In the initialization mode, the host
processor will compute all the necessary parameters f;, r;,0; according to the function
types (FIR/QMF/IIR/DT) and the function to be performed. In general, the functions
to be performed are determined beforehand. All the parameters can be computed in
advance so that the host processor can find the necessary parameters through table-
look-up to reduce the set-up time in this mode. Next, the host processor needs to
reconfigurate the interconnection network according to the function type.

Once the video co-processor is initialized, it enters the execution mode. In the
applications of FIR/IIR/QMF, the host processor continuously feeds the data sequence
into the co-processor. After the first output data is ready, the processor can collect the

filtering outputs in a fully pipelined way. In the block DT application, the block input

107



From host processor To host processor
| x(n)=in0 M iy ym) —1
— x(n) =inl . %nl

inl’ M1 ———» inl’
in2 oy in2
in2’ M, / \*> in2’
in3 L »in3
in3’ M;, —>in3’
in4d D in4
ind’ M4 / \—> ind’
inb ———» inb
in5’ M; ———in5’
iné outé @D iné
N6’ M6 F———>in6"’
in out6

in7 M £7 L . in7
in7’ 7 Ty ————in7"’

Programmable Interconnection
Module Array Netowrk

Figure 6.9: Overall architecture for IIR (ARMA) filtering.
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0100100 Myp 42,
0100100 Myx43})

Rr(8) = Mquy2, Maxs3

Table 6.1: Setting for the programmable module, where Ny, is the maximum order (e

block size in DT) that can be realized by a P-module array, and switch sg is only used

in the QRD-LSL operation.
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Type 1 Type I Type 111
(FIR, QMF) {Multirate FIR) (IIR)
L (m) 1. in; = z,(n), i=0,1,2.
. tng = z(n).
2. Form=0,1,...,(3 -4 1. in, = i=0,1.
2. Form=0,1,...,(N—-2) , -9 im = 2(n), i=0,
- Nm43 = Ollm, 2. Form=0,1,...,(N-3)
Nm4] = 0utm, L ' .
. - out’ in, 3 =out,. Mm42 = outn?J + out,l?_“,l.
in, ., =out,. end end
end 3. win)=out 3. y(n) t + out
. = 3yt . y(n) =outy_; + outy_z.
3. y(n) =outy_;. ! -3+ v N N-2
i=0,1,2.
Type IV Type V Type VI
(Multirate IIR) (DCT) (MLT)
1. in, =zlh(n), i=0,1,...,5
2. Form=0,1,...,(3N-7) 1. in, = z(n), 1. in; = z(n),
Nnie = outy g | +outy g 41 " i=6,1,...,N- 1L i=0,1,...,N-1
end 2. Xpcr(i) = out,, 2. Xpmor(i) = —s,(out,41 + out,),
3. p{n)=out(an_speitoulaN-epze 1=01,...,N-1. i=0,1,...,N-1.
i=0,1,2
Type VII Type VIII Type IX
(DFT) (DHT) (QRD-LSL)
1. in] = z(n), i=0,1.
2. Form=0,1,...,(4N - 3)
1. t.n. = z(n), 1. t.n. = z(n), iﬂlvn+2 = out:,,,
t=0,1,...,N-1. ’ t=0,1,...,N~1. ’ if (m mod 4 = 0) then
2. Xprr(i) = out, + j  out,, 2. Xpur(i) = out, +out,, Han(m+3)=pout(m),
i=0,1,...,N—1. i=0,1,...,N-1. #an(m+2)=Hout (m-+1).
end
3. f(n)=outly_,, b(n)=outy,_,.

Table 6.2: Switch settings for the interconnection network, where N denotes the order

of the FIR/QMF/IIR/QRD-LSL or the block size of the DT.
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data is fed into the co-processor serially. After the last datum enters the unified module
array, the evaluations of X¢ x(t) and X ;(t) in (4.10) and (4.11) are complete. Then the
interconnection network will combine the module outputs according to the combination
function defined in Table 4.3, and the transform coefficients can be obtained in parallel
at the outputs of the network. At the same time, the host processor will reset all internal
registers (delay elements) of the programmable modules to zero so that the next block

transform can be conducted immediately.

6.1.7 Design Examples

In what follows, we will use some desigh examples to demonstrate how to convert a
given system specification to the parameters used in the programmable modules. The
orders of the numerator and the denominator in the IIR ARMA filter are restricted to
be even so that we can perform all the necessary decompositions. Here, a 10-module
co-processor is used to carry out the given function. As a result, the maximum order of
the FIR/IIR/QMF is 10 and the transform size of the DT is also limited to 10. For the
DT, we will use an 8-point DCT as an example due to its prevalence in the application

of transform coding.

FIR Filtering

Given the FIR transfer function
H(z) = 1-—0.8843z7' —0.1327272 — 1.1219273 4 0.53282~* — 0.8882z 75
+ 0.103827% — 0.3786277 +0.219527% — 0.109427, (6.24)

we first apply (6.1)-(6.2) to compute all PARCOR coefficients:

I

ko = —04472, ky = -0.6917, ko —0.5865, ks = -—4.1573, ks = 1.1595,

ks = 02655, k¢ = 02942, k; = -0.1243, kg 0.1094.

Then all parameters of each module, such as f; and 8;, can be found by using (6.4)-(6.7).

The complete settings are listed in Table 6.3(a).
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QMF Filtering

Suppose that the pre-designed power-symmetric low-pass filter described in [21, Example

5.3.2] is used for the QMF filtering. We have the analysis filter

N-1
Hoy(z) = > ho(n)z™" (6.25)

n=0

with

ho(0) = 0.1605, ho(l) = 0.4156, ho(2) = 0.4592, he(3) =  0.1487,
ho(d) = —0.1642, ho(5) = —0.1245, ho(6) = 0.0825, ho(7) =  0.0888,
ho(8) = —0.0508, ho(9) = —0.0608, ho(10) = 0.0352, ho(1l) =  0.0399,
ho(12) = —0.0256, ho(13) = -0.0244, ho(14) = 00186, ho(15) =  0.0135,
ho(16) = —0.0131, ho(17) = —0.0074, ho(18) = 0.0129, ho(19) = —0.0050.

We can go through (6.8)-(6.9) to find all 8;’s in the modules and the results are shown
in Table 6.3(b).
IIR (ARMA) Filtering

Given the IIR (ARMA) filter

1+ Ef‘il piz "

H(z) = - 6.26
) 14+ YK, gz (6.26)
with M =4, N = 10, and
py = —17314, p» = 1.6788, ps = -—0.7913, ps = 0.2304,
Q= 0.4036, g2 = 1.3227, q3 = 0.2376, q = 1.1558, ¢5 = 0.0047,
g = 06950, ¢ = —00733, ¢¢ = 02735 ¢ = -00542, g0 = 0.0788,
we first rewrite it in cascade form:
1—1.1314271 +0.64002=2 1 —0.6000z"! + 0.36002~2
H(z) = X — —
1—0.91922"1 +0.42252-2 ~ 1 —0.75002~1 + 0.56252 2
1 1
1 +0.8000z! + 0.64002~2 % 1+ 1.27282~1 4+ 0.810022
1
_ 27
1+ 0.64002—2 (6 )

Following the steps described in (6.14)-(6.21), we can find the parameters used in each

2nd-order subfilter. The corresponding settings are in Table 6.3(c).
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Block DCT

For the block 8-point DCT, we can calculate fy;, f1; and 6; of each programmable

module using Table 4.3. The settings are listed in Table 6.3(d).

6.2 Speed-Up of the Video Co-processor Architecture

In video signal processing, the fundamental bottleneck is the processing speed of the
processing elements. Although the above mentioned co-processor architecture has fully
exploited the parallelism and pipelinability for each programmed function, the input data
rate is still limited by the speed of the adders and multipliers inside the programmable
module. In the video-rate applications such as HDTV, this speed constraint will result
in the use of expensive high-speed multiplier /adder circuits or full-custom design. Thus,
the cost as well as the design cycle will increase drastically.

In this section, we will show how to map the multirate FIR/IIR/DT architectures
with speed-up of two to our video co-processor design. Since processing elements operate
at only half of input data rate, the processing speed of the co-processor is doubled based

on the same programmable modules and interconnection network.

6.2.1 Mapping of the Multirate FIR Architecture

In Section 2.3, we presented the multirate FIR filtering architecture with M = 2 (see
Fig. 2.8). Since the multirate architecture can process data at a rate two times faster
than the maximum speed of the operators, it can be readily applied to the speed-up of
the filtering operations at the architectural level.

To map this multirate FIR architecture to our co-processor design, we first find the
three (¥)th-order FIR subfilters Ey(z), Ei(z), and E(z) = Ey(z) + E1(2) of the given
FIR transfer function. Then we implement each subfilter using the FIR lattice structure

discussed in Section 6.1.1. The resulting architecture is depicted in Fig. 6.10(a), where
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Mo M M: M3 M, M; Ms M, Mg
S 000100 | 010100 | 010100 | 100100 | 100100 { 010100 | 010100 | 010100 | 010100
fos 0.8944 | 0.7222 | 0.8100 | 4.0352 | -0.5870 | 0.9641 0.9557 | 0.9922 0.9940
Jia 0.8944 | 0.7222 | 0.8100 | 4.0352 | -0.5870 | 0.9641 0.9557 | 0.9922 0.9940
T, 1 1 1 1 1 1 1 1 1
0, 0.4812 | 0.8512 | 0.6723 | 0.2454 | -1.3027 | -0.2720 | -0.3032 | 0.1249 | -0.1098
Interconnection Type I
(a)
Mo M M3 M3 My M M My Ms My
S 010000 | 010100 | 010100 | 010100 { 010100 | 010100 { 010100 | 010100 | 010100 | 010100
fou 1 1 1 1 1 1 1 1 1 1
fii 1 1 1 1 1 1 1 1 1 1
Ty 1 1 1 1 1 1 1 1 1 1
8, -1.2022 | 0.6993 | -0.4465 | 0.3051 | -0.2146 | 0.1511 { -0.1043 | 0.0690 | -0.0426 | 0.0311
Interconnection Type ]
(b)
Mo M, M; M3 My Ms Ms M, Ms My
S 000011 | 001111 ] 000011 j 001111 | 000011 | 001111 | 000011 | 001111 | 000011 | 001111
fo 0 -1.5148 0 -0.6400 0 0 0 0 0 (]
fia -2.1757 | 0.9467 | -1.5396 | 0.5543 | -1.4434 0 -1.5713 0 -1.2500 [
ry 0.6500 0.6500 0.7500 0.7500 0.8000 0 0.9000 0 0.8000 0
6, -0.7854 | -0.7854 | -1.0472 | -1.0472 | -2.0944 0 -2.3562 0 -1.5708 0
Interconnection Type 111
(c)
My M, M M3 My Ms Me M,
s 000011 | 000011 | 000011 | 000011 | 000011 | 000011 | 000011 | 000011
o 0.3536 | -0.4904 | 0.4619 | -0.4157 | 0.3536 | -0.2778 | 0.1913 | -0.0975
DN 0 -0.0975 | 0.1913 | -0.2778 | 0.3536 | -0.4157 | 0.4619 | -0.4904
e 1 1 1 1 1 1 1 1
6, 0 0.3927 0.7854 1.1781 1.5708 1.9635 2.3562 2.7489
Interconnection Type V
(4

Table 6.3: Settings for the (a) FIR filter, (b) QMF filter, (c) IIR (ARMA) filter, and (d)
8-point DCT.
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R;, R;, and R; correspond to the ith basic modules used in Eo(2), E(2), and Ey(2),

respectively. Next, we can map Fig. 6.10(a) onto our video co-processor with the mapping
Ry — Ms;, Ri — Maip1, R, — My, (6.28)

for i =0,1,...,N/2 — 1. Besides, the interconnection network is set to Type II for the
connections. Fig. 6.10(b) illustrates the realization of a 6th-order FIR by the use of 9
programmable modules. The detailed setting of the video co-processor is described in
Table 6.1 and 6.2.

Once the video co-processor has been initialized, the host processor can send data at
fs rate to the downsampling circuit in Fig. 2.8. Then the outputs of the downsampling
circuit, z;(n),7 = 0,1,2, will be processed by the three FIR subfilters in parallel at only
fs/2 rate. After the subfilter outputs y;(n)’s are generated, the FIR filtering output y(n)
is reconstructed through the upsampling circuit in a fully-pipelined way and the data
rate for y(n) is back to f.

As we can see, the only hardware overhead for this multirate operation is the down-
sampling and upsampling circuits in Fig. 2.8 for the pre- and post-processing of the data.
Since we need N/2 modules for the implementation of each subfilter, a total of 3N/2
modules will be used for a Nth-order FIR filter. That is, the speed performance is dou-
bled at the expense of 50% hardware overhead. Nevertheless, this overhead is handled
by simply activating more modules in the array and reconfigurating the interconnection

network rather than implementing it explicitly.

115



%(n) — " —>o00— t— ydn)
Ro | |R: | | Re Ry

xl(n} — 1 > o0 0 — —» yl(n)
Ro | | Ry | | Re Ry,

xz(n) —] [—s > 00 0 — — y2(n)
Ry Rl Rg R L

recerarsacans, .
x,(0) =in0 : ; —— yo(n)
0 in0’ : M, : ——
Xl(n) =inl ; M : —»yl(ﬂ)
inl’ : 1 ; ———
X, () =in2 + M ‘ Ly,
in2’ : 2 | —
[ ; _
in3 —w M | in3
in3’ — 3 —— in3"

1
!

[ S
ins — ¢ M L .in5
in5’ iy ——in5’

j opremeszzces
in6 < A= L . in6
in6'—* 6 ' [——>iné"

: !
; : out7 :
in7 ‘v M gut7 » | . in7
in7 — 7 ; —— in7°’
ins H out8 , in8
in8’ : Mg /Out8 ing8’

Programmable {nterconnection
Module Array Network

(b)

Figure 6.10: (a) Multirate FIR lattice structure. (b) Mapping part (a) to the co-processor

architecture.
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6.2.2 Mapping of the Multirate IIR Architecture

Our co-processor design can also be reconfigurated to perform the multirate IIR filtering.

Given an IIR system

M .
1+ Z:piz—z
HI(Z) _ i=1

= ~ '
1+ Z giz™"
i=1

(M < N, M, N are even numbers), we can follow the derivations in Section 2.2.1 to find

(6.29)

the polyphase components of H(z), Eo(z) and E;(z), as well as E(z). The mapping
of the ITR multirate filtering is similar to the FIR case: We first implement each of
the subfilters, Ey(z), E1(z), and E(z), using the cascade IIR structure discussed in
Section 6.1.3. The corresponding parallel architecture is shown in Fig. 6.11(a), where
{ Aip(2),Ai1(2) }, { Aio(2),4i1(2) }, and { Aip(2),4ia(2) }, 4 = 0,1,...,N/2 — 1,

are the subfilters of Ey(z), E(z), E1(z), respectively. Then it can be mapped to our

co-processor architecture by

Aio(2) — Msi,  Aig(2) — Msiya, Aig(z) — Msiya, (6.30)
Ai1(2) — Mgy, Air(z) — Maipa, Aii(2) — Masiys,
fori=0,1,...,N/2 -1
Figure 6.11(b) demonstrates the multirate 4th-order IIR architecture using 12 pro-
grammable modules. The detailed settings of the modules and interconnection network
can be found in Table 6.1 and 6.2. Note that the maximum order of Ey(z) and E;(z) is
still N; i.e., the orders of the subfilters do not decrease after the decomposition. This

indicates that the use of Fig. 2.8 will triple the hardware cost. Therefore, we will need

3N modules to realize a Nth-order multirate IIR filter.

6.2.3 Multirate Discrete Transform Architecture

In addition to multirate FIR/IIR filtering, our video co-processor can also be reconfig-

urated to perform multirate DT operations as discussed in Section 4.3. Note that the
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Figure 6.11: (a) Multirate IIR lattice structure. (b) Mapping part (a) to the co-processor

architecture.
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multirate DT operations in Section 4.3. are performed using the IIR-based computa-
tional modules. Here we derive the rotation-based multirate DT architecture so that it
can be mapped to our

Splitting the input data sequence, z(n),7 =0,1,..., L, into the even sequence
ze(n) =2z(2n), n=0,1,...,L/2 -1, (6.31)
and the odd sequence
zo(n) =z(2n+1), n=0,1,...,L/2 1, (6.32)

(4.10) and (4.11) can be rewritten as

L/2-1 L/2—1
Xe(k) = B Z cos[(4n + Vwi + ng] ze(n) + B Z cos[(4n + 3)wi, + Nk zo(n)
n=>0 n=0
= XC,e(k) + XC,o(k)a (6-33)
L/2-1 L/2—1
Xg(k) = B sin[(dn + Dwy +mklze(n) + B ) sinf(4n+ 3wy + 7] 2o(n)
n=0 n=>0
= Xgo(k) + Xs.o(k), (6.34)

for k = 0,1,...,N — 1. Following the derivations in [46][37], it can be shown that we
can use the rotation-based module in Fig. 6.6(a) for the dual generation of X¢ (k) and

X5 (k) by setting

fo,k Bcos((2L + 1wy + ni) cos(4wy) sin(4wy)
(t)fk,e =| = , Rpe=
ik Bsin((2L + Dwi + 1x) —sin(4wy) cos(4wy)
(6.35)

Similarly, the same module can be used to obtain X¢ o(k) and Xg ,(k) with the setting

fo,k Bcos((2L + 3)wi + M) cos(dwy) sin(4wy)
fk o= = ) Rk,o =

’ Fik Bsin((2L + 3)wy + 1k) —sin(4wg) cos(4wy)
(6.36)

The parallel architecture to realize (6.33)-(6.36) is depicted in Fig. 6.12(a). The input

data sequence z(n) is first decimated into z.(n) and z,(n) through the decimator. Then
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Xc,elk) , Xs.e(k), Xc,0(k), and Xg o(k) are generated by the two modules in parallel
and the outputs are summed up to obtain X¢(k) and Xg(k).

The multirate DT architecture can be mapped to the co-processor design by setting
the parameters of module Mo, to fy e, Ry and Magy1 to f 0, Ry, respectively, for
k=0,1,...,N/2 — 1. Figure 6.12 shows the multirate 4-point DHT architecture based
on 8 programmable modules. There are two parts inside the interconnection network:
One is the summation circuit to combine the even and odd outputs of the array. The
other is the circuit to perform the combination function defined in Table 4.3. In real
implementation, we can either add one summation circuit so that the switch settings for
the DT in Table 6.2 can still be used, or we can define new switch settings by merging
these two circuits together. The hardware overhead to perform the multirate DT is the

doubled complexity.

6.2.4 Application to Low-Power Design

In addition to speeding up the system, the feature of multirate data processing can also
be applied to the low-power implementation of the proposed co-processor design. The co-
processor can have a switch for the supply voltage. Under normal operation, the supply
voltage is bV. When the job is not computationally demanding, the supply voltage is
switched to 3.1V and the co-processor switched to multirate mode. The system will still
maintain the processing speed even though each processing element inside the module

has been slowed down by the reduced voltage.
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Figure 6.12: (a) Multirate architecture for the dual generation of X¢ (k) and Xg(k). (b)

Multirate 4-point DHT architecture based on 8 programmable modules.
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6.2.5 Design Examples Using Multirate Operations

Multirate FIR Filtering

Given the FIR transfer function in (6.24), we first perform the polyphase decomposition

which yields

Ho(z) = 1-0.1327271 +0.5328272 4 0.103823 + 0.21952 ¢,

Hi(z) = —0.8843 - 1.121927! —0.8882272 — 0.37862~3 — 0.10942*

H(z) = 0.1157 —1.254627! — 0.3554272 — 0.274827% + 0.11012%.

bl

(6.37)

Then we can follow the steps in (6.1)-(6.2) and (6.4)-(6.7) to find the parameters for

each filter in (6.37). The results are listed in Table 6.4(a).

Multirate IIR (ARMA) Filtering

Consider the IIR (ARMA) filter shown below

1 —0.4000z"1 + 0.1600z~2
1—1.8192271 +2.05982~2 — 1.1248273 + 0.34222—4"

H(z) =

We can find its polyphase components from Appendix 2.2.1 as
1+ 1.4921271 +0.2219272 + 0.05482 73

Ho(z) 1+ 0.81002~" + 0.83462~2 + 0.14462~3 + 0.1171z=4’
Hi(z) = 1.4192 + 0592027 + 0.04317~2
1+ 0.8100z~1 -+ 0.83462~2 + 0.14462~3 + 0.1171z—*’
) = 2.4192 +2.0841z~" 4 0.2650z"2 + 0.05482~°

1+ 0.8100z7! + 0.8346272 + 0.14462z3 + 0.1171z—4"

(6.38)

(6.39)

Then the necessary parameters of each AMRA filter in (6.39) can be computed from

(6.14)-(6.21) in Appendix. The parameter settings for the programmable module are in

Table 6.4(b).

Multirate 8-point DCT

The rotation parameters 6;’s and the scaling factors fo;’s, f1,;’s for the modules operating

on the even and odd subsequences can be found by using (6.35) and (6.36), respectively.
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The settings are given in Table 6.4(c).

6.3 Incorporation of the QRD-LSL Adaptive Filtering

In this section, we will incorporate the feature of adaptive filtering into the co-processor
design. We will show that, with little modification of the programmable module design,
the proposed co-processor can also perform the QR-decomposition based recursive least-

squares lattice (QRD-LSL) algorithm [47].

6.3.1 CORDIC Operation and QRD-LSL Architecture

The CORDIC is capable of evaluating various rotation functions based on the shift-and-
add operations [50]. There are two operation modes in the CORDIC processor: one
is the vector rotation mode (see Fig. 6.13(a)) which will rotate the 2-input vector
for a given angle 6. Let W be the total iteration number in CORDIC algorithm. In
real implementation, the rotation is performed by feeding a sequence of *1, p;, 1 =
0,1,...,W, to the CORDIC processor. Suppose that the rotation circuit inside our
programmable module is implemented using the CORDIC processor. The values of p;,
sequence can be calculated in advance and will be loaded to the module array during the
initialization mode. On the other hand, the CORDIC in angle accumulation mode (see
Fig. 6.13(b)) is to rotate the input vector until one of input components is annihilated;
Meanwhile, the uoy: sequence that reflect the performed rotation are generated. In
the applications of adaptive filtering, both modes are used for the updating of RLS
parameters.

The QRD-LSL algorithm is one of the most promising candidate for the implemen-
tation of the recursive least-square (RLS) adaptive filtering. Fig. 6.14(a) shows the
overall architecture to perform the linear prediction. The readers may refer to [47]{53,

Chap.18] for detailed operations. The QRD-LSL can be implemented using the CORDIC

123



Mo M M3 M; M, Ms Mg My M My Mo M,
S 000100 | 000100 { 000100 | 010100 | 100100 | 010100 | 010100 | 100100 { 010100 | 010100 | 010100 | 010100
fon 0.9878 0.1154 | -0.6574 | 0.8833 | -0.4092 | 0.8005 | 0.9902 | 84.0896 | 0.9613 | 0.9756 | 0.3073 | 0.9923
fis 0.9878 0.1154 | -0.6574 | 0.8833 | -0.4092 | 0.8005 | 0.9902 | 84.0896 | 0.9613 | 0.9756 | 0.3073 | 0.9923
r 1 1 1 1 1 1 1 1 1 1 1 1
8, -0.1571 | 0.0731 | 0.8086 | 0.5086 | -1.6262 | 0.6920 | 0.1406 | 0.0119 | 0.2827 | 0.2231 1.8484 | 0.1244
Intercon- Type It
nection

Mo M M3 M3 My My M M7 Mg My My Mn
) 000011 | 001111 |} 000011 | Q01111 | 000011 | 001111 | 000011 { 00111l | 0COO11 | 00111l | 000011 |} 001111
fou 0 -0.0614 0 -0.1104 0 -0.0657 | -7.6102 0 -4.2364 0 0 0
fia 1.4256 | 0.1551 | 3.4488 | 0.2992 | 2.0232 | 0.8060 | 2.3669 0 2.3669 0 2.3669 [
LS 0.8100 | 0.8100 | 0.8100 | 0.8100 | 0.8100 { 0.8100 | 0.4225 | 0.4225 | 0.4225 ! 0.4225 | 0.4225 | 0.4225
8, 2.0944 2.0944 2.0944 2.0944 2.0944 2.0944 1.5708 1.5708 1.5708 1.5708 1.5708 1.5708
Intercon- Type IV
nection

M, M M, M, M, Ms Ms M
S 000011 | 000011 | 000011 | 000011 | 000011 { 000011 | 000011 | 000011
fou 0.5000 | 0.5000 | -0.6533 | -0.2706 | 0.5000 | -0.5000 | -0.2706 | 0.6533
fin 0 0 -0.2706 | -0.6533 | 0.5000 | 0.5000 | -0.6533 | 0.2706
T, 1 1 1 1 1 1 1 1
6, 0 0 0.3927 | 1.1781 | 0.7854 | 2.3562 | 1.1781 | 3.5343
Interconnection Type V

(c)

Table 6.4: Settings for the (a) FIR filter, (b) IIR (ARMA) filter, and (c) 8-point DCT

under multirate operation.
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Figure 6.13: (a) CORDIC in vector rotation mode. (b) CORDIC in angle accumulation

mode.

processors by replacing the angle computer with CORDIC in angle accumulation mode
(R4(0)), and the rotator is replaced with CORDIC in vector rotation mode (Rg(6)).
The resulting system is shown in Fig. 6.14(b), where the dashed lines denote the data
paths for the pi, and pout sequences. The p,y: sequences are first computed by the
R 4(0)’s using the forward and backward signals at each stage. Later the generated poy;

sequences will be sent to Rg(#)’s to rotate the signals at each stage.

6.3.2 Mapping QRD-LSL to the Programmable Video Co-processor

From Fig. 6.14, we observe that the basic modules used in QRD-LSL are very similar
to our programmable module. Also, the connections can be easily handled by the inter-
connection network. We thus modify the programmable module by adding one direct
path and one more switch for selecting this new direct path. On the other hand, one
input port for pi, and one output port for pey are also added for the propagation of
the rotation parameters (see Fig. 6.15). Now based on the new programmable module,
we can implement the QRD-LSL in a very straightforward way. The detailed settings
of the module array as well as the connection type can be found in Table 6.1 and 6.2.
Fig. 6.16 shows the implementation of a 4th-order QRD-LSL based on our programmable
co-processor, where the adaptive filtering is performed in a fully-pipelined way without

any feedback path.
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Figure 6.14: (a) QRD-LSL structure. (b) Realizing the QRD-LSL using the CORDIC

Processor.
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Figure 6.15: (a) New programmable module with the QRD-LSL feature. (b) Switches
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6.4 Performance and Comparison

Consider the programmable modules in Fig. 6.7 and Fig. 6.15. We can use either the
general-purpose multipliers or the CORDIC processor [50] to implement the rotation
circuit. In the former case, the critical path will be the path along two multipliers and
two adders in the middle of the programmable module. Hence, the data throughput
rate is approximately m, where Thac denotes the processing time for an MAC
operation. On the other hand, if we use the CORDIC processor as the processing kernel
of the programmable module, the data throughput rate will be limited by the CORDIC
processor and the scaling multipliers, and can be approximated by Tm, where
Tcorpic denotes the total processing time to finish the CORDIC operation. Note that
if the users need to perform adaptive filtering for their video applications, we must use
CORDIC processor to realize the rotation circuit. The reason is that the operations of
square-root and division are required to compute the rotation angles in the QRD-LSL
filtering. The programmable module with general-purpose multipliers is not applicable
in this case. The CORDIC processor, on the other hand, can perform all operations in
QRD-LSL including angle computations and rotations by using ys, and pey¢ sSequences.

The speed performance of the proposed co-processor design can be judged by the
following examples. For the N th_order FIR filtering, the general-purpose programmable
DSP requires N - Tyac processing time for each incoming serial data. As a result, the
data processing rate will be degraded as N increases. On the contrary, our video co-
processor can perform the FIR filtering at a fixed data rate of ﬁA_(—}— (general multiplier
implementation) or W%_CORTC (CORDIC implementation) for any N < P, where
P is the total number of programmable modules used in the co-processor. Besides,
the processing rate can be doubled in the multirate mode with the maximum order

2P

of the FIR equal to %-. Another example is the computation of the DCT. Suppose

that the fast DCT algorithm in [32] is employed to realize the transform function using
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programmable DSP. It takes approximately (%) logy, N MAC operations to compute N-
point DCT; i.e., the average processing time for each serial input data is lo—ggﬂ ‘TwMmac,
which is proportional to the block size N. However, our video co-processor performs
the time-recursive DCT at a fixed data rate as in the FIR case. We can also perform
the multirate DCT to double the data processing rate by using doubled programmable
modules.

In addition to the ASIC-like speed performance, our co-processor design also has good
flexibility in modifying the programmed functions in the FIR/IIR/QMF /DT /QRD-RLS.
As an example, we can easily increase the order/block-size of those programmed functions
at the expense of invoking more programmable modules while retaining the same system
throughput rate. Although the programmable DSP also has the flexibility of changing
the order/block-size of the programmed function, the system throughput rate will be
degraded as a result of increased MAC operations per data sample. Besides, we can
easily change function specifications (e.g., FIR tap coefficients) by reprogramming the
parameters of the programmable modules. As to ASIC designs, the aforementioned
modifications are in general not applicable.

The real-time processing speed as well as the programmable feature of this design
makes it very attractive for video-rate applications. The programmable feature can
significantly reduce the hardware cost compared to the ASIC-based implementations.
Meanwhile, we do not trade the processing speed for this flexibility since all operations

are performed in a parallel and fully-pipelined way as in dedicated ASIC designs.
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Chapter 7

Conclusions and Future Research

In this dissertation, we presented a new algorithmic/architectural-level low-power design
technique, the multirate approach, to compensate the speed penalty caused by lowered
supply voltage of the DSP chips. We illustrate this new design concept by applying
it to several major DSP problems such as the design of multirate FIR/IIR filtering
architectures, low-power transform coding architectures, and programmable video co-
processor with speed-up capability.

The major contribution of this dissertation is to link the well-known multirate signal
processing techniques with algorithmic/architectural-level low-power VLSI architecture
designs. This provides VLSI system designers and algorithm developers a new design
tool in compensating the speed penalty in addition to the existing techniques of “parallel
processing” and “pipelining”. Beside the application of low-power design, the proposed
multirate VLSI architectures can be readily used for very high-speed data processing.
For example, if we want to perform DCT for serial data at 200 MHz, we may use
the parallel architecture of Fig. 3.11, in which only 50MHz adders and multipliers are
required. Therefore, we can perform very high-speed DCT by using only low-cost and
low-speed operators. In the following, we will summarize our contributions and suggest
further research directions.

We first proposed a design methodology for the low-power design of the FIR/IIR DSP
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systems. By applying the design methodology, we can perform FIR/IIR filtering using a
multirate architecture that is running at M-times slower operating frequency than the
input data rate. We showed that for the case of M = 2, the multirate FIR structure can
save up to 71% of the power compared with the normal pipelined FIR structure. The
predicted power saving is verified by the simulation results of the implemented QMF
chips.

Next, we presented the algorithm-based low-power design of the transform coding
architectures based on the multirate approach. Two different approaches are proposed.
One is the Chebyshev polynomial approach and the other is the polyphase decomposi-
tion approach. We showed that by applying these approaches, we can reformulate the
DCT/IDCT algorithms so as to reduce the operating frequency of the transforms at the
architectural level without degrading the system throughput rate. Such a compensation
capability will lead to drastic savings in the total power consumption. We also considered
some new aspects of the multirate low-power design; namely, the logarithmic-complexity
low-power architecture, unified IIR-based low-power transform coding architecture, and
finite-wordlength analysis of the multirate VLSI architectures. We have shown that log-
arithmic low-power architecture is a good choice for VLSI implementation when both
low-power dissipation and chip area are taken into consideration. The unified transform
coding architecture allows us to perform various sinusoidal transforms using the same
dedicated VLSI architecture. The real-time operations and the programmability of this
design make it a promising candidate to be incorporated into the design of video co-
processor. Finally, the finite-wordlength analysis gives us a tool to achieve a desired
SNR by choosing a minimal wordlength. It not only reduces the total switching events
(hence the power dissipation), but also provides a good control over the total chip area
under the SNR constraint.

We also presented a system architecture of a massively parallel programmable video

co-processor for numerically intensive front-end video/image communications. It can
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integrate and perform various functions (FIR/QMF/IIR/DT/QRD-LSL) for the host
processor by simply loading the suitable parameters and reconfigurating the intercon-
nection network. The proposed parallel architecture retains the advantage of ASIC
designs but is much more flexible. Moreover, the architecture is regular and modular.
As a consequence, they are very suitable for VLSI implementation. We also showed
that we can reconfigurate the video co-processor to perform the multirate FIR/IIR /DT
operations. The significance of the feature is twofold: Firstly, we can speed up the per-
formance of the co-processor since the processing elements can now process data that are
twice as fast as its processing speed. Secondly, the multirate feature can be applied to
the low-power implementation of the co-processor. Furthermore, since the DCT-based
motion estimation (ME) scheme in [54] employs DCT/DST as a basic processing kernel,
and the computations are inherently local operations, we can also map the DCT-based
ME scheme to our co-processor design.

Based on the research results presented in this dissertation, several new research

topics can be further investigated:

e Multirate Computer Arithmetic: The bit-serial approach is a good way to
save silicon area for the implementations of adders and multipliers [55]. How-
ever, the partial sum as well as the partial product need to be updated at every
bit clock cycle. The high processing rate will result in an increase in the total
switching events, hence the total power consumption of the chip. If we can also
decimate the input bit stream into even and odd bit streams and obtain the same
summation and/or product from the reformulated multirate bit-serial arithmetic
operations, we can achieve low-power consumption at the bit level. The research
issues include the study of different computer arithmetic architectures at bit level
for a given operation. For example, carry-look-ahead adder, carry-ripple adder
and carry-selection adder will have different properties (power/speed/area) when

we try to perform the addition operation using the decimated bit streams. Similar
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studies can be applied to the multiplication operation with different arithmetic

architectures.

Multirate Linear Algebraic Operations: The matrix-vector and matrix-matrix
multiplications are the basic operations in modern signal processing such as direction-
of-arrival (DOA) and recursive-least-squares (RLS) estimation [53]. Their sys-
tolic implementations can be found in [56]. We can consider reformulated systolic
architectures that perform those linear algebraic operations using the multirate
approach; i.e., the inputs are first decimated into low-speed short-length sub-
sequences and/or small-size sub-matrices. Then we try to compute the partial
matrix-vector /matrix-matrix products at a lower speed. Once the computations
are complete, we try to recombine those partial products to obtain the desired

product.

Applications to Specific DSP Algorithms: We have applied the multirate
approach to the design of transform coding kernels, which results in very efficient
low-power /high-speed architectures. The advantage is obtained by fully exploiting
the inherent properties of the time-recursive DT operations. In the future work,
we can consider how to extend the proposed low-power design technique to other

DSP applications.

One possible application is in the adaptive filtering that has a wide range of ap-
plications such as adaptive channel equalization, noise cancellation, and system
identification [53]. Currently, most adaptive filtering algorithms need to update
the system parameters for each incoming input data. When they are implemented
in hardware, the processing elements must finish all the updating operations before
next data comes in. This implies that the speed compensation is not easy to achieve
for these implementations. We can consider multirate adaptive filtering algorithms

in which the updating of parameters can be performed using the decimated input
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data. Therefore, the speed constraint can be relaxed.

Furthermore, we can consider the multirate implementations of some well-known
digital communication algorithms such as the Viterbi algorithm and the Reed-
Solomon codec [57]. Due to the prevalence of personal communicators, low-power
but high-speed codec chips become the essential parts in the communication de-
vices. The multirate feature can help reduce the power of those codec chips while

maintaining the required throughput rate.
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