
ABSTRACT

Title of dissertation: SPARSE AND NONNEGATIVE FACTORIZATIONS
FOR MUSIC UNDERSTANDING

Steven Kiemyang Tjoa, Doctor of Philosophy, 2011

Dissertation directed by: Professor K. J. Ray Liu
Department of Electrical and Computer Engineering

In this dissertation, we propose methods for sparse and nonnegative factoriza-

tion that are specifically suited for analyzing musical signals. First, we discuss two

constraints that aid factorization of musical signals: harmonic and co-occurrence

constraints. We propose a novel dictionary learning method that imposes harmonic

constraints upon the atoms of the learned dictionary while allowing the dictionary

size to grow appropriately during the learning procedure. When there is significant

spectral-temporal overlap among the musical sources, our method outperforms pop-

ular existing matrix factorization methods as measured by the recall and precision

of learned dictionary atoms. We also propose co-occurrence constraints – three sim-

ple and convenient multiplicative update rules for nonnegative matrix factorization

(NMF) that enforce dependence among atoms. Using examples in music transcrip-

tion, we demonstrate the ability of these updates to represent each musical note

with multiple atoms and cluster the atoms for source separation purposes.

Second, we study how spectral and temporal information extracted by non-

negative factorizations can improve upon musical instrument recognition. Musical

instrument recognition in melodic signals is difficult, especially for classification sys-

tems that rely entirely upon spectral information instead of temporal information.

Here, we propose a simple and effective method of combining spectral and tempo-

ral information for instrument recognition. While existing classification methods

use traditional features such as statistical moments, we extract novel features from

spectral and temporal atoms generated by NMF using a biologically motivated mul-

tiresolution gamma filterbank. Unlike other methods that require thresholds, safe-

guards, and hierarchies, the proposed spectral-temporal method requires only simple

filtering and a flat classifier.

Finally, we study how to perform sparse factorization when a large dictionary

of musical atoms is already known. Sparse coding methods such as matching pursuit

(MP) have been applied to problems in music information retrieval such as tran-

scription and source separation with moderate success. However, when the set of

dictionary atoms is large, identification of the best match in the dictionary with the

residual is slow – linear in the size of the dictionary. Here, we propose a variant

called approximate matching pursuit (AMP) that is faster than MP while maintain-

ing scalability and accuracy. Unlike MP, AMP uses an approximate nearest-neighbor

(ANN) algorithm to find the closest match in a dictionary in sublinear time. One

such ANN algorithm, locality-sensitive hashing (LSH), is a probabilistic hash algo-

rithm that places similar, yet not identical, observations into the same bin. While

the accuracy of AMP is comparable to similar MP methods, the computational

complexity is reduced. Also, by using LSH, this method scales easily; the dictionary

can be expanded without reorganizing any data structures.

SPARSE AND NONNEGATIVE FACTORIZATIONS
FOR MUSIC UNDERSTANDING

by

Steven Kiemyang Tjoa

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2011

Advisory Committee:
Professor K. J. Ray Liu, Chair/Advisor
Professor Min Wu
Professor Rama Chellappa
Professor Jonathan Z. Simon
Professor Lawrence C. Washington

c© Copyright by
Steven Kiemyang Tjoa

2011

Acknowledgments

First, I thank my advisor, Professor Ray Liu, for guiding me throughout this

wonderful and worthwhile journey. In January of 2003, he accepted an untested, un-

proven undergraduate student with nothing but “potential” into his research group

to begin the first of many research projects. Someone with his reputation and busy

schedule did not need another student like me. But Dr. Liu is not just another

important professor. He really cares about the maturation and well being of others

like myself. For that, I am forever grateful.

Next, I thank other members in my dissertation committee – Professors Min

Wu, Rama Chellappa, Jonathan Simon, and Lawrence Washington – for taking the

time to attend my defense and read this dissertation, as well as Professor Shihab

Shamma who served on my proposal committee but was unable to attend the dis-

sertation defense. Outside of this dissertation, these professors have influenced me

throughout my years at Maryland as teachers, advisors, and friends. Likewise, I also

thank other faculty members at Maryland including Professors André Tits, Adrian

Papamarcou, Steven Marcus, Donald Yeung, and Richard La.

I thank each and every member of the Signals and Information Group, espe-

cially Wan-Yi Lin, Hong Vicky Zhao, Yan Chen, Matt Stamm, Charles Pandana,

and Quoc Lai. I met Quoc through Dr. Liu in 2003 when we were both undergrad-

uates at UMD, and we both decided to follow the same path from then until now.

We have remained great friends ever since. I also thank other graduate students

including Avinash Varna, Daniel Garcia-Romero, and Vishal Patel for their fruit-

ii

ful discussions related to audio processing, sparse factorizations, and information

retrieval, not to mention their effort as my teammates (or opponents) in foosball,

frisbee, or tennis.

Most of all, I thank my family – Bing Tjoa, May Tjoa, Debra Tjoa, and Vivian

Samson – for always being there for me. Engineering is always a team effort, and

every team succeeds or fails together. On this day, each of us is earning a doctoral

degree from the University of Maryland.

This dissertation is not only dedicated to them. It belongs to them.

iii

Table of Contents

List of Tables vi

List of Figures vii

List of Algorithms xi

List of Abbreviations xii

List of Symbols xiii

1 Introduction 1
1.1 Motivation . 4
1.2 Dissertation Outline . 6

1.2.1 Constrained Dictionary Learning 6
1.2.2 Spectral-Temporal Musical Instrument Recognition 7
1.2.3 Approximate Matching Pursuit 8

2 Constrained Dictionary Learning 9
2.1 Harmonic Constraints . 9

2.1.1 Problem Formulation . 11
2.1.2 Dictionary Learning: Existing Methods 12
2.1.3 Proposed Algorithm . 14
2.1.4 Experiments . 19

2.2 Co-occurrence Constraints . 22
2.2.1 Problem Formulation . 24
2.2.2 Proposed Update Rules . 27
2.2.3 Experiments . 29

2.3 Summary . 35

3 Spectral-Temporal Instrument Recognition 37
3.1 Representations of Timbre . 41
3.2 Nonnegative Matrix Factorization . 45
3.3 Multiresolution Gamma Filterbank 49
3.4 Proposed Feature Extraction and Classification 53
3.5 Experiments . 57

3.5.1 Isolated Sounds . 58
3.5.2 Feature Vector Classification of Solo Melodic Phrases 65
3.5.3 Signal Classification of Solo Melodic Phrases 72

3.6 Discussion . 77
3.7 Summary . 79

iv

4 Approximate Matching Pursuit 81
4.1 Related Work . 85
4.2 Problem Formulation . 87
4.3 Proposed Algorithm . 89
4.4 Locality Sensitive Hashing . 90
4.5 Experiments . 95

4.5.1 Learning Curves . 97
4.5.2 Phase Transition Diagrams . 99
4.5.3 Noise Robustness . 99
4.5.4 Computational Complexity . 101

4.6 Music Transcription . 105
4.6.1 Dictionary Construction . 105
4.6.2 Examples . 106

4.7 Summary . 109

5 Conclusions and Future Work 115
5.1 Conclusions . 115
5.2 Future Research . 118

A Pursuit Algorithms 121

Bibliography 123

v

List of Tables

3.1 Parameters for the 32-filter gamma filterbank used in the following
experiments. 57

3.2 Experiments A1, A2, and A3: sample sizes and accuracy rates. 60
3.3 Experiments B1, B2, B3: sample sizes and accuracy rates. 71
3.4 Experiments B1, B2, B3 with family classifications: sample sizes and

accuracy rates. 72
3.5 Experiments C1, C2, C3: One decision per song. Sample sizes and

accuracy rates. 73
3.6 Experiments C1, C2, C3 with family classifications. One decision per

song. Sample sizes and accuracy rates. 74

4.1 Execution times in seconds. 108

vi

List of Figures

1.1 Nonnegative matrix factorization of the spectrogram X (top right)
into A (top left) and S (bottom right) for three piano notes. 3

2.1 Two dictionary atoms (top left) and their gain coefficients (top right)
were used to construct a spectrogram. Using either K-SVD (mid-
dle left), NN-K-SVD (middle right), or NMF-MU (bottom left), the
learned dictionary atoms do not resemble the original atoms. Us-
ing the proposed algorithm (bottom right), the original and learned
atoms match. 16

2.2 Dictionary atom of original spectrum (top) and atom after filtering
spectrum through a comb filter (bottom). 17

2.3 Recall and precision when K = 5 for L ∈ {1, 2, 3, 4}. Ground-truth
pitches are initialized randomly over ten trials. 21

2.4 Recall and precision when K = 20 for L ∈ {1, 2, ..., 19}. Ground-
truth pitches are initialized randomly over ten trials. 21

2.5 Recall and precision when K = 5 and L = 3 (light gray) and when
K = 10 and L = 5 (dark gray). Pitches are chosen such that large
spectral-temporal overlap occurs. 22

2.6 Nonnegative matrix factorization of the spectrogram X (top right)
into A (top left) and S (bottom right) for one violin note. Two
atoms are required to capture the pitch modulation due to vibrato. . 24

2.7 Minimization of d(Q,SST) for three divergence metrics. Top row: Q.
Left column: S before and after minimization. Right column: SST

before and after minimization. 30
2.8 Learning curves for the examples in Fig. 2.7. If ε is sufficiently large,

then descent of the divergence metrics is guaranteed at each iteration. 31
2.9 Factorization of spectrogram with co-occurrence constraints on S for

three violin notes. Six dictionary atoms are grouped into three sets
of two atoms. 33

2.10 SST versus Q for the example in Fig. 2.9. 33
2.11 Factorization of spectrogram with co-occurrence constraints on A for

five drum beats from kick and snare drums. Four dictionary atoms
are grouped into two sets of two atoms. 34

2.12 ATA versus Q for the example in Fig. 2.11. 35

3.1 The cochlear and early cortical stages of the auditory system, shown
here, inspire our proposed method. The auditory spectrogram is con-
volved across time and frequency with STRFs of different rates and
scales to produce the four-dimensional cortical representation. This
multiresolution representation is believed to carry timbral information. 43

vii

3.2 Twelve example STRFs. Together, they constitute a filterbank sim-
ilar to the one proposed in Section 3.3. The left six STRFs select
downward-modulating frequencies, and the right six STRFs select
upward-modulating frequencies. Top row: seed functions for rate
determination. Left column: seed functions for scale determination. . 44

3.3 The NMF of a spectrogram drum beats. Component 1: kick drum.
Component 2: snare drum. Top right: X. Left: A. Bottom: S. . . . 47

3.4 Example kernels of gamma filters. The dashed vertical line indicates
the location of the maxima. Left column: n = 2. Right column: n = 4. 50

3.5 Log-log magnitude responses of two gamma filters, b = 1 and b = 10,
for n = 2. 51

3.6 Log-log magnitude responses of two gamma filters, b = 1 and b = 10,
for n = 4. 52

3.7 Top: MGFR as a function of time for n = 2. Bottom: input temporal
atom containing two pulses with attack times of 160 ms. 53

3.8 Feature vector zT for p =∞, where zT ∈ R32, and the corresponding
temporal atom. Top row: kick drum and snare drum. Bottom row:
trumpet and violin. 55

3.9 Experiment A1: Accuracy of spectral classification of isolated sounds
using ten-fold cross validation. Row labels: True class. Column
labels: Estimated class. Average accuracy: 88.2%. 62

3.10 Experiment A2: Accuracy of temporal classification (p = ∞) of iso-
lated sounds using ten-fold cross validation. Row labels: True class.
Column labels: Estimated class. Average accuracy: 72.9%. 63

3.11 Experiment A3: Accuracy of spectral-temporal classification (p =∞)
of isolated sounds using ten-fold cross validation. Row labels: True
class. Column labels: Estimated class. Average accuracy: 92.3%. . . 64

3.12 Experiment B1: spectral features. Classification accuracy of solo
excerpts using ten-fold cross validation. Row labels: True class. Col-
umn labels: Estimated class. Average accuracy: 72.4%. 68

3.13 Experiment B2: temporal features, p =∞. Classification accuracy of
solo excerpts using ten-fold cross validation. Row labels: True class.
Column labels: Estimated class. Average accuracy: 31.2%. 69

3.14 Experiment B3: spectral-temporal features, p = ∞. Classification
accuracy of solo excerpts using ten-fold cross validation. Row labels:
True class. Column labels: Estimated class. Average accuracy: 71.1%. 70

3.15 Experiment C1: spectral features. Classification accuracy of solo
excerpts using leave-one-out cross validation. Row labels: True class.
Column labels: Estimated class. Average accuracy: 95.5%. 73

3.16 Experiment C2: temporal features, p =∞. Classification accuracy of
solo excerpts using leave-one-out cross validation. Row labels: True
class. Column labels: Estimated class. Average accuracy: 51.1%. . . . 74

viii

3.17 Experiment C3: spectral-temporal features, p = ∞. Classification
accuracy of solo excerpts using leave-one-out cross validation. Row
labels: True class. Column labels: Estimated class. Average accu-
racy: 96.2%. 75

4.1 LSH example with k = 2. Points on the unit sphere are separated
into 2k = 4 bins. 94

4.2 Probability of two vectors having equal hashes as a function of the
angle between the vectors. Markers indicate our implementation.
Dark lines indicate the expected theoretical result. 96

4.3 Representation cost, ||x − As||, for OMP, STOMP, and AMP, as
a function of the vector dimension, M , and the iteration number,
averaged over ten trials. Dictionary atoms are uniformly distributed
upon the unit sphere, dictionary size K = 1000, and sparsity ||s0||0 =
10. 98

4.4 Number of representation errors, ||ŝ − s0||0, for OMP, STOMP, and
AMP as a function of sparsity, ||s0||0/M , and vector dimension, M/K,
averaged over five trials. Dictionary size is K = 200. Dictionary
atoms are uniformly distributed about the unit sphere. 100

4.5 Number of representation errors, ||ŝ − s0||0, for OMP, STOMP, and
AMP as a function of sparsity, ||s0||0/M , and SNR, averaged over five
trials. Dictionary size is K = 200, and vector dimension is M = 100.
Dictionary atoms are uniformly distributed about the unit sphere. . . 101

4.6 Representation cost, ||x − Aŝ||, for OMP, STOMP, and AMP, as
a function of the number of inner products computed. Dictionary
atoms are uniformly distributed upon the unit sphere, dictionary size
K = 1000, dimensionality M = 100, and sparsity ||s0||0 = 10. 102

4.7 Distribution of the number of inner products performed before con-
vergence over 300 trials. Dictionary atoms are uniformly distributed
upon the unit sphere, dictionary size K = 1000, dimensionality M =
100, and sparsity ||s0||0 = 10. 103

4.8 Number of inner products averaged over fifty trials as a function of
the dictionary size, K. The dimensionality is M = 100, and the
sparsity is ||s0||0 = 10. 104

4.9 Scatter plots of atoms as detected by AMP using LSH with parame-
ters (L, k) = (8, 8) and (10, 10) for a C-Major scale. The maximum
number of iterations per frame, and equivalently ||ŝ||0, is set to 8. . . 107

4.10 Top: scatter plot of atoms as detected by OMP for a C-Major scale.
The maximum number of iterations per frame, and equivalently ||ŝ||0,
is set to 8. Bottom: corresponding sheet music notation. 108

4.11 Scatter plots of atoms as detected by AMP using LSH with param-
eters (L, k) = (8, 8) and (10, 10) for Clair de Lune by Debussy, mm.
1-4. The maximum number of iterations per frame, and equivalently
||ŝ||0, is set to 8. 110

ix

4.12 Top: scatter plot of atoms as detected by OMP for Clair de Lune by
Debussy, mm. 1-4. The maximum number of iterations per frame,
and equivalently ||ŝ||0, is set to 8. Bottom: corresponding sheet music
notation. 111

4.13 Scatter plots of atoms as detected by AMP using LSH with param-
eters (L, k) = (8, 8) and (10, 10) for Clair de Lune by Debussy, mm.
5-8. The maximum number of iterations per frame, and equivalently
||ŝ||0, is set to 8. 112

4.14 Top: scatter plot of atoms as detected by OMP for Clair de Lune by
Debussy, mm. 5-8. The maximum number of iterations per frame,
and equivalently ||ŝ||0, is set to 8. Bottom: corresponding sheet music
notation. 113

x

List of Algorithms

1 Approximate Matching Pursuit [Tjoa and Liu] 89
2 Matching Pursuit [1] . 121
3 Orthogonal Matching Pursuit [2] . 121
4 Stagewise Orthogonal Matching Pursuit [3] 122

xi

List of Abbreviations

AMP Approximate Matching Pursuit
ANN Approximate Nearest Neighbor
BP Basis Pursuit
CQT Constant-Q Transform
DCT Discrete Cosine Transform
DFT Discrete Fourier Transform
DTW Dynamic Time Warping
FFT Fast Fourier Transform
GMM Gaussian Mixture Model
HMM Hidden Markov Model
IS Itakura-Saito (Divergence)
KL Kullback-Leibler (Divergence)
KSVD K-Singular Value Decomposition
NN-KSVD Nonnegative KSVD
LPC Linear Predictive Coding
LSH Locality Sensitive Hashing
MFCC Mel-Frequency Cepstral Coefficient
MGFR Multiresolution Gamma Filterbank Response
MIDI Musical Instrument Digital Interface
MIR Music Information Retrieval
MP Matching Pursuit
NMF Nonnegative Matrix Factorization
OMP Orthogonal Matching Pursuit
PCA Principal Component Analysis
QBH Query By Humming
STFT Short-Time Fourier Transform
STOMP Stagewise Orthogonal Matching Pursuit
STRF Spectrotemporal Receptive Field
SVD Singular Value Decomposition
SVM Support Vector Machine

xii

List of Symbols

M number of rows (i.e., frequency bins) in spectrogram X
N number of columns (i.e., frames of x(t)) in spectrogram X
K number of atoms in the dictionary
k number of hash functions in one locality sensitive hash
L number of hash tables in locality sensitive hashing

x(t) input signal
X(f) Fourier transform of x(t)
u(t) unit step function

ak kth column of A; spectral atom k in the dictionary
c constant-Q transform vector
sk [kth row of S]T ; temporal atom k in the dictionary
s[n] nth column vector of S
x[n] nth column vector of X

A spectral dictionary
E error matrix
Q co-occurrence constraint matrix
S temporal dictionary
X spectrogram of x(t)

X ·Y element-wise multiplication between X and Y
X/Y element-wise division between X and Y

d(·, ·) distance metric
[·]+ max(·, 0)

xiii

Chapter 1

Introduction

For centuries, scientists and mathematicians have experienced the need to factorize

data. Factorization – the decomposition of data into simple, fundamental factors –

allows humans to identify the most meaningful components of data. Today, this need

is greater than ever. Factorization has become popular in such diverse fields as in

engineering, biology, physics, and statistics. As the complexity of modern systems

increases, the need for insightful data decomposition becomes greater than ever.

Subsequently, engineers have developed and applied more sophisticated methods of

factorization toward real-world data in a variety of research areas.

One such research area is music understanding, or music information retrieval

(MIR). The goal of MIR algorithms is to extract high-level semantic information

from low-level musical data. There are a variety of open problems in MIR: search,

classification, transcription, source separation, recommendation, rhythm detection,

segmentation, and more. We focus on two problems in particular: transcription and

source separation. Music transcription is the process of obtaining discrete musical

events such as notes and beats from an acoustic waveform. For example, WAV-to-

MIDI conversion is a music transcription problem. Source separation is the act of

separating a polyphonic signal into its individual sources; in musical signals, source

1

separation usually aims to decompose a signal into indivdual musical instruments

or voices.

Among the many approaches for performing tasks such as music transcription

and source separation, one category of approaches – sparse and nonnegative matrix

factorization – has received plenty of attention due to their elegance and effective-

ness. By first expressing a representation of the musical signal as a matrix, these

methods decompose the matrix into a sum of individual dictionary atoms, each cor-

responding to one musical source or note. Within the past five years, sparse and

nonnegative factorizations have completely changed the way we perform musical

signal analysis.

These methods commonly share two important steps: dictionary learning and

sparse coding. Dictionary learning refers to the construction of a set of atoms –

the dictionary – from which the input signal can be represented, and sparse coding

is used to compute the contribution of each dictionary atom to the signal at each

moment in time. Methods known as nonnegative matrix factorization (NMF) also

impose a nonnegativity constraint on the dictionary and its coefficients in order to

learn more meaningful atoms. The nonnegativity constraint makes sense considering

that we only have the presence or absence of a source from a signal and never the

“subtraction” of a source from a signal in which it is already absent. Given a

nonnegative matrix X, the objective of NMF is to find two nonnegative matrices, A

and S, that minimizes some divergence between X and AS. The NMF problem was

originally popularized by Paatero and Tapper [4], and Lee and Seung later proposed

algorithms for solving the NMF problem using multiplicative update rules [5, 6].

2

1 2 3

F
re

q
u

e
n

c
y

3

2

1

Time

Figure 1.1: Nonnegative matrix factorization of the spectrogram X (top right) into A

(top left) and S (bottom right) for three piano notes.

Fig. 1.1 illustrates the use of NMF when applied to a musical audio signal. The

matrix X represents the magnitude spectrogram of an audio signal containing three

notes played by a piano. After decomposition into a rank-three approximation using

NMF, the three columns of A – also referred to as dictionary atoms – represent the

frequency spectra of the three piano notes, and the three rows of S represent their

corresponding temporal activities. Note how the columns of A accurately represent

the spectra of the three piano notes. To perform source separation, we reconstruct

an estimate of the spectrogram for an individual source using only a subset of the

learned dictionary atoms.

3

1.1 Motivation

Unfortunately, the basic sparse and nonnegative factorization methods are limited

and underutilized. When there is significant spectral-temporal overlap in the signal

among the dictionary atoms, it becomes difficult for these methods to learn atoms

properly. Often, information from multiple atoms is represented as a single atom

by the learning procedure. If an atom in the output dictionary contains musical

information from multiple sources, transcription and source separation cannot be

accurately performed. Furthermore, if the dictionary atoms themselves are highly

correlated, as is common when harmonic frequencies between atoms overlap, accu-

rate dictionary learning becomes even more difficult.

Objects may require more than a single dictionary atom in order to be ap-

proximated accurately. For example, Fig. 2.6 illustrates the decomposition of a

spectrogram of an audio signal containing one note played by a violin. Although

only one note is played, the vibrato induced by the performer causes the pitch to

modulate. As a result, a rank-one approximation is not sufficient to capture this

pitch modulation. A user can select multiple dictionary atoms to represent one note.

However, in the presence of many other sources, it is unclear which atoms to select.

In other words, after learning is complete, there is no straightforward way to cluster

multiple dictionary atoms that belong to the same source.

One alternative to dictionary learning is to use a large, predefined, overcom-

plete dictionary where each atom is already labeled and assumed to contain infor-

mation from only one musical source. Instead of learning an optimal dictionary for

4

a given musical signal, it may suffice to match the signal to this large set of pre-

computed, labeled dictionary atoms. Then, by decomposing a signal with respect

to this fixed dictionary, classification is easily achieved by simply reading the label

of the atom. Of course, the performance of such an algorithm depends upon the

breadth of the dictionary. When atoms from more musical sources are added to

the dictionary, the dictionary’s ability to decompose polyphonic music will improve.

However, dictionary growth introduces concerns related to scalability and computa-

tional complexity. While the aforementioned algorithms have significantly advanced

the state of the art, they remain slow and difficult to scale as the dictionary size in-

creases. Most of the original sparse coding methods such as matching pursuit (MP)

[1] and NMF with multiplicative updates [5, 6] have complexity that is linear in the

size of the dictionary. As a result, when dictionary sizes grow, the transcription

capability of these algorithms diminishes.

Sparse and nonnegative factorization also has uses beyond transcription; for

example, it can also be used in musical instrument recognition. Further progress in

musical instrument recognition may depend upon recent advances in signal process-

ing such as sparse coding and dictionary learning. Some methods already use NMF

to exploit the spectral redundancy in a signal. However, redundancy remains in

the temporal domain. Classification methods that only utilize spectral information

are discarding the potentially useful temporal information that could be used to

improve classification performance. By extracting the spectral and temporal infor-

mation from NMF in a principled manner, we may be able to improve upon the

state of the art in musical instrument recognition.

5

1.2 Dissertation Outline

The remainder of the dissertation is organized as follows.

1.2.1 Constrained Dictionary Learning

First, we propose two novel methods for learning dictionaries of musical atoms. The

first method uses harmonic constraints to learn meaningful dictionary atoms despite

spectral-temporal overlap among the musical sources. The dictionaries learned by

this method contain atoms which accurately resemble the original notes and sources

which comprise the input signal. While our method is based on matrix factorization,

it imposes an additional harmonic constraint that restricts each atom to represent at

most one pitch. Furthermore, our method is flexible by allowing the size of the dic-

tionary to grow based upon the complexity of the input signal, unlike other methods

which fix the dictionary size a priori. Our method consistently outperforms other

dictionary learning methods such as nonnegative matrix factorization with multi-

plicative updates (NMF-MU) [6], K-SVD [7], nonnegative K-SVD (NN-K-SVD) [8],

and the method of optimal directions (MOD) [9], as measured by the recall and

precision of learned dictionary atoms.

The second method enforces dependence among sets of dictionary atoms by

introducing co-occurrence constraints – constraints that specify which dictionary

atoms are dependent, or co-occur. We introduce three new update rules to enforce

dependence among dictionary atoms by incorporating co-occurrence constraints into

NMF. These rules are conceptually simple, easy to implement, and effective for

6

describing sources using multiple dictionary atoms. We formulate the NMF problem

with co-occurrence constraints, we derive new update rules for minimizing three

common divergence metrics, and we illustrate the use of these update rules in the

context of music transcription.

1.2.2 Spectral-Temporal Musical Instrument Recognition

Next, we use NMF to extract novel features from the decomposed atoms to perform

musical instrument recognition. We propose the use of a new temporal feature,

the multiresolution gamma filterbank response (MGFR), which is computed from

the temporal atoms extracted from spectrograms using NMF. By combining the

beneficial elements of NMF, multiresolution analysis, and supervised classification,

this algorithm is rigorous and accurate yet without too many “moving parts.” Other

methods may require preprocessing such as note segmentation [10], pitch estimation

[11], or classifiers such as hierarchical clustering [12, 13]. To our knowledge, no other

work has attempted to use temporal information extracted from NMF to classify

instruments in a systematic manner. Because NMF has become widely popular

for facilitating audio classification, this work is useful to practitioners in the field.

We also analyze the spectral and temporal properties of the multiresolution gamma

filterbank, and we provide comprehensive experiments on isolated notes and melodic

phrases from a diverse set of instruments. We show that our spectral-temporal

method is competitive with the state of the art.

7

1.2.3 Approximate Matching Pursuit

Finally, we discuss the problem of sparse and nonnegative factorization using a

fixed dictionary. We propose a variant of MP called approximate matching pursuit

(AMP). Unlike MP and NMF, AMP can decompose signals into a sparse com-

bination of atoms with complexity that is sublinear in the dictionary size while

maintaining accuracy.

To do this, AMP uses an approximate nearest neighbor (ANN) method to find

approximate matches to the signal residual at each iteration. The ANN method

that we choose in this work is locality sensitive hashing (LSH), a probabilistic hash

algorithm that places similar, yet not identical, observations into the same bin. LSH

can retrieve near neighbors with a complexity that is sublinear in the dictionary size.

Not only is LSH fast, but it is also scalable – as the dictionary grows, reorganizations

of the data structure are unnecessary. We simply add the new dictionary atom into

its respective bin in the hash table.

Our experiments demonstrate that AMP is as accurate and robust as MP

variants such as OMP [2] and STOMP [3] under a wide variety of scenarios related

to sparsity, dimensionality, and additive noise. At the same time, AMP requires less

computation than OMP and STOMP; at convergence, AMP computes fewer inner

products than the other algorithms.

8

Chapter 2

Constrained Dictionary Learning

When performing factorization for music information retrieval, we expect the learned

dictionary of musical atoms to be formed of interpretable elements, each exhibiting

musical properties such as pitch and timbre. The sparsity and nonnegativity con-

straints mentioned earlier both provide an important step toward learning meaning-

ful dictionaries. Nevertheless, the results achieved by the community leave room for

improvement. In this chapter, I propose two additional constraints – harmonic and

co-occurrence constraints – that improve upon the basic factorization formulations.

2.1 Harmonic Constraints

Recently, researchers have proposed many approaches for performing music tran-

scription and source separation. In particular, one such category of approaches –

spectral decomposition through matrix factorization – has received plenty of atten-

tion. By first expressing a time-frequency representation of the musical signal as a

matrix, these methods decompose each column of the matrix into a summation of

individual vectors, each corresponding to one musical source or note [14, 15].

These methods commonly share two important steps: dictionary learning and

sparse coding. Dictionary learning refers to the construction of a set of atoms –

9

the dictionary – from which the input signal can be represented, and sparse coding

is used to compute the contribution of each dictionary atom to the signal at each

moment in time. Methods known as nonnegative matrix factorization (NMF) also

impose a nonnegativity constraint on the dictionary and its coefficients in order to

learn more meaningful atoms. The nonnegativity constraint makes sense considering

that we only have the presence or absence of a source from a signal and never the

“subtraction” of a source from a signal in which it is already absent.

Unfortunately, these methods also share a common limitation. When there

is significant spectral-temporal overlap in the signal among the dictionary atoms,

it becomes difficult for these methods to learn atoms properly. Often, information

from multiple atoms is represented as a single atom by the learning procedure. If an

atom in the output dictionary contains musical information from multiple sources,

transcription and source separation cannot be accurately performed. Furthermore, if

the dictionary atoms themselves are highly correlated, as is common when harmonic

frequencies between atoms overlap, accurate dictionary learning becomes even more

difficult.

In this section, we propose a novel dictionary learning method designed to

perform well despite spectral-temporal overlap among the dictionary atoms. The

dictionaries learned by this method contain atoms which accurately resemble the

original notes and sources which comprise the input signal. While our method is

based on matrix factorization, it imposes an additional harmonic constraint that

restricts each atom to represent at most one pitch. Furthermore, our method is

flexible by allowing the size of the dictionary to grow based upon the complexity

10

of the input signal, unlike other methods which fix the dictionary size a priori.

Our method consistently outperforms other dictionary learning methods such as

nonnegative matrix factorization with multiplicative updates (NMF-MU) [6], K-

SVD [7], nonnegative K-SVD (NN-K-SVD) [8], and the method of optimal directions

(MOD) [9], as measured by the recall and precision of learned dictionary atoms.

2.1.1 Problem Formulation

Dictionary learning methods based upon matrix factorization accept a time-frequency

representation of the musical signal as the input. Although there exist many differ-

ent time-frequency representations, we will simply use the magnitude spectrogram

of the input signal.

Given a discrete-time single-channel music signal x(n), the magnitude spec-

trogram of the input signal is a real-valued nonnegative matrix X ∈ RM×N
+ , where

X = [x1 x2 ... xN], whose N columns are the discrete Fourier transform (DFT)

magnitudes of consecutive, possibly overlapping, frames of the input signal. Given

the matrix X, our primary goal is to find two matrices, the dictionary A ∈ RM×K
+

and gain matrix S ∈ RK×N
+ , which minimize some distance between X and AS. If

we denote ||X||F as the Frobenius norm of X, where ||X||2F = tr(XTX) =
∑

i,j x
2
ij,

then we can describe the problem as follows:

min
A,S
||X−AS||2F such that A ∈ RM×K

+ ,S ∈ RK×N
+ . (2.1)

The columns of the matrix A = [a1 a2 ... aK] correspond to the individual

11

atoms of the dictionary. In this musical context, these atoms resemble the spectra

of individual sources or notes found in the musical mixture. The gain matrix S =

[s1 s2 ... sK]T represents the contribution of each dictionary atom in the spectrogram

X, i.e., the element skn indicates the amount of atom ak present in observation xn.

We refer to the row vector sTk as the kth row of S, i.e., sk indicates the activity of

atom ak across time.

2.1.2 Dictionary Learning: Existing Methods

To motivate our proposed algorithm, we discuss existing dictionary learning pro-

cedures based upon singular value decomposition (SVD), including K-SVD and its

nonnegative variant, NN-K-SVD [7, 8]. SVD computes the matrix factorization

X = UΣVT where U = [u1 u2 ... uM] and V = [v1 v2 ... vN] are both orthnormal

matrices and the diagonal matrix Σ is such that for any choice of K, the difference

||X−∑K
k=1 σkkukv

T
k ||F is minimized. In our context, the dictionary A corresponds

to the first K columns of U, and the gain matrix S corresponds to the first K

rows of ΣVT . Intuitively, through SVD, we find the K dictionary atoms and their

associated gains which best represent the magnitude spectrogram X.

However, SVD does not guarantee sparsity or nonnegativity of the factoriza-

tion. On the other hand, K-SVD is an iterative algorithm that learns a dictionary

that can be overcomplete and whose gain coefficients are sparse. Instead of immedi-

ately solving for A and S jointly, this algorithm solves the minimization in (2.1) one

dictionary atom at a time, ignoring the nonnegativity constraints, while the other

12

atoms remain constant. In other words, for a given k, each iteration of K-SVD

solves the minimization

min
ak,sk
||X−AS||2F . (2.2)

Note that

||X−AS||F =

∣∣∣∣∣
∣∣∣∣∣X−

K∑
j=1

ajs
T
j

∣∣∣∣∣
∣∣∣∣∣
F

=

∣∣∣∣∣
∣∣∣∣∣
(

X−
∑
j 6=k

ajs
T
j

)
− aks

T
k

∣∣∣∣∣
∣∣∣∣∣
F

. (2.3)

For convenience, denote

Ek = X−
∑
j 6=k

ajs
T
j . (2.4)

Then, the solution to (2.2) is the rank-one approximation of the SVD Ek = UΣVT ,

specifically, ak = u1 and sk = σ11v1. K-SVD adjusts ak and sk accordingly in

each iteration and moves on to the next dictionary atom in the next iteration. The

entire process is repeated until convergence of the dictionary occurs. Sparse coding

is applied to update the gain matrix before each set of K iterations.

While K-SVD encourages sparsity and accommodates overcompleteness, it still

does not influence the nonnegativity of either the dictionary A or the gain matrix

S. On the other hand, nonnegative K-SVD (NN-K-SVD) retains the same flavor

of K-SVD while maintaining nonnegativity of the matrix elements. Consider the

following constrained minimization:

min
ak

||Ek − aks
T
k ||2F such that ak ∈ RM

+ . (2.5)

13

Here, we keep sk constant and enforce the nonnegativity of ak. By differentating

the objective function, it can be shown that the optimal solution for ak (similarly,

for sk by keeping ak constant) is

ak =

[
Eksk
sTk sk

]
+

sk =

[
ET
k ak

aTk ak

]
+

, (2.6)

where [·]+ denotes a matrix or vector whose negative elements are set to zero. By

observing that the Hessian of the objective function with respect to ak is proportional

to the identity matrix, the optimal projection from the unconstrained minimum to

the constrained minimum is performed simply by setting all negative elements of

the unconstrained solution to zero, hence the solution in (2.6). Each iteration of

NN-K-SVD uses these rules to update ak and sk. While we no longer minimize ak

and sk jointly, the updates still guarantee a decrease in the objective function while

maintaining nonnegativity of the matrices A and S.

2.1.3 Proposed Algorithm

While NN-K-SVD can find numerically acceptable solutions to (2.1), some problems

remain. First, there is no guarantee that the individual atoms of the learned dictio-

nary will each correspond to only one musical source. In particular, when multiple

atoms coincide in time (e.g., s1 and s2 are highly correlated), the aforementioned

algorithms will learn a single atom that contains information from both a1 and a2.

For example, consider the learned atoms in Fig. 2.1. We fabricate a dictionary

A with two atoms whose gain coefficients S have significant overlap in time, and

14

then construct the spectrogram X = AS. The dictionaries learned by K-SVD, NN-

K-SVD, and NMF with multiplicative updates yield output dictionaries which do

not match the input dictionary. However, the dictionary learned by our proposed

method, discussed below, does accurately resemble the original dictionary.

The second problem deals with the size of the dictionary, K. For the popular

existing algorithms, the dictionary size K must be chosen before the algorithm

begins. If the chosen value of K is too low, then the learned dictionary cannot

accurately represent the input spectrogram. If K is too high, computation and

memory requirements can increase dramatically and unnecessarily. When executing

eigendecompositions and/or matrix multiplications, these requirements can become

overwhelming.

In order to solve these problems, we propose a novel approach to dictionary

learning that emphasizes the presence of at most one pitch per dictionary atom.

Our method builds upon the technical foundations of NN-K-SVD mentioned ear-

lier. As illustrated in Fig. 2.1, existing dictionary learning algorithms are intended

for general purposes, i.e., they do not enforce any perceptual constraints on the

learned dictionary atoms. Under the assumption that individual musical sources do

not overlap in time or frequency, existing algorithms can learn dictionaries accu-

rately. However, this assumption is not necessarily true for musical contexts where

individual sources are highly correlated.

Motivated by the observation that music contains a series of pitched and un-

pitched sounds, we enforce a harmonic constraint on the learned atom by filtering

the spectrum represented by ak through a comb filter, thus preserving the spectral

15

0 0.5 1 1.5 2

x 10
4

1

Frequency (Hz)

D
ic

ti
o
n
a
ry

 A
to

m
s
:
In

p
u
t

0 2 4 6 8
2

1

Time (seconds)

G
a
in

 C
o
e
ff
ic

ie
n
ts

:
In

p
u
t

0 0.5 1 1.5 2

x 10
4

2

1

Frequency (Hz)

D
ic

ti
o
n
a
ry

 A
to

m
s
:
K

-S
V

D

0 0.5 1 1.5 2

x 10
4

1

Frequency (Hz)

D
ic

ti
o
n
a
ry

 A
to

m
s
:
N

N
-K

-S
V

D

0 0.5 1 1.5 2

x 10
4

1

Frequency (Hz)

D
ic

ti
o
n
a
ry

 A
to

m
s
:
N

M
F

0 0.5 1 1.5 2

x 10
4

2

1

Frequency (Hz)

D
ic

ti
o
n
a
ry

 A
to

m
s
:
P

ro
p
o
s
e
d

Figure 2.1: Two dictionary atoms (top left) and their gain coefficients (top right) were

used to construct a spectrogram. Using either K-SVD (middle left), NN-K-SVD (middle

right), or NMF-MU (bottom left), the learned dictionary atoms do not resemble the

original atoms. Using the proposed algorithm (bottom right), the original and learned

atoms match.

16

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

w
/o

 h
a
rm

o
n
ic

 c
o
n
s
tr

a
in

t

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

Frequency (Hz)

w
it
h
 h

a
rm

o
n
ic

 c
o
n
s
tr

a
in

t

Figure 2.2: Dictionary atom of original spectrum (top) and atom after filtering spectrum

through a comb filter (bottom).

energy around the harmonic frequencies and eliminating the energy at other fre-

quencies as shown in Fig. 2.2. To estimate the fundamental frequency, we simply

compute the harmonic product spectrum [16] from the first five harmonics for can-

didate pitches. Other frequency-domain pitch estimation algorithms can work, as

well.

The other notable feature of our algorithm is the initialization and growth of

17

the dictionary. For the best A ∈ RM×K , if ||X −AS||F is still not low enough, we

increment K and add another column vector aK to A and another row vector sTK to

S. There are many reasonable ways to initialize aK . One could randomly generate

aK , or aK could equal the mean of the columns of X−AS. For this work, we simply

set aK to equal a column of E, en, where n is chosen such that en has high energy.

Then, we initialize sK =
[
ET

KaK

aT
KaK

]
+

as shown in (2.6).

With each of the basic building blocks described, we now summarize the pro-

posed algorithm.

1. Set the dictionary size K to equal 1.

2. Initialize aK and sK as desired.

3. For each k ∈ {K,K − 1, ..., 2, 1},

(a) Compute Ek:

Ek = X−
∑
j 6=k

ajs
T
j .

(b) Find ak:

ak =

[
Eksk
sTk sk

]
+

.

(c) Estimate the fundamental frequency, f0, for the spectrum ak using the

harmonic product spectrum.

(d) Filter ak through a comb filter tuned to f0 to emphasize its harmonicity.

(e) Find sk:

sk =

[
ET
k ak

aTk ak

]
+

.

18

Repeat step 3 until the dictionary A converges.

4. If ||X−AS||2F is low enough, stop. Otherwise, increment K, and go to step 2.

2.1.4 Experiments

For our experiments, we synthesize a dictionary Ain of harmonic atoms similar to

the atoms in Fig. 2.1 having a fixed envelope on the order of exp(−m2), where

m ∈ {1, 2, ...,M} is the frequency bin index, and M = 2048 corresponds to the the

Nyquist frequency. We also synthesize the corresponding gain coefficients to be a

K × N matrix with N = 100 and with L ones randomly placed in each column

and zero otherwise. These two matrices are multiplied to obtain X, the input to

each dictionary learning algorithm. Six dictionary learning algorithms are tested:

the proposed algorithm, NMF-MU [6], K-SVD and NN-K-SVD [17], the method of

optimal directions [9, 17], and basic SVD.

The output dictionary Aout from each algorithm is compared against the input

dictionary in terms of hits, misses, and false alarms. A hit occurs if both dictionaries

contain corresponding atoms whose normalized correlation exceeds 0.9. A miss

occurs if an atom from Ain does not correlate with any atom in Aout, and a false

alarm occurs if an atom from Aout does not correlate with any atom in Ain. Two

measures are used to measure performance: recall and precision. Recall is equal

to hits/(hits + misses), and precision is equal to hits/(hits + false alarms). These

measures are averaged over ten trials of each experiment.

First, we illustrate the effects of the dictionary size K and the number of

19

simultaneously active atoms L on dictionary learning. For each trial, we generate

a dictionary with K harmonic atoms, each with a randomly-selected fundamental

frequency that is uniformly distributed over the MIDI interval [48, 84]. Fig. 2.3

illustrates results for K = 5 and L ∈ {1, 2, 3, 4}, while Fig. 2.4 illustrates results

for K = 20 and L ∈ {1, 2, ..., 19}. Because the existing algorithms are initialized

to strictly contain K atoms, each miss must accompany a false alarm, thus making

their recall and precision is equal. On the other hand, the proposed algorithm must

infer the proper value for K as described earlier. When the estimated and true

values of K differ, then misses and false alarms can occur independently.

As shown in Figs. 2.3 and 2.4, the recall and precision for the proposed al-

gorithm is better than the other algorithms for most combinations of K and L,

particularly when L is high. The performance of all methods degrades as L in-

creases because the amount of spectral-temporal overlap also increases. However,

the proposed method learns more accurate atoms when L is high because of the

additional harmonic constraints. The two existing methods with nonnegative con-

straints, NMF-MU and NN-K-SVD, both perform well except when L is high be-

cause of their inability to resolve the spectral-temporal overlap. The remaining

methods – K-SVD, MOD, and SVD – all fail because of the lack of a nonnegativity

constraint.

Next, we show results when the pitches of the input dictionary atoms have

overlapping harmonics. To ensure a high amount of overlap, we fix K = 5 and

L = 3. The five chosen pitches are 200, 300, 400, 500, and 600 Hz. The gain

matrix is once again randomly generated by assigning L ones to each column of S

20

1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

L

R
e
c
a
ll

a
n
d
 P

re
c
is

io
n

Proposed (recall)

Proposed (precision)

NMF-MU

K-SVD

NN-K-SVD

MOD

SVD

Figure 2.3: Recall and precision when K = 5 for L ∈ {1, 2, 3, 4}. Ground-truth pitches

are initialized randomly over ten trials.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

L

R
e
c
a
ll

a
n
d
 P

re
c
is

io
n

Proposed (recall)

Proposed (precision)

NMF-MU

NN-K-SVD

Figure 2.4: Recall and precision when K = 20 for L ∈ {1, 2, ..., 19}. Ground-truth

pitches are initialized randomly over ten trials.

21

Proposed (recall) Proposed (precision) NMF-MU NN-K-SVD
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
e
c
a
ll

a
n
d
 P

re
c
is

io
n

Figure 2.5: Recall and precision when K = 5 and L = 3 (light gray) and when K = 10

and L = 5 (dark gray). Pitches are chosen such that large spectral-temporal overlap

occurs.

as described earlier. Fig. 2.5 shows that the best recall and precision is achieved

by the proposed algorithm. Again, recall and precision and equal for each of the

existing methods because K is fixed to its correct value thus creating a one-to-one

correspondence between misses and false alarms. Finally, we fix K = 10 and L = 5

where f0 ∈ {200, 300, 400, 500, 600, 800, 900, 1000, 1200, 1500}. Fig. 2.5 again

shows that the best recall and precision is achieved by the proposed algorithm.

2.2 Co-occurrence Constraints

In this section, we discuss another type of constraint, co-occurrence constraints, that

adds structure to factorizations such as nonnegative matrix factorization (NMF). In

the traditional NMF formulation, given a nonnegative matrix X, the objective of

22

NMF is to find two nonnegative matrices, A and S, that minimizes some divergence

between X and AS. The NMF problem was originally popularized by Paatero

and Tapper [4], and Lee and Seung later proposed algorithms for solving the NMF

problem using multiplicative update rules [5, 6].

When used for source separation, the basic formulation of NMF has notable

disadvantages. Objects may require more than a single dictionary atom in order to

be approximated accurately. For example, Fig. 2.6 illustrates the decomposition of

a spectrogram of an audio signal containing one note played by a violin. Although

only one note is played, the vibrato induced by the performer causes the pitch to

modulate. As a result, a rank-one approximation is not sufficient to capture this

pitch modulation. A user can select multiple dictionary atoms to represent one note.

However, in the presence of many other sources, it is unclear which atoms to select.

In other words, after learning is complete, there is no straightforward way to cluster

multiple dictionary atoms that belong to the same source.

One solution that addresses these problems is to enforce dependence among

sets of dictionary atoms by introducing co-occurrence constraints – constraints that

specify which dictionary atoms are dependent, or co-occur. These co-occurrence

constraints have shown to be useful for describing sources with multiple, co-occurring

dictionary atoms. Smaragdis et al. [18] proposed the use of cross entropy to enforce

the similarity between dictionary atoms belonging to the same source. The atoms are

then easily grouped into sets. By decomposing a spectrogram of a drums recording,

Smaragdis et al. illustrate that co-occurrence constraints allow each drum sound to

be represented more accurately by two dictionary atoms instead of one.

23

1 2

F
re

q
u

e
n

c
y

2

1

Time

Figure 2.6: Nonnegative matrix factorization of the spectrogram X (top right) into A

(top left) and S (bottom right) for one violin note. Two atoms are required to capture

the pitch modulation due to vibrato.

In this section, we introduce three new update rules to enforce dependence

among dictionary atoms by incorporating co-occurrence constraints into NMF. These

rules are conceptually simple, easy to implement, and effective for describing sources

using multiple dictionary atoms. First, we formulate the NMF problem with co-

occurrence constraints. Then, we derive new update rules for minimizing three

common divergence metrics. Finally, we illustrate the use of these update rules in

the context of music transcription.

2.2.1 Problem Formulation

The basic NMF problem is formulated as follows. Given a nonnegative matrix

X ∈ RM×N
+ , we must find nonnegative matrices A ∈ RM×K

+ and S ∈ RK×N
+ that

minimize some divergence metric, d(X,AS). For any two matrices X and Y, we

24

define d(X,Y) =
∑

m,n d(xmn, ymn). The three divergence metrics we consider are

the Euclidean distance,

dEUC(x, y) = |x− y|2 , (2.7)

the Kullback-Leibler divergence,

dKL(x, y) = x log
x

y
− x+ y , (2.8)

and the Itakura-Saito divergence,

dIS(x, y) =
x

y
− log

x

y
− 1 . (2.9)

These three divergences are special instances of the generalized Bregman divergence

[19].

In this dissertation, for conciseness of notation, we will use X · Y to denote

element-wise multiplication of matrices X and Y, X
Y

to denote element-wise division,

and X2 to denote element-wise exponentiation. Also, we use 1 to denote a matrix

of ones of appropriate dimension.

Multiplicative update rules for A and S have been derived to minimize each of

the three divergences [6, 19]. The basic update rules are as follows for the Euclidean

distance,

A← A · XST

ASST
S← S · ATX

ATAS
, (2.10)

25

Kullback-Leibler divergence,

A← A ·
X
AS

ST

1ST
S← S · A

T X
AS

AT1
, (2.11)

and Itakura-Saito divergence,

A← A ·
X

(AS)2
ST

1
AS

ST
S← S ·

AT X
(AS)2

AT 1
AS

. (2.12)

Given a choice of divergence metric, the update rules for A and S are usually applied

alternately. Because d(X,AS) is not jointly convex in (A,S), the global minimum

may not necessarily be achieved. However, it is convex in A and S individually, this

guaranteeing decrease at each iteration.

To introduce co-occurrence constraints, we must influence the value of the

inner product sTi sj, where sTk is the kth row of S. For instance, using the musical

examples in Fig. 2.6, a large value for sT1 s2 would indicate that dictionary atoms

1 and 2 co-occur heavily in time, while sT1 s2 = 0 would indicate that the atoms do

not co-occur at all. This problem can be formulated as follows:

min
S

d(Q,SST) such that S ∈ RK×N
+ , (2.13)

where Q ∈ RK×K
+ is a pre-defined symmetric matrix such that qij is low when atoms

i and j are not dependent and qij is high when the atoms are desired to be highly

dependent. First, choosing qii = 1 for all i performs normalization upon each row

of S. Then we can set 0� qij ≤ 1 for all pairs of atoms i and j that we desire to be

26

dependent and 0 ≤ qij � 1 for all other pairs of atoms. For dKL and dIS, qij must

be strictly greater than zero for all i and j.

2.2.2 Proposed Update Rules

Following the derivations by Lee and Seung [6], we derive multiplicative update rules

for S to minimize d(Q,SST) for each of the three divergences. Using the Euclidean

distance as an example, first we explicitly define dEUC(Q,SST):

dEUC(Q,SST) = ||Q− SST ||2F (2.14)

= tr((Q− SST)T (Q− SST)) , (2.15)

where ||X||2F is the squared Frobenius norm of X, and tr(X) is the trace of X. Next,

we differentiate dEUC(Q,SST) with respect to S:

∂

∂S
dEUC(Q,SST) ∝ SSTS−QS . (2.16)

Finally, as illustrated by Lee and Seung [6], we construct the multiplicative update

term by placing the negative part of ∂
∂S

in the numerator and the positive part of

∂
∂S

in the denominator as follows:

S← S · QS

SSTS
. (2.17)

27

In practice, a small positive number ε is added to the numerator and denominator

for three reasons. First, ε prevents division by zero. Second, as long as ε is large

enough, this update rule guarantees a decrease in dEUC(Q,SST) at each iteration by

restricting S to lie within a local region around the previous instance of S. Third,

including ε in this manner does not alter the divergence metric being minimized.

Update rules for A can be constructed in similar fashion by minimizing d(Q,ATA).

The choice to impose co-occurrence constraints on A versus S depends upon the

context of the application.

Therefore, we arrive at the finalized update rule for either A or S to minimize

the Euclidean distance:

A← A · AQ + ε

AATA + ε
or S← S · QS + ε

SSTS + ε
. (2.18)

Similar derivations using the Kullback-Leibler and Itakura-Saito divergences yield

the following two update rules, respectively:

A← A · A
Q

ATA
+ ε

A1 + ε
or S← S ·

Q
SST S + ε

1S + ε
(2.19)

A← A ·
A Q

(ATA)2
+ ε

A 1
AAT + ε

or S← S ·
Q

(SST)2
S + ε

1
SST S + ε

. (2.20)

To incorporate these co-occurrence constraints into NMF, we first formulate

the modified minimization problem, using the Euclidean distance again as an exam-

28

ple:

min
A,S

dEUC(X,AS) + λ dEUC(Q,SST) , (2.21)

where λ > 0 is a regularization parameter that controls the relative emphasis be-

tween dEUC(X,AS) and dEUC(Q,SST). The proper value for λ depends both upon

the data as well as the divergence metric used. Then, using the same method of

derivation shown earlier by Lee and Seung [6], we can modify the original update

rule for minimizing dEUC as follows:

S← S · ATX + λQS + ε

ATAS + λSSTS + ε
. (2.22)

Another valid method involves alternating between the updates in Eqs. (2.10) and

(2.18). Our experiments have shown both options to be roughly equal in accuracy

and execution time.

2.2.3 Experiments

First, we illustrate that the three proposed multiplicative update rules do guarantee

decrease in the three divergence metrics at each iteration and that S does eventually

converge. We initialize S and Q using the values shown in Fig. 2.7. We use the

update rules in (2.18), (2.19), and (2.20) for 200 iterations to solve the minimization

problem in (2.13) for each of the three corresponding divergence metrics. We see

from Fig. 2.7 that SST does resemble Q after minimizing any of the three divergence

metrics. By examining S after convergence, for every pair of rows (si, sj) such that

29

Q

2 4 6 8 10

2
4
6
8

10

0.5

1

0 20 40 60 80

9
8
7
6
5
4
3
2
1

S (before minimization) SS
T
 (before minimization)

2 4 6 8 10

2
4
6
8

10

25

30

35

0 20 40 60 80

9
8
7
6
5
4
3
2
1

S (after d
EUC

 minimization) SS
T
 (after d

EUC
 minimization)

2 4 6 8 10

2
4
6
8

10

0.5

1

0 20 40 60 80

9
8
7
6
5
4
3
2
1

S (after d
KL

 minimization) SS
T
 (after d

KL
 minimization)

2 4 6 8 10

2
4
6
8

10
0.2
0.4
0.6
0.8
1

0 20 40 60 80

9
8
7
6
5
4
3
2
1

S (after d
IS

 minimization) SS
T
 (after d

IS
 minimization)

2 4 6 8 10

2
4
6
8

10
0.2
0.4
0.6
0.8
1

Figure 2.7: Minimization of d(Q,SST) for three divergence metrics. Top row: Q.

Left column: S before and after minimization. Right column: SST before and after

minimization.

30

0 20 40 60 80 100 120 140 160 180 200
10

-4

10
-2

10
0

10
2

d
E

U
C

Learning Curves

0 20 40 60 80 100 120 140 160 180 200
10

-6

10
-4

10
-2

10
0

10
2

d
K

L

0 20 40 60 80 100 120 140 160 180 200
10

-4

10
-2

10
0

10
2

10
4

d
IS

Iteration Number

Figure 2.8: Learning curves for the examples in Fig. 2.7. If ε is sufficiently large, then

descent of the divergence metrics is guaranteed at each iteration.

31

qij = 1, we find that si and sj are nearly equal.

Fig. 2.8 illustrates the learning curves for each of the three minimizations

depicted in Fig. 2.7. The values of dEUC(Q,SST), dKL(Q,SST), and dIS(Q,SST)

decrease monotonically as a function of the iteration number, thus confirming that

a decrease in the divergence metrics is guaranteed after each iteration of the corre-

sponding update rule as long as ε is sufficiently large. For these experiments, we

used ε = 0.2 when minimizing dEUC, ε = 0.2 when minimizing dKL, and ε = 0.6

when minimizing dIS.

Next, we use the proposed update rules incorporated with NMF to decompose

the spectrogram in Fig. 2.9 containing three notes played by a violin. Because each

note is pitch-modulated due to vibrato, multiple atoms are required to accurately

represent each note. We initialize a dictionary of six atoms into three groups of two.

For the following experiments, we minimize dKL which has qualitatively shown to

provide better separation than the other divergence metrics.

Following a co-occurrence model by Wang et al. [20], we define pairs of atoms

as “must co-occur”, “can co-occur”, or “cannot co-occur”. We set qij = 1 for atoms

that must co-occur, qij = 10−8 for atoms that cannot co-occur, and set qij = sTi sj at

each iteration for atoms that can co-occur. In this example, we claim that the atoms

representing the second note can co-occur with any of the other atoms, while atoms

representing the first note cannot co-occur with atoms of the third note. Atoms

within the same group must co-occur by definition. Along with the co-occurrence

constraints, to improve the likelihood of co-occurrence within groups, we also impose

a smoothness constraint on S using established NMF modifications [21, 22]. Fig. 2.9

32

1 2 3 4 5 6
F

re
q

u
e

n
c
y

6
5
4
3
2
1

Time

Figure 2.9: Factorization of spectrogram with co-occurrence constraints on S for three

violin notes. Six dictionary atoms are grouped into three sets of two atoms.

shows the results of this procedure after minimization. We see that the algorithm

does correctly cluster each pair of atoms belonging to the same note. Fig. 2.10

shows the value of Q and SST after minimization.

Finally, we perform the same procedure on the spectrogram in Fig. 2.11

containing five drum beats produced by two drums. However, to enforce dependence

in the frequency domain among atoms, we now impose co-occurrence constraints on

Q

1 2 3 4 5 6

1

2

3

4

5

6

SS
T

1 2 3 4 5 6

1

2

3

4

5

6

Figure 2.10: SST versus Q for the example in Fig. 2.9.

33

1 2 3 4

F
re

q
u

e
n

c
y

4

3

2

1

Time

Figure 2.11: Factorization of spectrogram with co-occurrence constraints on A for five

drum beats from kick and snare drums. Four dictionary atoms are grouped into two sets

of two atoms.

the columns of A. In a musical context, this constraint is useful whenever there is

a percussive sound that emits an initial transient sound followed by a steady-state

decaying sound. While the transient and steady-state portions do not co-occur in

time, they do overlap considerably in frequency. This behavior is also a property of

the piano, xylophone, and similar pitched instruments whose sounds are produced

in a percussive manner.

Fig. 2.11 shows a decomposition using two sets of two atoms each. Each pair

of atoms are similar in frequency, as shown in Fig. 2.12. The transient and steady-

state portions of each beat are visible in the matrix S, particularly for the snare

drum which occupies a wider frequency bandwidth. Fig. 2.12 shows the resemblance

between Q and ATA after minimization.

34

Q

2 4

1

2

3

4

A
T
A

2 4

1

2

3

4

Figure 2.12: ATA versus Q for the example in Fig. 2.11.

2.3 Summary

First, we presented a novel method of dictionary learning based upon nonnegative

K-SVD which can separate sources that are otherwise inseparable using common

methods. Despite the simplicity of our algorithm, it performs well for a variety of

musical scenarios involving pitched sounds with spectral-temporal overlap. In the

future, we plan to investigate the robustness proposed algorithm under different

acoustic conditions, particularly for music that includes additive noise or unpitched

sources, along with decomposition of time-frequency representations of natural music

signals.

Second, we proposed novel multiplicative update rules that impose co-occurrence

constraints on either of the matrices produced through NMF. These update rules

can minimize different divergence metrics, and they integrate easily with the basic

NMF multiplicative updates. The constraints are useful when representing objects

with multiple atoms, and they provide a natural way to cluster co-occurring atoms.

Examples involving music transcription show that these constraints are operate suc-

35

cessfully either in the frequency or time domains.

In the future, we believe that these constraints will become useful in many

applications addressed by NMF beyond music transcription and source separation.

For either of these tasks, after learning a dictionary of perceptually meaningful

atoms, the next stage involves clustering of the dictionary atoms according to their

musical source. While some clustering methods already exist, difficulties remain

when doing this in an unsupervised manner. If combined with a successful atom

clustering method, we believe that the proposed algorithm can offer state-of-the-art

accuracy and robustness in music transcription and source separation tasks.

36

Chapter 3

Spectral-Temporal Instrument Recognition

Musical instrument recognition is a central problem in music information retrieval

(MIR). Classification of a musical signal by its instruments can facilitate other MIR

tasks such as transcription [23, 24], source separation [25], segmentation [26, 27],

genre recognition [28], and search [26].

Most of the research in instrument recognition has focused on classifying iso-

lated, monophonic, instrumental sounds. For these types of sounds, researchers have

reported successful results [29, 30, 31, 32, 33, 34, 35]. However, melodic phrases (i.e.,

multiple notes played in sequence) present a greater challenge. Because musical

notes can overlap in both time and frequency, recognition of their features becomes

more difficult. Researchers have been able to classify instruments in melodies with

moderate success. Published accuracy rates vary widely [36, 35, 37, 13, 10] and

depend heavily upon the instrument taxonomy, number of instrument classes, and

data set.

Further progress in musical instrument recognition may depend upon recent

advances in signal processing such as sparse coding and dictionary learning. Musical

signals contain a high amount of spectral and temporal redundancy. Sparse coding

methods remove these redundancies in order to efficiently represent or accurately

37

classify the signal. Other MIR tasks such as pitch estimation [38, 39, 40, 41], tran-

scription [14, 15, 40], source separation [21, 18, 42], and genre recognition [43] have

already benefited from these methods.

There already exist sparse coding and dictionary learning methods that exploit

the spectral redundancy among sounds in a musical signal [44, 45, 21, 22, 14, 43].

Many of these methods depend upon nonnegative matrix factorization (NMF) –

a popular, convenient, and effective method for decomposing matrices – to obtain

low-rank approximations of audio spectrograms of the signal [4, 5, 6]. NMF yields

a set of vectors, spectral atoms, which approximately span the frequency space of

the spectrogram, and another set of vectors, temporal atoms, which correspond to

the temporal activation of each spectral atom.

While these methods are effective in exploiting the spectral redundancy in a

signal, redundancy remains in the temporal domain. Psychoacoustic studies have

shown that spectral information and temporal information are equally important

in the definition of acoustic timbre [46]. For example, one widely accepted timbral

model, the cortical representation, estimates the spectral and temporal modulation

content of the auditory spectrogram. This mathematical representation models the

primary carrier of timbral information in the early cortical stage of human auditory

processing [46].

Classification methods that only utilize spectral information are discarding the

potentially useful temporal information that could be used to improve classification

performance. Although there are works that use temporal information for instru-

ment recognition [47, 12, 11, 33, 37, 13, 10], the temporal features investigated are

38

often heuristically defined quantities motivated only by mathematical convenience

and not by the abundance of research on biological auditory systems that recognize

timbre so easily. As a result, temporal features that appear reliable in isolated notes

quickly become fragile in melodic music.

In this chapter, we combine advances in dictionary learning, auditory mod-

eling, and music information retrieval to propose a timbral representation that

combines a new method of temporal feature extraction with already proven spec-

tral features. The temporal feature, the multiresolution gamma filterbank response

(MGFR), is computed from the temporal atoms extracted from spectrograms using

NMF. Feature extraction and classification is simple, because it only requires linear

filtering and a flat classifier. By combining the beneficial elements of NMF, mul-

tiresolution analysis, and supervised classification, this algorithm is rigorous and

accurate yet without too many “moving parts.” Other methods may require pre-

processing such as note segmentation [10], pitch estimation [11], or classifiers such

as hierarchical clustering [12, 13]. To our knowledge, no other work has attempted

to use temporal information extracted from NMF to classify instruments in a sys-

tematic manner. Because NMF has become widely popular for facilitating audio

classification, this work is useful to practitioners in the field.

We summarize our novel contributions in this chapter as follows:

1. An algorithm for musical instrument recognition that uses the spectral and

temporal information produced by NMF in a simple yet principled manner.

2. Analysis of the spectral and temporal properties of the multiresolution gamma

39

filterbank.

3. Comprehensive experiments on isolated notes and melodic phrases from a di-

verse set of instruments. We show that our spectral-temporal method is com-

petitive with the state of the art.

Preliminary results of this work were presented earlier by the authors [48].

Here, we present a comprehensive discussion on NMF, spectral analysis of the mul-

tiresolution gamma filterbank, illustrative examples on actual musical signals, new

experimental results that cover the more difficult task of classifying instruments

in melodic phrases, and an extensive comparison against other works in musical

instrument recognition, plus further analytical discussions.

We begin in Section 3.1 by motivating the use of the proposed feature ex-

traction method. Unlike existing classification methods that use traditional fea-

tures such as statistical moments, we extract spectral and temporal features from

the input signal in a biologically motivated manner similar to that of the cortical

representation. For this, we need an accurate spectral-temporal decomposition. In

Section 3.2, we discuss how NMF can be used to obtain such a decomposition. Next,

in Section 3.3, we provide a complete mathematical analysis of the multiresolution

gamma filterbank, which operates on temporal NMF atoms, and examples of its us-

age upon musical sounds. In Section 3.4, we define the proposed feature extraction

and classification method and formulate the instrument recognition problem.

Finally, in Section 3.5, we test the hypothesis that the proposed method has

the capability to improve upon the accuracy achievable by the state of the art

40

in musical instrument recognition. We evaluate the classification accuracy of this

feature over many instrumental sounds and contexts. For isolated sounds, when

combining spectral and temporal features, the proposed classifier can achieve an

accuracy of 92.3% when tested among 24 instrument classes. For solo melodic

phrases, we can achieve an accuracy of 96.2%, or when using family classifications,

97.4%. Section 3.6 provides a discussion about the desirable characteristics of our

method compared to other methods, and we conclude in Section 3.7.

3.1 Representations of Timbre

In order to successfully classify musical sounds, we must identify the qualities that

distinguish musical instruments. Those qualities are encoded through timbre – a per-

ceptual property of sound that distinguishes musical sounds of the same pitch [46].

Because timbre is itself an ambiguously defined quality, there exist many valid tim-

bral representations. Most timbral representations characterize the spectral quality

of sound. For example, linear predictive coding (LPC) models the spectral envelope

using an all-pole model, while mel-frequency cepstral coefficients (MFCCs) model

the envelope of the log-spectrum using a filterbank. Other timbral spectral descrip-

tors include spectral flatness, crest, centroid, and spread [49]. However, as mentioned

earlier, studies have shown that temporal characteristics of sound influence timbre

as much as spectral characteristics [46]. By incorporating temporal information, it

is possible that instrument recognition can be improved.

Temporal information can be expressed in different ways. Many attempts

41

to incorporate temporal information use features such as the temporal centroid,

spread, skewness, kurtosis, attack time, decay time, slope, and locations of maxima

and minima [49, 50, 10]. For isolated notes, these features work well, but for melodic

sequences of notes, these features require additional processing such as note onset

detection and segmentation which introduces the potential for error propagation.

For example, Joder et al. use spectral and temporal features including statistical

moments to classify notes that have been segmented from a melodic musical signal

using onset detection [10].

Beyond MIR, temporal information has also been used as a feature in au-

tomatic speech recognition (ASR). Works by Hermansky and Ellis have explored

the use of temporal patterns (TRAPs) of spectral energies to classify phonemes

[51, 52, 53, 54, 55, 56]. These TRAPs are features that cover a large window size,

e.g. one second long, from a single frequency band. The idea is to capture the tempo-

ral evolution of band-limited spectral energy in a vicinity of the underlying phonetic

class [52]. Results showed that TRAPs perform slightly better than spectral features

such as PLP cepstral coefficients for frame-level classification and slightly worse for

word-level classification. However, when the spectral and temporal features were

combined, classification improved noticeably over either method individually.

One timbral representation, the cortical representation, incorporates both spec-

tral and temporal information. This representation has been utilized to describe the

perception of timbre from signals such as speech [57] and music [58, 59]. Essentially,

the cortical representation embodies the output of cortical (i.e., from the cortex)

cells as sound is processed by earlier stages in the auditory system. Fig. 3.1 illus-

42

Multiresolution Filter Bank

Constant-Q Filter Bank

Inner Hair Cell Stages

Lateral Inhibitory Network

Cortical Representation
(time, frequency, rate, scale)

Auditory
Spectrogram
(time, frequency)

Acoustic Waveform (time)

Cochlea

Primary
Auditory
Cortex

STRF STRFSTRF STRF STRF STRF

STRF STRF

STRF STRF

STRF STRF

STRF STRF

STRF STRF

STRF STRF

Rate

Sc
al

e

STRF STRFSTRF STRF STRF STRF

Figure 3.1: The cochlear and early cortical stages of the auditory system, shown here,

inspire our proposed method. The auditory spectrogram is convolved across time and fre-

quency with STRFs of different rates and scales to produce the four-dimensional cortical

representation. This multiresolution representation is believed to carry timbral informa-

tion.

trates the relationship between the cochlear and early cortical stages of processing

in the mammalian auditory system. The cochlear stage models the transformation

by the cochlea of an acoustic input signal into a neural representation known as

the auditory spectrogram, while the early cortical stage models the analysis of the

auditory spectrogram by the primary auditory cortex.

One property of cortical cells, the spectrotemporal receptive field (STRF),

summarizes the way a single cortical cell responds to a stimulus. Mathematically, the

STRF is like a two-dimensional impulse response defined across time and frequency.

43

Rate: 2 Hz Rate: 1 Hz
Orientation: Downward

Rate: 1 Hz Rate: 2 Hz
Orientation: Upward

Sc
al

e:
4

cy
c/

oc
t

F
re

qu
en

cy

Sc
al

e:
2

cy
c/

oc
t

F
re

qu
en

cy

Sc
al

e:
1

cy
c/

oc
t

F
re

qu
en

cy

Time Time Time Time

Figure 3.2: Twelve example STRFs. Together, they constitute a filterbank similar to the

one proposed in Section 3.3. The left six STRFs select downward-modulating frequencies,

and the right six STRFs select upward-modulating frequencies. Top row: seed functions

for rate determination. Left column: seed functions for scale determination.

Each STRF has three parameters: scale, rate, and orientation. Scale defines the

spectral resolution of an STRF, rate defines its temporal resolution, and orientation

determines if the STRF selects upward or downward frequency modulations. Fig.

3.2 illustrates the STRF as a function of these three parameters. Each cortical cell

can be interpreted as a filter whose impulse response is an STRF with a particular

rate, scale, and orientation. Therefore, a collection of cortical cells constitutes a

filterbank. In fact, the cortical representation is mathematically equivalent to a

multiresolution wavelet filterbank [60].

Despite the biological relationship between the cortical representation and

timbre, this representation has disadvantages for classification. First, because the

44

cortical representation is a complex-valued four-dimensional filterbank output, it is

massively redundant. Like many types of redundant data, the cortical represen-

tation could benefit from some form of coding, decomposition, or dimensionality

reduction. However, proper application of these tools to the cortical representation

for engineering purposes such as speech recognition and MIR is not yet well under-

stood. Therefore, these are ongoing areas of research [61, 59]. Second, the STRF

is not time-frequency separable [60]. In other words, computation of the cortical

representation cannot be decomposed into two procedures that operate on the time

and frequency dimensions separately. Because spectral and temporal information

require different classification methods, this obstacle impedes classification.

Like the cortical representation, the spectrogram computed via short-time

Fourier transform (STFT) reveals spectral and temporal redundancies in a musical

signal. Although the spectrogram is still redundant, it does not have the disad-

vantages in classification mentioned earlier for the cortical representation. Despite

the lack of a direct physiological analogy, the spectrogram computed via STFT is

easily decomposed into a set of spectral and temporal basis vectors, particularly for

musical signals [14].

3.2 Nonnegative Matrix Factorization

Among the decomposition methods used upon time-frequency representations, one

of the most popular is nonnegative matrix factorization (NMF) [4, 5, 6]. Given an

element-wise nonnegative matrix X ∈ RM×N
+ , NMF attempts to find two nonnega-

45

tive matrices, A ∈ RM×K
+ and S ∈ RK×N

+ , that minimize some divergence between

X and AS. Among the algorithms that perform this minimization, one of the most

convenient algorithms uses a multiplicative update rule during each iteration in or-

der to maintain nonnegativity of the matrices A and S [6]. When the divergence

measure is the Euclidean distance:

dEUC(X,Y) =
∑
m,n

|xmn − ymn|2 , (3.1)

then the update rule is

A ← A · XST

ASST
, (3.2)

S ← S · ATX

ATAS
, (3.3)

where X·Y and X/Y denotes element-wise multiplication and division, respectively.

When the divergence measure is the Kullback-Leibler divergence:

dKL(X,Y) =
∑
m,n

xmn log
xmn
ymn
− xmn + ymn , (3.4)

then the update rule is

A ← A ·
X
AS

ST

1ST
, (3.5)

S ← S · A
T X
AS

AT1
, (3.6)

46

1

F
re

qu
en

cy

1
2

Time

2

Spectrogram

Figure 3.3: The NMF of a spectrogram drum beats. Component 1: kick drum. Com-

ponent 2: snare drum. Top right: X. Left: A. Bottom: S.

where 1 is a matrix of ones. Other divergences require different update rules [19].

Although there is no explicit sparsity cost to be minimized, NMF and sparse coding

algorithms achieve similar objectives. Research has shown that the nonnegativity

constraint does enforce sparsity of the gain coefficients under certain conditions,

including prewhitening of the observations and the absence of noise [62].

Many researchers have already demonstrated the usefulness of NMF for sepa-

rating a musical signal into individual notes [38, 18, 43, 14, 21]. By first expressing

a time-frequency representation of the signal as a matrix, these methods decompose

the matrix into a summation of a few individual atoms, each corresponding to one

musical source or one note. The nonnegativity constraint makes sense considering

that sources are either present or absent; a source is never “subtracted” from a sig-

47

nal in which it is already absent. As a result, algorithms that were previously only

successful for isolated sounds can be successfully applied to a mixture of sounds by

operating on each atom individually.

Fig. 3.3 illustrates the use of NMF upon the spectrogram of a musical signal.

We define each column of A as a spectral atom and each row of S as a temporal atom.

The factorization reveals the presence of spectral atoms that reoccur over several

time units as well as temporal atoms that reoccur over several frequency bands.

These temporal atoms usually resemble envelopes of known sounds, particularly in

musical signals. For example, observe the difference between the profiles of the

temporal atoms in Fig. 3.3. The three beats generated by the kick drum share the

same temporal profiles, and the two beats generated by the snare drum share the

same profiles. This general observation motivates the hypothesis that the energy

profile of temporal NMF atoms is a valid timbral representation that can be used

to classify instruments.

In the next section, we propose one technique that extracts timbral informa-

tion from temporal NMF atoms similar to that of the cortical representation. Our

technique uses a multiresolution gamma filterbank to perform multiresolution anal-

ysis upon the factorized spectrogram. However, unlike the cortical representation,

this multiresolution analysis is particularly suited to the energy profiles contained

in the temporal NMF atoms.

48

3.3 Multiresolution Gamma Filterbank

We propose the use of a multiresolution gamma filterbank, a collection of gamma

filters, to extract information from temporal NMF atoms. For this work, we define

the gamma kernel to be

g(t;n, b) = αtn−1e−btu(t) (3.7)

where b > 0, n ≥ 1, u(t) is the unit step function, and

α =

√
(2b)2n−1

Γ(2n− 1)
(3.8)

ensures that
∫
|g(t;n, b)|2dt = 1 for any value of n and b, where Γ(n) is the Gamma

function. Let I be the total number of gamma filters in the filterbank. For each

i ∈ {1, ..., I}, define the correlation kernel (i.e., time-reversed impulse response) of

each gamma filter to be

gi(t) = g(t;ni, bi). (3.9)

The set of kernels {g1, g2, ..., gI} defines the multiresolution gamma filterbank. Fig.

3.4 illustrates some example kernels of the filterbank.

For each i, let the filter output be the cross-correlation between the input

atom, s(t), and the kernel, gi(t):

yi(τ) =

∫ ∞
−∞

s(t)gi(t− τ)dt. (3.10)

The set of outputs {y1, y2, ..., yI} from the filterbank is called the multiresolution

49

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

g(t): n = 2, b = 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

g(t): n = 2, b = 2

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (seconds)

g(t): n = 2, b = 4

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

g(t): n = 4, b = 3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

g(t): n = 4, b = 6

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (seconds)

g(t): n = 4, b = 12

Figure 3.4: Example kernels of gamma filters. The dashed vertical line indicates the

location of the maxima. Left column: n = 2. Right column: n = 4.

gamma filterbank response (MGFR).

First, we examine temporal properties of the gamma filter. We define the

attack time of the kernel g(t) to be the time elapsed until the kernel achieves its

maximum. By differentiating log g(t), we determine the attack time to be

ta = (n− 1)/b seconds. (3.11)

Fig. 3.4 illustrates the relationship between the attack time and the parameter b.

Also, as t becomes large, log g(t) ≈ −bt plus a constant. Therefore, b is the decay

parameter of g(t), where we define the decay rate of g(t) to be

rd = 20b log10 e ≈ 8.7b dB per second. (3.12)

50

10−2 10−1 100 101 102 103

Frequency (radians per second)

10−4

10−3

10−2

10−1

100

101

|G
(ω

)|

slope
=
−

2

b = 1

b = 10

Figure 3.5: Log-log magnitude responses of two gamma filters, b = 1 and b = 10, for

n = 2.

Together, these two temporal properties imply that a gamma kernel with any attack

time and decay rate can be created from the proper combination of n and b.

Next, we examine spectral properties. The Fourier transform, G(ω), of g(t;n, b)

is

G(ω) ∝
(

1

b+ jω

)n
, (3.13)

and the magnitude response is

|G(ω)| ∝
(

1

b2 + ω2

)n/2
. (3.14)

Figs. 3.5 and 3.6 illustrate the magnitude responses of the gamma filterbank for

different values of n and b. The cutoff frequency for each filter is ωc = b radians per

second, and the stopband slope is −n on the log-log scale, or 20n dB attenuation

per decade.

Fig. 3.7 illustrates the operation of the multiresolution gamma filterbank.

51

10−2 10−1 100 101 102 103

Frequency (radians per second)

10−4

10−3

10−2

10−1

100

101

|G
(ω

)| slope
=
−

4

b = 1

b = 10

Figure 3.6: Log-log magnitude responses of two gamma filters, b = 1 and b = 10, for

n = 4.

When a temporal NMF atom is sent through the multiresolution gamma filterbank,

the MGFR reveals the strength of the attacks and decays of the atom’s envelope for

different values for n and b. Observe how the filterbank response is largest for those

filters whose attack time matches that of the input atom.

The multiresolution gamma filterbank behaves like a set of STRFs. Both

systems perform multiresolution analysis on the input data. Each STRF passes

a different spectral-temporal pattern depending upon the rate and scale. In fact,

the seed function used to determine the rate of an STRF is a gammatone kernel

– a sinusoid whose envelope is a gamma kernel. By altering the parameters of the

gammatone kernel, STRFs can select different rates. Similarly, in the multiresolu-

tion gamma filterbank, each filter passes different envelope shapes depending upon

the parameters n and b which completely characterize the attack and decay of the

envelope. Intuitively, the filter with kernel gi(t) passes envelopes with attack times

equal to (ni − 1)/bi seconds and envelopes with decay rates equal to 8.7bi dB per

52

ta = 0.010

ta = 0.020

ta = 0.040

ta = 0.080

ta = 0.160

ta = 0.320

ta = 0.640

ta = 1.280

0 1 2 3 4 5
Time (seconds)

Figure 3.7: Top: MGFR as a function of time for n = 2. Bottom: input temporal atom

containing two pulses with attack times of 160 ms.

second.

As we see from Fig. 3.7, the MGFR is a function of time. For classification,

we must still extract a single feature vector from the MGFR without respect to

time. In the next section, we describe how to extract and classify features from

the MGFR to perform musical instrument recognition, and we also describe how to

extract features from spectral NMF atoms.

3.4 Proposed Feature Extraction and Classification

Here, we describe how to extract and classify spectral and temporal features. First,

to obtain a feature vector from spectral NMF atoms, we compute the mel-frequency

53

cepstral coefficients (MFCCs) of each spectral atom. For each atom, these MFCCs

form the spectral feature vector, zS. The MFCCs have been frequently used to

describe the timbral quality of speech and music [26], and other researchers have

also used MFCCs to classify spectral NMF atoms [63]. For more about the MFCC,

we refer the reader to other sources [64, 65].

Next, we describe how to extract a shift-invariant temporal feature from the

MGFR introduced in the previous section. For each filter response, we compute a

norm:

zi =

(∫ ∞
−∞
|yi(t)|pdt

)1/p

. (3.15)

The vector zT = [z1, z2, ..., zI] is the temporal feature vector. To eliminate scaling

ambiguities among the input atoms, every feature vector zT is normalized to have

unit Euclidean norm. Fig. 3.8 illustrates the feature vector zT when p = ∞ for

four instrumental sounds. The feature vector zT reveals the sharp attacks of the

kick and snare drums and the slower attacks of the trumpet and violin. The feature

also reveals the fast decays of the kick drum and trumpet and the relatively slower

decays of the snare drum and violin.

Different choices of p provide different interpretations of zT . When p =∞,

zi = max
τ

yi(τ) = max
τ

∫ ∞
−∞

s(t)gi(t− τ)dt, (3.16)

i.e., zi indicates the maximum value of the inner product between s(t) and gi(t− τ)

for all possible lags τ , and therefore zT describes the shape of the loudest note or

54

1.0000.8000.6000.4000.2000.1000.0500.020

n = 1.2

n = 1.5

n = 2.0

n = 3.0

max

Attack Time (seconds)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Time (seconds)

Input
Atom

1.0000.8000.6000.4000.2000.1000.0500.020

n = 1.2

n = 1.5

n = 2.0

n = 3.0

max

Attack Time (seconds)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Time (seconds)

Input
Atom

1.0000.8000.6000.4000.2000.1000.0500.020

n = 1.2

n = 1.5

n = 2.0

n = 3.0 max

Attack Time (seconds)

0.0 0.5 1.0 1.5 2.0
Time (seconds)

Input
Atom

1.0000.8000.6000.4000.2000.1000.0500.020

n = 1.2

n = 1.5

n = 2.0

n = 3.0

max

Attack Time (seconds)

0 1 2 3 4 5 6
Time (seconds)

Input
Atom

Figure 3.8: Feature vector zT for p = ∞, where zT ∈ R32, and the corresponding

temporal atom. Top row: kick drum and snare drum. Bottom row: trumpet and violin.

beat in the temporal atom regardless of the presence of any quieter notes. When

p = 1,

zi =

∫ ∞
−∞

yi(τ)dτ =

∫ ∞
−∞

s(t)dt

∫ ∞
−∞

gi(τ)dτ, (3.17)

i.e., zi does not depend upon the shape of s(t). After normalization, zT will be

identical for any sample. Therefore, p = 1 is not a good choice. When p = 2, zT

contains information from the entire temporal atom including both loud and quiet

notes, but it weighs louder notes more heavily. As Section 3.5 will show, p has little

impact on classification performance; both p = 2 and p =∞ perform approximately

the same.

The proposed feature extraction algorithm is summarized below.

55

1. Perform NMF on the magnitude spectrogram, X, to obtain A and S using

updates in (3.2) and (3.3) or (3.5) and (3.6).

2. For each spectral atom (i.e., row of A), compute the MFCCs, zS.

3. For each temporal atom (i.e., row of S), compute the MGFR in (3.10).

4. From the MGFR, compute the feature vector zT in (3.15).

5. Form the feature vector z = [zS zT].

Finally, we formulate the instrument recognition problem as a typical super-

vised classification problem: given a set of training features extracted from signals

of known musical instruments, identify the instrument present in a test signal. To

perform supervised classification, spectral and temporal atoms are extracted from

training signals of known musical instruments using NMF. The feature vector z

plus its instrument label are used for training. To predict the label of an unknown

sample, z is extracted from the unknown sample and classified using the trained

model.

A major advantage of the proposed feature extraction and classification pro-

cedure is its simplicity. The proposed system requires no rule-based preprocessing.

Unlike other systems that contain safeguards, thresholds, and hierarchies, the pro-

posed system uses straightforward filtering and a flat classifier. As the next section

shows, this simple procedure can achieve state-of-the-art accuracy for instrument

recognition.

56

n b ta n b ta

1.2 0.200 1.000 1.5 0.500 1.000
1.2 0.250 0.800 1.5 0.625 0.800
1.2 0.333 0.600 1.5 0.833 0.600
1.2 0.500 0.400 1.5 1.25 0.400
1.2 1.00 0.200 1.5 2.50 0.200
1.2 2.00 0.100 1.5 5.00 0.100
1.2 4.00 0.050 1.5 10.0 0.050
1.2 10.0 0.020 1.5 25.0 0.020

2.0 1.00 1.000 3.0 2.00 1.000
2.0 1.25 0.800 3.0 2.50 0.800
2.0 1.67 0.600 3.0 3.33 0.600
2.0 2.50 0.400 3.0 5.00 0.400
2.0 5.00 0.200 3.0 10.0 0.200
2.0 10.0 0.100 3.0 20.0 0.100
2.0 20.0 0.050 3.0 40.0 0.050
2.0 50.0 0.020 3.0 100 0.020

Table 3.1: Parameters for the 32-filter gamma filterbank used in the following experi-

ments.

3.5 Experiments

We perform three sets of experiments on two data sets: isolated sounds and solo

melodic phrases. From each input signal, x(t), we obtain the magnitude spectro-

gram, X, via STFT using frames of length 46.4 ms (i.e., 2048/44100) windowed

using a Hamming window and a hop size of 10.0 ms. Then, we perform NMF using

the Kullback-Leibler update rules in (3.5) and (3.6) to obtain A and S. Research has

shown these update rules to achieve good separation among instruments in musical

signals [14, 63, 21]. For all experiments, we use a multiresolution gamma filterbank

of thirty-two filters with the parameters shown in Table 3.1. By empirical observa-

tion, these attack times and decay rates cover a wide range of sounds produced by

common musical instruments.

57

We initially tested two supervised classifiers: support vector machines (SVM)

and gaussian mixture models (GMM). Although both tools have been successfully

used for many pattern classification tasks, all of our tests have shown the SVM to

be more accurate, and therefore we only report those results. For the SVM, we use

the LIBSVM implementation [66] with the radial basis kernel. For multiple classes,

LIBSVM uses the one-versus-one classification strategy by default. The remaining

programs and simulations were written entirely in Python using the SciPy package

[67].

3.5.1 Isolated Sounds

First, we compare the abilities of spectral and temporal features to classify isolated,

monophonic sounds by instrument. Portions of the experiments in this subsection

were presented earlier by the authors [48]. The data set for these experiments com-

bines samples from the University of Iowa database of Musical Instrument Samples

[68], McGill University Master Samples [69], the OLPC Samples Collection [70], and

the Freesound Project [71]. All of these samples consist of isolated sounds gener-

ated by real musical instruments. We have parsed the audio files such that each

file consists of a single musical note (for harmonic sounds) or beat (for percussive

sounds).

The magnitude spectrogram is then decomposed using NMF with an inner

dimension of K = 1. For this data set, our experiments have shown that K = 1

suffices to represent a majority of the information in isolated notes. The user is

58

welcome to use a larger choice for K; the result is simply a greater number of

atoms produced by NMF. In such a case, a few of the atoms will retain most of the

information while the other atoms will be insignificant. Subsequent methods can be

used to select which atoms are meaningful. There are existing works devoted to the

proper choice of K [72, 73], but this topic is beyond the scope of this dissertation.

In total, there are 3907 feature vectors collected among twenty-four instrument

classes: bassoon, cello, cello pizzicato, B-flat clarinet, flute, glockenspiel, acoustic

guitar, french horn, kick (bass) drum, marimba, oboe, piano, alto saxophone, snare

drum, timpani, tom-toms, trombone, trumpet, tuba, viola, viola pizzicato, violin,

violin pizzicato, and xylophone. These twenty-four instrument classes represent

each of the common instrument families: strings, woodwinds, brass, and percussion.

Table 3.2 summarizes this data set. With few exceptions [31], this selection of

instruments is more comprehensive than any existing work on isolated instrument

recognition. Recognition accuracy for class c is defined to be the percentage of the

feature vectors whose true class is c that are correctly classified by the SVM as

belonging in class c. Overall recognition accuracy is the average of the accuracy

rates for each class.

As a control experiment, Experiment A1 evaluates the classification ability

using only spectral features computed from MFCCs. From each column of A, we

extract 32 MFCCs as described in Section 3.4 with center frequencies logarithmically

spaced over 5.3 octaves between 110 Hz and 3951 Hz. These MFCCs form the feature

vector zS. From the 3907 32-dimensional feature vectors, we evaluate classification

performance through ten-fold cross validation. Fig. 3.9 illustrates the confusion

59

Instrument # A1 A2(2) A2(∞) A3(2) A3(∞)

Bassoon 131 99.2 57.3 75.6 97.7 96.9
Clarinet 145 80.7 62.1 73.1 84.8 86.2
Flute 236 84.7 55.9 60.6 87.7 89.0
Oboe 118 72.0 81.4 77.1 87.3 91.5
Saxophone 196 93.4 62.2 65.8 91.3 86.7

Horn 92 80.4 66.3 62.0 80.4 85.9
Trombone 99 93.9 65.7 53.5 96.0 89.9
Trumpet 236 97.5 81.8 82.2 97.9 97.9
Tuba 111 98.2 75.7 75.7 97.3 99.1

Cello 349 94.8 84.5 89.7 96.0 97.4
Viola 309 94.2 67.0 67.6 91.9 90.9
Violin 390 97.2 82.3 86.2 96.4 96.2

Cello Pizz. 321 98.1 71.7 87.5 98.1 98.4
Viola Pizz. 254 99.6 60.6 81.9 100.0 99.6
Violin Pizz. 315 97.5 70.8 85.4 98.4 99.0

Glockensp. 10 100.0 80.0 90.0 100.0 100.0
Guitar 27 51.9 29.6 29.6 66.7 63.0
Marimba 39 46.2 25.6 25.6 82.1 79.5
Piano 260 95.0 63.8 89.2 98.5 98.5
Xylophone 13 61.5 61.5 53.8 76.9 84.6

Kick 90 98.9 97.8 95.6 100.0 100.0
Snare 86 96.5 95.3 88.4 98.8 98.8
Timpani 47 85.1 27.7 61.7 85.1 87.2
Toms 33 100.0 100.0 90.9 100.0 100.0

Total 3907 88.2 67.8 72.9 92.1 92.3

Table 3.2: Experiments A1, A2, and A3: sample sizes and accuracy rates.

60

matrix for Experiment A1, and Table 3.2 shows the accuracy rates for each class.

The average of the 24 accuracy rates is 88.2%. We notice some understandable

misclassifications. For example, 18.5% of guitar samples are misclassified as cello

pizzicato and 14.8% are misclassified as piano. 5.5% of clarinet samples and 13.6% of

oboe samples are misclassified as flute. 10.3% of marimba samples are misclassified

as xylophone. In general, these spectral features can accurately classify the drums,

brass, and string instruments. However, accuracy is poor among the woodwinds

and pitched percussive instruments. Some of these misclassifications are due to an

imbalance in the sample size of each class [74]. Despite its ability to improve the

average accuracy rate, the reduction of class imbalance in supervised classification

is beyond the scope of this dissertation.

Experiment A2 evaluates the classification ability using only temporal features

computed from the MGFR with the parameters shown in Table 3.1. One temporal

feature vector zT is computed for each temporal NMF atom as described in Section

V. Like Experiment A1, we evaluate classification performance through ten-fold

cross validation among the 3907 32-dimensional feature vectors. We perform the

experiment for p = 2 and again for p = ∞. The average accuracy rate is 67.8%

when p = 2 and 72.9% when p = ∞. Fig. 3.10 illustrates the confusion matrix

for Experiment A2 when p = ∞, and Table 3.2 shows the accuracy rates for each

class. We observe that temporal features alone do not classify instruments as well as

spectral features. Nevertheless, for 11 out of the 24 classes, accuracy remains above

80% when p =∞. In particular, there are few misclassifications between percussion

instruments and non-percussion instruments. Most misclassifications occur within

61

B
as

so
on

C
la

ri
ne

t
F

lu
te

O
bo

e
Sa

xo
ph

on
e

H
or

n
T

ro
m

bo
ne

T
ru

m
pe

t
T

ub
a

C
el

lo
V

io
la

V
io

lin
C

el
lo

P
iz

z
V

io
la

P
iz

z
V

io
lin

P
iz

z
G

lo
ck

en
sp

ie
l

G
ui

ta
r

M
ar

im
ba

P
ia

no
X

yl
op

ho
ne

K
ic

k
Sn

ar
e

T
im

pa
ni

To
m

s

Bassoon
Clarinet

Flute
Oboe

Saxophone
Horn

Trombone
Trumpet

Tuba
Cello
Viola

Violin
Cello Pizz
Viola Pizz

Violin Pizz
Glockenspiel

Guitar
Marimba

Piano
Xylophone

Kick
Snare

Timpani
Toms

0.01

0.10

0.20

0.40

0.60

0.80

1.00

Figure 3.9: Experiment A1: Accuracy of spectral classification of isolated sounds using

ten-fold cross validation. Row labels: True class. Column labels: Estimated class. Average

accuracy: 88.2%.

62

B
as

so
on

C
la

ri
ne

t
F

lu
te

O
bo

e
Sa

xo
ph

on
e

H
or

n
T

ro
m

bo
ne

T
ru

m
pe

t
T

ub
a

C
el

lo
V

io
la

V
io

lin
C

el
lo

P
iz

z
V

io
la

P
iz

z
V

io
lin

P
iz

z
G

lo
ck

en
sp

ie
l

G
ui

ta
r

M
ar

im
ba

P
ia

no
X

yl
op

ho
ne

K
ic

k
Sn

ar
e

T
im

pa
ni

To
m

s

Bassoon
Clarinet

Flute
Oboe

Saxophone
Horn

Trombone
Trumpet

Tuba
Cello
Viola

Violin
Cello Pizz
Viola Pizz

Violin Pizz
Glockenspiel

Guitar
Marimba

Piano
Xylophone

Kick
Snare

Timpani
Toms

0.01

0.10

0.20

0.40

0.60

0.80

1.00

Figure 3.10: Experiment A2: Accuracy of temporal classification (p = ∞) of isolated

sounds using ten-fold cross validation. Row labels: True class. Column labels: Estimated

class. Average accuracy: 72.9%.

instrument families, e.g., cello and viola, bassoon and clarinet, and guitar and piano.

Experiment A3 evaluates the classification performance when combining spec-

tral and temporal features. The feature vectors, zS and zT , extracted from each

spectral-temporal atom pair during Experiments A1 and A2, are concatenated to

form 3907 64-dimensional feature vectors as described in Section 3.4. Again, the

experiment is performed once for p = 2 and again for p =∞. Table 3.2 shows the ac-

curacy rates, and Fig. 3.11 illustrates the confusion matrix when p =∞. The total

accuracy rate is 92.1% when p = 2 and 92.3% when p =∞. Temporal information

improves classification accuracy for 18 of the 24 instrument classes along with the

63

B
as

so
on

C
la

ri
ne

t
F

lu
te

O
bo

e
Sa

xo
ph

on
e

H
or

n
T

ro
m

bo
ne

T
ru

m
pe

t
T

ub
a

C
el

lo
V

io
la

V
io

lin
C

el
lo

P
iz

z
V

io
la

P
iz

z
V

io
lin

P
iz

z
G

lo
ck

en
sp

ie
l

G
ui

ta
r

M
ar

im
ba

P
ia

no
X

yl
op

ho
ne

K
ic

k
Sn

ar
e

T
im

pa
ni

To
m

s

Bassoon
Clarinet

Flute
Oboe

Saxophone
Horn

Trombone
Trumpet

Tuba
Cello
Viola

Violin
Cello Pizz
Viola Pizz

Violin Pizz
Glockenspiel

Guitar
Marimba

Piano
Xylophone

Kick
Snare

Timpani
Toms

0.01

0.10

0.20

0.40

0.60

0.80

1.00

Figure 3.11: Experiment A3: Accuracy of spectral-temporal classification (p = ∞) of

isolated sounds using ten-fold cross validation. Row labels: True class. Column labels:

Estimated class. Average accuracy: 92.3%.

overall accuracy. Accuracy improves most for the string pizzicato, percussion, brass,

and certain woodwind instruments. The remaining misclassifications occur mostly

within families, e.g., clarinet and flute, and guitar and piano. For isolated sounds,

this experiment verifies the hypothesis that a combination of spectral and temporal

information can improve instrument recognition accuracy over methods that use

information from one domain alone.

At 92.3% among 24 classes, our method achieves state-of-the-art performance

for isolated instrument recognition. Eronen [31] achieved an average accuracy of

35% among 29 classes from a mixed data set that included the McGill University

64

Master Samples [69], University of Iowa Database [68], IRCAM Studio Online, and

private recordings of acoustic guitar and a Roland XP-30 synthesizer. The classi-

fier was k-nearest neighbor classifier and features included MFCCs, warped LPCs,

fundamental frequency, attack time, amplitude envelope, and spectral centroid. Ki-

tahara et. al. [32] achieved 79.7% accuracy among 19 classes from standard MIDI

files using Bayesian classification after PCA and a variety of spectral, temporal, and

modulation features. Kostek et. al. [34] achieved 71.3% accuracy among 12 classes

from a private data set by using neural networks, genetic algorithms, wavelet en-

ergy bands, and MPEG-7 descriptors. Chétry et. al. [35] achieved 83.2% among 10

classes from the University of Iowa Database and the RWC Database [75] by using

a K-means codebook and line spectrum frequencies.

3.5.2 Feature Vector Classification of Solo Melodic Phrases

Next, we evaluate the proposed method’s ability to recognize instruments in solo

phrases. These experiments use data collected from over forty hours of solo melodic

phrases from eleven instruments performing well-known musical repertoire such as

concertos, sonatas, and orchestral excerpts. Composers include Mozart, Beethoven,

Richard Strauss, Ferdinand David, Haydn, Vaughan Williams, Brahms, and Tchaikovsky.

The phrases were performed by amateur musicians from across the United States

and were recorded by staff from the School of Music at the University of Maryland.

Each of the signals in this data set contains a musical excerpt performed by a single

instrument. Signal duration varies approximately between 10 and 30 seconds. This

65

database contains the following eleven instrument classes: bassoon, cello, clarinet,

flute, french horn, oboe, trombone, trumpet, tuba, viola, and violin.

We make a brief remark about data. Availability of public data sets is a

widespread problem in MIR, particularly due to copyright restrictions that prevent

some excellent databases from being shared. One consequence is the difficulty in

making quantitative comparisons among experiments. As MIR research evolves, old

public data sets may not fulfill the evolving needs of researchers. Then, researchers

are forced to use private data sets, e.g. musical instrument recognition [37, 10]. As

a result, one cannot make an indisputable comparison across works. Synthetic data

such as MIDI files provide standardization, but they cannot capture the acoustic

traits of natural recordings. We decided to use our aforementioned data set because

it is more comprehensive, more standardized, and more appropriate than any cur-

rently available data set of solo instrumental melodic signals. Therefore, the results

presented here only suggest that our method is within the same realm as the state

of the art and perhaps better in some scenarios, but not universally better.

For this experiment set, each signal is decomposed using NMF with an inner

dimension of K = 12. For this work, we have decided to keep this parameter

constant over all tested signals. Although such a decomposition may not be sufficient

for tasks such as transcription and source separation, the atoms are decomposed

well enough for a timbre-specific task such as instrument recognition. There exist

methods in the literature that adapt the decomposition rank, K, to the input signal

[72, 73]. While such methods may improve the following results, they remain beyond

the scope of this dissertation.

66

In this subsection, we evaluate the performance of classifying each of the fea-

ture vectors through ten-fold cross validation, i.e., one classification is made per

feature vector. (In the following subsection, we merge these classifications to make

one classification per signal.) As a control, Experiment B1 evaluates the classifica-

tion ability of spectral features using MFCCs. From each of the K spectral atoms,

one feature vector zS is extracted using MFCCs. The parameters are the same as

those in Experiment A1: 32 MFCCs with center frequencies between 110 Hz and

3951 Hz. Fig. 3.12 illustrates the confusion matrix for Experiment B1, and Table

3.3 shows the accuracy rates for each class. The average of the 11 accuracy rates is

72.4%. There is some misclassification within instrument families, e.g., cello/viola,

and horn/trombone/trumpet, but the other errors are scattered among all classes.

Experiment B2 evaluates the classification ability of temporal features. Like

Experiment A2, the proposed feature extraction algorithm uses the parameters

shown in Table 3.1. One feature vector zT is computed for each temporal NMF

atom. Here, we only perform the experiment for p =∞. Table 3.3 shows the accu-

racy rates for each class. The average accuracy rate is 31.2%. Fig. 3.13 illustrates

the confusion matrix for Experiment B2. Perhaps as expected, the results show that

temporal features alone do not classify instruments as well as spectral features, and

this fact is emphasized in melodic phrases where adjacent notes have the ability to

overlap in time and frequency.

Experiment B3 evaluates the classification performance when concatenating

spectral and temporal features. Table 3.3 shows the accuracy rates, and Fig. 3.14

illustrates the confusion matrix. The total accuracy rate is 71.1%. Overall, the

67

ba
ss

oo
n

cl
ar

in
et

flu
te

ob
oe

ho
rn

tr
om

bo
ne

tr
um

pe
t

tu
ba

ce
llo

vi
ol

a

vi
ol

in

bassoon

clarinet

flute

oboe

horn

trombone

trumpet

tuba

cello

viola

violin
0.00

0.20

0.40

0.60

0.80

1.00

Figure 3.12: Experiment B1: spectral features. Classification accuracy of solo excerpts

using ten-fold cross validation. Row labels: True class. Column labels: Estimated class.

Average accuracy: 72.4%.

68

ba
ss

oo
n

cl
ar

in
et

flu
te

ob
oe

ho
rn

tr
om

bo
ne

tr
um

pe
t

tu
ba

ce
llo

vi
ol

a

vi
ol

in

bassoon

clarinet

flute

oboe

horn

trombone

trumpet

tuba

cello

viola

violin
0.00

0.20

0.40

0.60

0.80

1.00

Figure 3.13: Experiment B2: temporal features, p =∞. Classification accuracy of solo

excerpts using ten-fold cross validation. Row labels: True class. Column labels: Estimated

class. Average accuracy: 31.2%.

69

ba
ss

oo
n

cl
ar

in
et

flu
te

ob
oe

ho
rn

tr
om

bo
ne

tr
um

pe
t

tu
ba

ce
llo

vi
ol

a

vi
ol

in

bassoon

clarinet

flute

oboe

horn

trombone

trumpet

tuba

cello

viola

violin
0.00

0.20

0.40

0.60

0.80

1.00

Figure 3.14: Experiment B3: spectral-temporal features, p =∞. Classification accuracy

of solo excerpts using ten-fold cross validation. Row labels: True class. Column labels:

Estimated class. Average accuracy: 71.1%.

70

Instrument # B1 B2 B3

Bassoon 144 68.1 38.9 75.0
Clarinet 120 85.0 20.0 73.3
Flute 144 84.7 27.1 74.3
Oboe 144 76.4 27.1 72.9

Horn 144 62.5 29.2 68.1
Trombone 144 72.9 34.0 69.4
Trumpet 144 73.6 52.8 77.1
Tuba 120 86.7 41.7 85.0

Cello 144 57.6 29.9 61.1
Viola 144 61.1 26.4 63.2
Violin 144 68.1 16.0 63.2

Total 1536 72.4 31.2 71.1

Table 3.3: Experiments B1, B2, B3: sample sizes and accuracy rates.

results are similar to Experiment B1. Misclassifications are scattered widely among

all classes.

Finally, we repeat the same three experiments by classifying each feature vec-

tor by instrument family instead of individual instrument. For this work, we define

the wind family to include bassoon, clarinet, flute, and oboe. The brass family

includes french horn, trombone, trumpet, and tuba. The strings include cello, vi-

ola, and violin. Each feature vector obtained during Experiment Set B is relabeled

by family instead of individual instrument. Otherwise, the classification procedure

remains the same. In Table 3.4, we show the results of these classifications. Spec-

tral classification yields an accuracy of 78.2%, temporal classification yields 57.7%,

and spectral-temporal classification yields 79.4%. The string family has the worst

classification but also appears to benefit the most from the introduction of temporal

information.

71

Instrument # B1 B2 B3

Winds 552 82.2 59.4 83.2
Brass 552 83.5 56.9 82.2
Strings 432 69.0 56.7 72.9

Total 1536 78.2 57.7 79.4

Table 3.4: Experiments B1, B2, B3 with family classifications: sample sizes and accuracy

rates.

3.5.3 Signal Classification of Solo Melodic Phrases

In the previous subsection, one classification was made for each feature vector,

z. Here, we merge classifications of multiple feature vectors to arrive at one final

classification for each signal. We accomplish this task through majority voting.

Each input signal is decomposed into K spectral atoms and K temporal atoms, and

each of these atoms are classified as shown in Experiment Set B. Then, among the

K spectral (or temporal) atoms, a majority vote is taken from the K classifications

to provide one classification for the entire signal. The data is the same as that used

in Experiment Set B. Instead of ten-fold cross validation, we now use leave-one-out

cross validation, i.e., for each SVM instance, the test vectors include the K feature

vectors from one signal, and the remaining feature vectors are used for training.

This process is repeated for each signal.

In Experiment C1, we perform majority voting over the MFCC classifications

obtained from the spectral atoms of each signal. In Experiment C2, we perform

majority voting over the MGFR classifications obtained from the temporal atoms

of each signal. Finally, in Experiment C3, we perform majority voting over the

classifications from the spectral-temporal feature vectors obtained in Experiment

72

ba
ss

oo
n

cl
ar

in
et

flu
te

ob
oe

ho
rn

tr
om

bo
ne

tr
um

pe
t

tu
ba

ce
llo

vi
ol

a

vi
ol

in

bassoon

clarinet

flute

oboe

horn

trombone

trumpet

tuba

cello

viola

violin
0.00

0.20

0.40

0.60

0.80

1.00

Figure 3.15: Experiment C1: spectral features. Classification accuracy of solo excerpts

using leave-one-out cross validation. Row labels: True class. Column labels: Estimated

class. Average accuracy: 95.5%.

Instrument # C1 C2 C3

Bassoon 12 91.7 91.7 100.0
Clarinet 10 100.0 70.0 100.0
Flute 12 100.0 41.7 100.0
Oboe 12 100.0 50.0 91.7

Horn 12 91.7 41.7 100.0
Trombone 12 100.0 50.0 100.0
Trumpet 12 100.0 83.3 100.0
Tuba 10 100.0 50.0 100.0

Cello 12 83.3 41.7 83.3
Viola 12 91.7 33.3 91.7
Violin 12 91.7 8.3 91.7

Total 128 95.5 51.1 96.2

Table 3.5: Experiments C1, C2, C3: One decision per song. Sample sizes and accuracy

rates.

73

ba
ss

oo
n

cl
ar

in
et

flu
te

ob
oe

ho
rn

tr
om

bo
ne

tr
um

pe
t

tu
ba

ce
llo

vi
ol

a

vi
ol

in

bassoon

clarinet

flute

oboe

horn

trombone

trumpet

tuba

cello

viola

violin
0.00

0.20

0.40

0.60

0.80

1.00

Figure 3.16: Experiment C2: temporal features, p =∞. Classification accuracy of solo

excerpts using leave-one-out cross validation. Row labels: True class. Column labels:

Estimated class. Average accuracy: 51.1%.

Instrument # C1 C2 C3

Winds 46 97.8 84.8 100.0
Brass 46 97.8 73.9 97.8
Strings 36 83.3 77.8 94.4

Total 128 93.0 78.8 97.4

Table 3.6: Experiments C1, C2, C3 with family classifications. One decision per song.

Sample sizes and accuracy rates.

74

ba
ss

oo
n

cl
ar

in
et

flu
te

ob
oe

ho
rn

tr
om

bo
ne

tr
um

pe
t

tu
ba

ce
llo

vi
ol

a

vi
ol

in

bassoon

clarinet

flute

oboe

horn

trombone

trumpet

tuba

cello

viola

violin
0.00

0.20

0.40

0.60

0.80

1.00

Figure 3.17: Experiment C3: spectral-temporal features, p =∞. Classification accuracy

of solo excerpts using leave-one-out cross validation. Row labels: True class. Column

labels: Estimated class. Average accuracy: 96.2%.

75

B3. The results are summarized in Table 3.5 which shows that the best accuracy,

96.2%, is achieved by the use of spectral-temporal features. Confusion matrices are

shown in Figs. 3.15, 3.16, and 3.17.

The accuracy rates achieved by our system reflect state-of-the-art performance

for instrument recognition in solo melodic excerpts among as many as 11 classes.

Vincent and Rodet [36] achieve 90% accuracy among five classes from a data set

containing ten commercial CDs by using nonlinear independent subspace analysis

and a GMM classifier. Chétry et. al [35] achieves 78% accuracy among six classes

from a set of ten different data sources by using line spectrum frequencies and a

SVM. Essid et. al. [37] achieve 93% accuracy among ten classes from data collected

from commercial CDs by using features such as octave band intensities, temporal,

spectral, cepstral, and modulation features, and a SVM. Joder et. al [10] achieve

84.7% accuracy among eight classes from commercial CDs and the RWC database

by using temporal, spectral, cepstral, and wavelet features, and a SVM.

We repeat these experiments by using family classifications mentioned earlier.

Majority voting is now performed upon the classifications of each feature vector by

instrument family instead of individual instrument. The results are summarized in

Table 3.6. The combination of spectral and temporal information results in a family

classification accuracy of 97.4%, an improvement over classification performend

with either spectral or temporal information alone.

76

3.6 Discussion

One characteristic of this algorithm is the projection of a temporal atom down to a

single feature vector, i.e., the conversion of a function s(t) to the vector zT ∈ R32.

This projection is shift-invariant – regardless of where the musical event is located

in the temporal atom, the projection will produce the same feature vector. In

other words, if zT is extracted from atom s(t), then zT will also be extracted from

atom s(t − τ) for any τ . Other methods of dimensionality reduction may not be

shift-invariant. For example, linear discriminant analysis (LDA) can reduce the

dimensionality of a set of vectors such that projected vectors from the same class

(e.g., musical instrument) are near each other while projected vectors from different

classes are far apart. However, in its unmodified form, LDA would have trouble

ignoring shifts in the temporal atom, i.e., LDA will detect when a musical event

occurs rather than which instrument it represents. The feature selection process

should discard any idea of temporal locality – when a musical note begins and

ends – and instead focus on the atom’s shape. This issue reinforces the need for a

shift-invariant projection method such as ours.

That being said, it could be possible to learn different kernels, {g1, g2, ..., gI},

with which to convolve the temporal atoms. For rigor and simplicity, we have chosen

to use gamma kernels because their spectral and temporal properties are easy to

deduce and their use is well established in the signal processing community. Works

in other areas have attempted to learn kernels for other tasks, e.g., source separation

or genre classification, by performing sparse coding and dictionary learning in the

77

time domain [76, 77, 78, 79]. Given a signal x(t), these methods attempt to find

temporal dictionary atoms si(t) and their corresponding coefficients ai,j and delays

τi,j that solve the following minimization:

min
a,s,τ

∫ ∣∣∣∣∣x(t)−
I∑
i=1

Ji∑
j=1

ai,jsi(t− τi,j)
∣∣∣∣∣
2

dt . (3.18)

In doing so, these methods learn a dictionary of temporal atoms from which the

input signal can be approximated along with their coefficients. This time-relative

collection of data can then be used for classification. For example, Manzagol et al.

use the coefficients ai,j in (3.18) as features for genre classification [76]; they reported

similar results using learned kernels versus using a fixed set of gammatone kernels.

In fact, the gammatone kernels performed slightly better for an encoding task. Other

works have used this procedure to solve coding problems rather than classification

problems. For example, Smith and Lewicki evaluate the coding efficiency of such

a sparse code upon vocal and environmental sounds [77, 78]. In any event, each of

these formulations are usually used to decompose a signal into temporal atoms of a

fine scale, i.e., less than one millisecond. In this work, we must decompose a signal

into atoms of a coarser scale, i.e., several hundreds of milliseconds. This requirement

led to our choice of parameters in Table 3.1.

Finally, we compare our work with those works by Hermansky et al. [51, 52]

which employ a similar temporal feature extraction method. Their method is similar

to ours in that it captures temporal evolution over coarse windows. However, such

temporal evolution is isolated within a single frequency band. Because we employ

78

NMF, we can capture the temporal evolution over an entire range of frequencies,

weighted appropriately by the NMF algorithm. In other words, NMF can auto-

matically tell us the most relevant frequency bands in which to observe temporal

evolution. No manual selection of frequency bands is required. Like these works, our

results have also shown that augmenting spectral features with temporal features

noticeably improves performance over either feature set indivudally.

3.7 Summary

We have shown a method for extracting information from NMF atoms at multi-

ple resolutions for the purpose of musical instrument recognition. Inspired by the

early cortical stage of the human auditory system, this method performs multireso-

lution analysis upon NMF atoms through the use of MFCCs and a multiresolution

gamma filterbank. The filters that compose this filterbank are capable of describing

any combination of attack time and decay rate. Although there are other works

that explore the combination of spectral and temporal information for instrument

recognition, to our knowledge, this work is the first to parameterize the profiles of

temporal NMF atoms through multiresolution analysis.

Our original hypothesis was that the combination of spectral and temporal

information extracted from NMF atoms would improve instrument recognition over

systems that use spectral information alone. The results support this hypothesis,

but the conclusion is stronger for isolated sounds than it is for solo melodic phrases

where the improvement in performance is less significant.

79

While the experimental results are encouraging, there is still room for im-

provement. First, the data used in this chapter comes entirely from monophonic

music. Obviously, an important direction for future research is to test this method

on polyphonic music. Although we expect the task to become more difficult, we be-

lieve that the primary obstacle to successful classification is NMF. Ideally, if NMF

can learn perfect dictionary atoms, then the polyphonic nature of music is not an

obstacle. Unfortunately, NMF is not perfect. If NMF cannot accurately learn dictio-

nary atoms, then any following feature extraction may fail. However, NMF and its

variants are being thoroughly investigated by the community, including those algo-

rithms that impose additional constraints such as harmonicity [40, 39, 80, 41, 81, 42],

co-occurrence [82, 18], sparsity [22], and smoothness [22, 41].

Second, fusing spectral and temporal information in another manner may im-

prove performance. In Experiments A3, B3, and C3, we fused the spectral and

temporal feature vectors by simply concatenating corresponding atoms. However,

there are other methods of fusing SVMs from spectral and temporal data, e.g.,

committees or boosting.

Finally, modification to the classification may improve performance. The re-

sults shown earlier illustrate that classification by instrument family was more ac-

curate than classification by individual instrument. Therefore, a hierarchical SVM

may improve performance, where the feature vectors are first classified by instrument

family and then by individual instrument. However, this approach also introduces

system complexity as well as the potential for error propagation.

80

Chapter 4

Approximate Matching Pursuit

Music transcription is an important and well-studied task in music information re-

trieval (MIR). The ability to convert musical signals into a labeled set of discrete mu-

sical events, if performed successfully, would substantially impact all areas of MIR,

including source separation, segmentation, genre classification, human-computer in-

terfaces, and more. However, transcription is not easy. Because most musical signals

of interest are polyphonic, sounds from separate sources (e.g., voices or instruments)

often overlap in time and frequency, making it more difficult for algorithms to de-

compose.

Over the past decade, the emergence of constrained factorization algorithms

such as sparse coding and nonnegative matrix factorization (NMF) have revolution-

ized the way we perform music transcription. Sparse coding attempts to represent

an input signal as a sparse linear combination of atoms from a large, overcomplete

dictionary. NMF attempts to represent an input signal in matrix form as a product

of two low-rank nonnegative matrices. Both of these methods provide an automatic

way to decompose polyphonic music into individual musical events such as notes

and beats.

Both sparse coding and NMF are closely related to dictionary learning, where

81

the input signal is used to learn a concise dictionary of musical atoms that col-

lectively represent the input signal. Many researchers have reported success when

decomposing simple musical signals using NMF [14] or methods based upon sparse

coding such as K-SVD [8, 7]. Unfortunately, problems remain for intricate, poly-

phonic musical signals. When musical notes overlap in time and frequency, the

separation and transcription performance of these basic dictionary learning meth-

ods diminishes rapidly. In such a case, the algorithm will usually learn a dictionary

where each individual atom contains information from multiple musical sources, thus

hindering our attempts at decomposition.

Researchers have slowly improved upon the original dictionary learning meth-

ods by adding constraints to the learning process. By restricting the dictionary

atoms to reside within a predetermined feasible set, we can ensure that the learned

atoms will be useful at the conclusion of the learning process. For example, exist-

ing solutions include adding constraints to the dictionary learning process such as

harmonicity [42, 41] or smoothness [21, 41].

Another solution to the problem of overlapping sounds is to add structure to

the dictionary. For example, one can construct and use a large, predefined, over-

complete dictionary where each atom is already labeled and assumed to contain

information from only one musical source. Instead of learning an optimal dictionary

for a given musical signal, it may suffice to match the signal to this large set of pre-

computed, labeled dictionary atoms. Then, by decomposing a signal with respect

to this fixed dictionary, classification is easily achieved by simply reading the label

of the atom. As musical databases become more available, construction of prede-

82

fined dictionaries will become easier, thus reducing the need for adaptive dictionary

learning. Many of the decomposition methods that involve dictionary learning such

as NMF can easily be modified to eliminate the learning step, leaving only the task

of computing how much each dictionary atom contributes to the input signal, i.e.,

the atoms’ coefficients.

Of course, the performance of such an algorithm depends upon the breadth

of the dictionary. When atoms from more musical sources are added to the dictio-

nary, the dictionary’s ability to decompose polyphonic music will improve. However,

dictionary growth introduces concerns related to scalability and computational com-

plexity. While the aforementioned algorithms have significantly advanced the state

of the art, they remain slow and difficult to scale as the dictionary size increases.

Most of the original sparse coding methods such as matching pursuit (MP) [1] and

NMF with multiplicative updates [5, 6] have complexity that is linear in the size of

the dictionary. As a result, when dictionary sizes grow, the transcription efficiency

of these algorithms diminishes.

To summarize the problem: how can we make use of a large, precomputed,

overcomplete dictionary to accurately perform music transcription in a scalable and

computationally feasible manner?

In this chapter, we address this problem by proposing a variant of MP called

approximate matching pursuit (AMP). Unlike MP and NMF, AMP can decompose

signals into a sparse combination of atoms with complexity that is sublinear in the

dictionary size while maintaining accuracy. To do this, AMP uses an approximate

nearest neighbor (ANN) method to find approximate matches to the signal residual

83

at each iteration. The ANN method that we choose in this work is locality sensitive

hashing (LSH), a probabilistic hash algorithm that places similar, yet not identical,

observations into the same bin. LSH can retrieve near neighbors with a complexity

that is sublinear in the dictionary size. Not only is LSH fast, but it is also scalable –

as the dictionary grows, reorganizations of the data structure are unnecessary. We

simply add the new dictionary atom into its respective bin in the hash table.

Our experiments demonstrate that AMP is as accurate and robust as MP vari-

ants such as OMP [2] and STOMP [3] under a wide variety of scenarios related to

sparsity, dimensionality, and additive noise. At the same time, AMP requires less

computation than OMP and STOMP. We show that AMP requires fewer inner prod-

ucts to reach convergence than the other algorithms. Finally, we show the usefulness

of AMP for music transcription by decomposing musical signals as combinations of

atoms from a large dictionary of over 170,000 labeled musical spectra.

We summarize our contributions as follows:

1. We propose AMP and illustrate that it is as accurate and robust as other

pursuit methods while requiring fewer computations;

2. we illustrate the usefulness of AMP for music transcription when a large dic-

tionary of musical spectra is provided.

First, in Section 4.1, we discuss existing work related to MP for music tran-

scription. In Section 4.2, we formulate the problem and provide the system model

and assumptions. In Section 4.3, we propose the AMP algorithm and compare it to

other pursuit methods. In Section 4.4, we discuss LSH, the ANN method that we

84

choose to use inside AMP for this work. In Section 4.5, we provide many experiments

that measure the accuracy and robustness of AMP and other pursuit methods. In

Section 4.6, we describe how to construct a large dictionary of musical atoms, and

we show how AMP can use this dictionary to transcribe polyphonic musical signals.

We conclude in Section 4.7.

4.1 Related Work

Mallat and Zhang first proposed the matching pursuit (MP) algorithm in 1993 [1].

This greedy algorithm directly addresses the issue of sparsity by decomposing a

signal, x, into a linear expansion of waveforms that are selected from a redundant

dictionary of functions. When stopped after a few iterations, this algorithm yields

a signal approximation using only a few atoms. After each iteration of the MP

algorithm, the residual, r, is orthogonal to the previously selected vector, ak, but

not necessarily orthogonal to the dictionary vectors selected earlier.

In response, Pati et al. proposed an improvement called orthogonal matching

pursuit (OMP) which ensures that the residual is orthogonal to all previously se-

lected dictionary vectors [2]. The OMP algorithm is shown in Appendix A. After

dictionary atoms are selected for inclusion into the decomposition, an extra orthog-

onalization step is performed by solving a least-squares problem. Researchers have

shown that OMP provides a dramatic improvement over MP [2]. In many cases,

when an input signal is known to be k-sparse, OMP converges in k iterations, while

MP will require many more iterations to converge.

85

Later, Chen and Donoho introduced basis pursuit (BP) [83, 84, 85], an op-

timization principle for finding sparse coefficients by solving the following linear

program:

min
s
||s||1 such that x = As. (4.1)

Minimizing the L1 norm of the vector s induces its sparsity. Any algorithm from

the linear programming literature, e.g. simplex method or interior-point method,

can be used to solve this problem. However, BP does introduce issues related to

the problem size, parameter settings, and sparsity of the signal with respect to the

dictionary [85]. For example, in [85], it is assumed that “fast implicit algorithms”

exist for computing As or ATx which is possible when the dictionary represents

a family of atoms derived from a kernel, e.g., Fourier or Wavelet bases. When

such fast algorithms do not exist, BP can perform poorly in practice [3]. Our own

experiments affirm this claim, and therefore we do not consider BP further in this

dissertation.

Several variants of matching pursuit have since been proposed. One variant

is Stagewise Orthogonal Matching Pursuit (STOMP) [3], shown in Appendix A.

In OMP, the dictionary atom that is nearest to the residual is added to the active

set of dictionary atoms at each iteration. In STOMP, all dictionary atoms that

are sufficiently near the residual are added to the active set of dictionary atoms.

For some threshold, τr, that depends on the residual, r, any index k that satisfies

aTk r > τr is added to the active set at each iteration. As a result, STOMP runs

faster than OMP and BP for large-scale problems [3].

86

MP algorithms have been applied to MIR in many ways. The most popular

applications are music transcription and source separation. Harmonic matching

pursuit (HMP) has been used to decompose an audio signal into Gabor or harmonic

(i.e., sums of Gabor) atoms [86]. Dictionaries of atoms can also be adapted and

learned to fit the data [79]. To resolve instances when harmonics from separate

notes overlap, some algorithms impose smoothness constraints [81, 80]. Similar

sparse coding methods have been used for genre recognition [76]. In the neurological

signal processing literature, pursuit methods for generic acoustic signals have been

applied for coding purposes [77, 78].

4.2 Problem Formulation

Given the magnitude spectrum of an input signal, x ∈ RM , and a dictionary, A =

[a1 a2 ... aK] ∈ RM×K , the problem is to find a vector of coefficients s ∈ RK that

minimizes ||x−As||2.

When M < K, the dictionary is called overcomplete, and there are infinitely

many solutions for s. However, by imposing a sparsity constraint on s, the solution

space diminishes greatly, possibly to a unique solution. In particular, if the input

is truly a sparse linear combination of dictionary atoms, i.e., x = As0, where s0

is a sparse vector, then the problem becomes finding an optimal set of coefficients,

ŝ = argmins ||x−As||2, that is equal to the input coefficients, i.e., ŝ = s0.

An exhaustive search for the sparsest solution is NP-hard [87]. However, sub-

optimal greedy algorithms such as OMP often work well in practice. Unfortunately,

87

OMP requires at least K inner products to computed during each iteration, thus

creating a complexity that is at least linear in K. Because this complexity is too slow

for large dictionaries, the problem becomes solving for ŝ = s0 using an algorithm

that has complexity that is sublinear in the dictionary size, K.

In reality, for any dictionary A, it is unlikely that an input musical signal is

an exact sparse combination of dictionary atoms. We can model this discrepancy

using a noise term, x = As0 + n. Therefore, we want to solve the sparse solution

problem under additive noise, as well.

Throughout this work, we assume that the dictionary, A, does contain atoms

that accurately represent the spectrum of the input signal, x. For example, if we

choose to analyze the signal generated by a guitar, then the dictionary should con-

tain spectra from a guitar. Otherwise, decomposition may fail. Also, we assume

that the dictionary is overcomplete, M < K, although this assumption is not strictly

necessary for AMP to operate. We also assume that the true sparsity of any input

signal, ||s0||0, is less than the dimensionality, M . For musical signals, this assump-

tion usually holds in practice. For example, even in highly polyphonic music, the

number of simultaneous sounds will likely be less than the dimensionality of our

spectra, i.e., the number of frequency bins. If not, then we increase the FFT size to

produce longer spectra.

88

4.3 Proposed Algorithm

One drawback of the existing pursuit methods mentioned earlier is their complexity.

When the dictionary size, K, becomes very large (e.g., over one million), these meth-

ods may require an unacceptably large amount of computation to find an answer.

For example, in each iteration of MP, K inner products must be computed between

the residual r and every atom in the dictionary – a complexity of order O(MK).

Here, we introduce a simple variation of these pursuit methods that uses an

ANN algorithm in place of computing K inner products as done in MP. As a result,

we can reduce the complexity to be sublinear in K.

The approximate matching pursuit (AMP) algorithm is described in Algorithm

1. This algorithm is similar to OMP except that it addresses the main computa-

tional bottleneck for large dictionaries – nearest neighbor search – by allowing any

adequately near neighbor to be selected as a component.

Algorithm 1 Approximate Matching Pursuit [Tjoa and Liu]

Input: x ∈ RM ; A = [a1, a2, ..., aK] ∈ RM×K s.t. ||ak||2 = 1 for all k.
Output: ŝ ∈ RK

Initialize: S ← ∅; s← 0; r← x; ε > 0.
while ||r|| > ε do

Find any k such that ak and r are near neighbors.
S ← S ∪ k
Solve for {sj|j ∈ S}: minsj |j∈S ||x−

∑
j∈S ajsj||

r← x−As

ŝ← s

We make the following remarks:

1. AMP resembles MP and OMP. This modification is intentionally kept simple.

Like OMP, AMP is capable of providing a sparse decomposition in far fewer

89

iterations than MP. If the ANN retrieval method were instead changed to

a nearest-neighbor (NN) method, then AMP would yield identical results to

OMP.

2. AMP is flexible in the sense that any ANN method could be used as long as it

performs retrieval in sublinear time. Therefore, AMP can also be considered

as a modular framework of algorithms.

Despite its simplicity, this modification raises questions. For example, it is not

clear how fast AMP converges, its computational expense, or if it will converge at

all. We do not yet know if AMP can obtain the exact same sparse decomposition

as MP or OMP. We have not described how to find near neighbors, or how a near

neighbor is defined. In the next section, we show how LSH can be used inside AMP

and the advantages behind LSH over other ANN algorithms.

4.4 Locality Sensitive Hashing

AMP allows the use of any ANN algorithm that can perform retrieval in sublinear

time. For this work, we focus on locality-sensitive hashing (LSH), a category of

algorithms that places nearby points in a high-dimensional space into the same bin

in a hash table. Because of its simplicity, robustness, and low complexity, LSH has

become popular for solving many high-level problems beyond MIR such as search

and retrieval of text and images. The robustness of LSH is desirable for problems in

MIR where queries are often distorted due to environmental or musical variation, and

therefore, learned dictionary atoms will rarely match predefined dictionary atoms

90

exactly.

For example, Ryynänen and Klapuri used LSH to perform query-by-humming

(QBH) by constructing a hash table from pitch contour vectors [88]. Each pitch

vector approximates a melody contour over a small time window. During retrieval,

for each query pitch vector, their method uses LSH to search for nearest neighbors

in a Euclidean space from the index of database melody fragments to obtain melody

candidates and their matching positions in time. Yu et al. use LSH and order

statistics to store chroma features in a hash table for audio content retrieval [89].

Cotton and Ellis use LSH to store landmarks in audio that correspond to meaningful

acoustic events [90]. Casey and Slaney have used LSH to store features called audio

shingles for computing various levels of musical similarity between songs [91, 92, 93].

However, LSH has rarely been used for signal-level problems like music tran-

scription. To our knowledge, this work is among the first in MIR to use LSH for

low-level tasks such as sparse coding and music transcription.

Several ANN algorithms have been proposed over the last forty years. Al-

though we use LSH within AMP in this dissertation, there are other ANN methods

that could be used instead. The kd-tree is one of the oldest and simplest meth-

ods for computing approximate nearest neighbors [94]. Given a set of points, the

kd-tree first partitions the set at the median value of the first coordinates of all

points. These two partitions, PL and PR, are then partitioned again separately at

the median value of the second coordinates of all points already belonging to the

same partition. At each iteration, each partition is partitioned into two further

partitions in the same manner. The resulting data structure is a binary tree with n

91

leaves and depth O(log n). To find an approximate nearest neighbor, given a query

point, we traverse down the tree until a desired proximity from the query point is

reached. At any internal node, all of the points that are children of an internal node

are considered to be neighbors of each other.

While other ANN algorithms can be used within AMP instead of LSH, such

as those that use space partitioning like the kd-tree and hierarchical k-means, these

algorithms do not work well in high-dimensional spaces, i.e., dimensionality over

100. In fact, all current indexing techniques based on space partitioning degrade

to linear search for sufficiently high dimensions [95, 96, 97]. Therefore, we only

consider LSH in this work.

There are many theoretical results for LSH that are beyond the scope of this

dissertation. Here, we highlight the main properties of LSH [97]:

1. Locality: For hash function h, constant c > 1, probabilities P1 > P2, and

points q and r,

(a) If d(q, r) ≤ R, then Pr(h(q) = h(r)) ≥ P1.

(b) If d(q, r) ≥ cR, then Pr(h(q) = h(r)) ≤ P2.

2. Complexity: For dimensionality M , dictionary size K, and exponent ρ ∈ (0, 1),

query time is

O(MKρ logK).

The exponent ρ is smaller as more approximation is tolerated.

In this work, for i ∈ {1, 2, ..., k} and ` ∈ {1, 2, ..., L}, we define the function h`i

92

to be

h`i(q) = sgn〈p`i ,q〉 (4.2)

where p`i is a zero-mean, unit variance, Gaussian random vector with independent

elements. It has been shown that this choice of distribution on p`i will hash points

together whose angle,

θ(q, r) = arccos
〈q, r〉
||q||||r|| , (4.3)

is small [98]. Specifically, it can be shown that, for any i and `,

P (h`i(q) = h`i(r)) = 1− θ(q, r)

π
. (4.4)

We claim that two hashes are equal, h(q) = h(r), if and only if there exists

an ` such that, for all i ∈ {1, 2, ..., k}, h`i(q) = h`i(r). In other words, the following

events are equivalent:

{h(q) = h(r)} = ∪L`=1 ∩ki=1 {h`i(q) = h`i(r)}. (4.5)

Then, given the probability in Eq. 4.4, it can be shown that the probability that

h(q) = h(r) is equal to

P (h(q) = h(r)) = 1−
(

1−
(

1− θ(q, r)

π

)k)L

. (4.6)

To construct the LSH table, we initialize L empty tables. For each atom a in

93

0.2
0.4

0.6
0.8

0.2
0.4

0.6
0.8

0.2

0.4

0.6

0.8

Figure 4.1: LSH example with k = 2. Points on the unit sphere are separated into

2k = 4 bins.

the dictionary A, and for each ` ∈ {1, 2, ..., L}, its hash is computed as a k-tuple:

h`(a) = (h`1(a), h`2(a), ..., h`k(a)), (4.7)

and a is placed into bin h`(a) of table `. Finally, to perform a query for point r,

for all `, we retrieve all of the points in bin h`(r) of table `. Among these retrieved

points that share a bin with r, we perform exhaustive search to find the nearest

neighbor among them. As indicated by Eq. 4.6, through the proper choice of k and

L, one can achieve any desired amount of similarity between any two input vectors.

An example of LSH is shown in Figure 4.1 when k = 2. Points on the unit

sphere are hashed, and those points that reside in the same bin share the same

marker. We notice that points in the same bin are close together.

94

There are few existing implementations of LSH that are publicly available,

e.g., E2LSH and LSHKIT. For this work, we implement our own LSH system using

Python. To confirm the validity of our implementation, we compare the numerical

results generated from our implementation with theoretical probability shown in Eq.

4.6. In Figure 4.2, we plot the angle between two vectors versus the probability that

their hashes are equal. For every vector pair, q and r, we perform 10,000 trials, and

we count the number of times that h(q) equals h(r) divided by 10,000. The markers

indicate the proportion of pairs of vectors whose hashes are equal as a function of the

angle between them. The dark lines represent the expected theoretical result. As

we see from Figure 4.2, the numerical results agree with the theory. As L increases,

hashes are more likely to be equal. As k increases, hashes are less likely to be equal.

4.5 Experiments

First, we show the accuracy, noise robustness, and complexity of AMP versus other

methods by using synthetic data. In these experiments, we use a dictionary contain-

ing atoms that are uniformly distributed upon the unit sphere in RM . As a baseline,

we compare AMP against OMP and STOMP. For STOMP, during each iteration,

we simply return all database entries that are within 0.9 times the similarity of the

nearest neighbor. While Donoho et al. use a different thresholding method, that

method is merely one option under certain Gaussian assumptions [3]; under other

assumptions, other thresholds may become valid. Ordinary MP and BP both per-

form far slower than these methods, and therefore we do not state their results here.

95

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Angle between q and r (radians)

0.0

0.2

0.4

0.6

0.8

1.0

P
r(
h

(q
)

=
h

(r
))

L=1, k=1
L=1, k=2
L=2, k=1

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Angle between q and r (radians)

0.0

0.2

0.4

0.6

0.8

1.0

P
r(
h

(q
)

=
h

(r
))

L=2, k=2
L=8, k=8
L=24, k=24

Figure 4.2: Probability of two vectors having equal hashes as a function of the angle be-

tween the vectors. Markers indicate our implementation. Dark lines indicate the expected

theoretical result.

96

All source code is written by the authors in Python using the NumPy and SciPy

packages [67].

4.5.1 Learning Curves

Figure 4.3 illustrates learning curves at different dimensionalities for OMP, STOMP,

and AMP using LSH with different parameters. For each trial, the input vector x

is generated as x = As0, where A contains atoms that are uniformly distributed

about the unit sphere, and the nonzero elements of s0 are randomly selected and are

uniformly distributed over the interval [0,1]. We set the dictionary size K = 1000

and sparsity ||s0||0 = 10. We stop iterating when ||x−As|| < 10−10||x||.

We plot the cost ||x−As|| in Figure 4.3 as a function of the vector dimension,

M , and the iteration number. For most cases, OMP learns a perfect representation

of x in ||s0||0 iterations because of orthogonalization. Only for a few instances

when M is low with respect to K does it take more iterations to learn a perfect

representation. We expect this behavior because OMP is a greedy algorithm and

does not guarantee an optimal solution. When M/K is low, then the K dictionary

atoms are more densely compacted upon the unit sphere, and it becomes more

likely that each iteration of matching pursuit may retrieve the wrong dictionary

atom. For STOMP, we find similar convergence, although it converges in fewer

iterations. However, each iteration of STOMP adds multiple atoms to the set of

nonzero coefficients, and therefore the cost per iteration is higher than OMP.

Finally, we find that, while the convergence rate per iteration of AMP is upper

97

0 10 20 30 40 50 60 70 80
Iteration Number

20

40

60

80

100

120

140

160

180

200

V
ec

to
r

D
im

en
si

on
(M

)

OMP

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1

0 10 20 30 40 50 60 70 80
Iteration Number

20

40

60

80

100

120

140

160

180

200

V
ec

to
r

D
im

en
si

on
(M

)

STOMP (τ = 0.9)

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1

0 10 20 30 40 50 60 70 80
Iteration Number

20

40

60

80

100

120

140

160

180

200

V
ec

to
r

D
im

en
si

on
(M

)

AMP (L = 1, k = 2)

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1

0 10 20 30 40 50 60 70 80
Iteration Number

20

40

60

80

100

120

140

160

180

200

V
ec

to
r

D
im

en
si

on
(M

)

AMP (L = 3, k = 2)

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1

Figure 4.3: Representation cost, ||x−As||, for OMP, STOMP, and AMP, as a function of

the vector dimension, M , and the iteration number, averaged over ten trials. Dictionary

atoms are uniformly distributed upon the unit sphere, dictionary size K = 1000, and

sparsity ||s0||0 = 10.

bounded by that of OMP, AMP has convergence that is not significantly worse than

OMP or STOMP. We also find that the number of tables, L, affects convergence

rate. When only one hash table is used, more iterations are required to achieve

convergence than when three hash tables are used. However, as we will see later,

the cost per iteration is higher when L increases. In conclusion, the convergence

properties of AMP are not significantly different from OMP or STOMP.

98

4.5.2 Phase Transition Diagrams

The plots in Figure 4.4 are called phase transition diagrams in the sparse coding

literature. We plot the ratio M/K versus the ratio ||s0||0/M . We fix K = 200, and

plot the number of representation errors, ||ŝ− s0||0, averaged over five trials, where

ŝ denotes the coefficient vector at convergence. It has been shown that increasing

M while keeping these two ratios fixed will result in a phase transition diagram that

depicts a sudden transition between regions of success and failure [3].

These plots suggest that, for a variety of sparsity values and dimensionalities,

AMP performs nearly as well as OMP and STOMP. Each algorithm works poorly

for low sparsity, and the transition from the success region to the failure region is

similar for all algorithms. In conclusion, AMP works nearly as well as OMP and

STOMP for a variety of sparsity values and dimensionalities.

4.5.3 Noise Robustness

In Figure 4.5, we show the robustness of these algorithms in the presence of additive

Gaussian noise. We synthesize a noisy input as z = x + n, where the signal x is

equal to As0, and n is a zero-mean Gaussian random vector. The variance of the

noise depends upon the signal-to-noise ratio (SNR), which is computed in decibels

as 20 log10(||x||/||n||) dB.

As in the previous subsection, we plot the number of representation errors

as a function of the ratio ||s0||0/M as well as the SNR. For all of the algorithms,

reconstruction is poor when the SNR is below 50 dB or the number of nonzero

99

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Vector Dimension / Dictionary Size (M/K)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Sp
ar

si
ty

/V
ec

to
r

D
im

en
si

on
(||

s 0
|| 0
/M

)

OMP

0

20

40

60

80

100

120

140

160

180

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Vector Dimension / Dictionary Size (M/K)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Sp
ar

si
ty

/V
ec

to
r

D
im

en
si

on
(||

s 0
|| 0
/M

)

STOMP (τ = 0.9)

0

20

40

60

80

100

120

140

160

180

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Vector Dimension / Dictionary Size (M/K)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Sp
ar

si
ty

/V
ec

to
r

D
im

en
si

on
(||

s 0
|| 0
/M

)

AMP (L = 1, k = 2)

0

20

40

60

80

100

120

140

160

180

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Vector Dimension / Dictionary Size (M/K)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Sp
ar

si
ty

/V
ec

to
r

D
im

en
si

on
(||

s 0
|| 0
/M

)

AMP (L = 3, k = 2)

0

20

40

60

80

100

120

140

160

180

Figure 4.4: Number of representation errors, ||ŝ − s0||0, for OMP, STOMP, and AMP

as a function of sparsity, ||s0||0/M , and vector dimension, M/K, averaged over five trials.

Dictionary size is K = 200. Dictionary atoms are uniformly distributed about the unit

sphere.

100

0 20 40 60 80
SNR (dB)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Sp
ar

si
ty

/V
ec

to
r

D
im

en
si

on
(||

s 0
|| 0
/M

) OMP

0

15

30

45

60

75

90

105

120

135

0 20 40 60 80
SNR (dB)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Sp
ar

si
ty

/V
ec

to
r

D
im

en
si

on
(||

s 0
|| 0
/M

) STOMP (τ = 0.9)

0

15

30

45

60

75

90

105

120

135

0 20 40 60 80
SNR (dB)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Sp
ar

si
ty

/V
ec

to
r

D
im

en
si

on
(||

s 0
|| 0
/M

) AMP (L = 1, k = 2)

0

15

30

45

60

75

90

105

120

135

0 20 40 60 80
SNR (dB)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Sp
ar

si
ty

/V
ec

to
r

D
im

en
si

on
(||

s 0
|| 0
/M

) AMP (L = 3, k = 2)

0

15

30

45

60

75

90

105

120

135

Figure 4.5: Number of representation errors, ||ŝ − s0||0, for OMP, STOMP, and AMP

as a function of sparsity, ||s0||0/M , and SNR, averaged over five trials. Dictionary size is

K = 200, and vector dimension is M = 100. Dictionary atoms are uniformly distributed

about the unit sphere.

coefficients is above 0.4M . In conclusion, AMP is as robust to additive Gaussian

noise as OMP and STOMP.

4.5.4 Computational Complexity

As we saw in Section 4.5.1 and Figure 4.3, AMP performs nearly as well as OMP and

STOMP when measured by the residual cost per iteration. However, the amount

of computation per iteration is far lower for AMP than for OMP and STOMP. In

101

0 2000 4000 6000 8000 10000
Inner Products Computed

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

R
ep

re
se

nt
at

io
n

C
os

t

OMP
STOMP
AMP-LSH12
AMP-LSH32

Figure 4.6: Representation cost, ||x−Aŝ||, for OMP, STOMP, and AMP, as a function

of the number of inner products computed. Dictionary atoms are uniformly distributed

upon the unit sphere, dictionary size K = 1000, dimensionality M = 100, and sparsity

||s0||0 = 10.

Figure 4.6, we again plot learning curves, but now as a function of the number

of M-dimensional inner products computed. This plot illustrates the differences in

complexity among the algorithms, particularly how AMP outperforms OMP and

STOMP. All algorithms achieve convergence, but AMP reaches convergence using

fewer inner products. The reason is evident. OMP and STOMP both require K

inner products at each iteration, even though STOMP tends to achieve convergence

in fewer iterations. On the other hand, AMP requires far less than K inner products

per iteration. Depending upon the number of hash tables used, L, and the size of

each hash, k, the number of inner products can vary. Nevertheless, whether L = 1

or 3, both AMP outperform OMP and STOMP in terms of complexity.

102

OMP STOMP AMP (1,2) AMP (3,2) AMP (6,2) AMP (1,4) AMP (3,4) AMP (6,4)
0

2000

4000

6000

8000

10000

In
ne

r
P

ro
du

ct
s

C
om

pu
te

d

Figure 4.7: Distribution of the number of inner products performed before convergence

over 300 trials. Dictionary atoms are uniformly distributed upon the unit sphere, dictio-

nary size K = 1000, dimensionality M = 100, and sparsity ||s0||0 = 10.

Because LSH is a randomized algorithm, the exact number of inner prod-

ucts cannot be determined beforehand. Therefore, in Figure 4.7, we illustrate the

distribution of the number of inner products required by each algorithm over 300

trials. Each box-and-whisker set shows the distribution of inner products divided by

quartile. We plot these distributions for OMP, STOMP, and AMP using LSH with

parameters L ∈ {1, 3, 6} and k ∈ {2, 4}. This figure clearly shows that AMP re-

quires fewer inner products over a variety of parameters. When L = 1, the median

number of inner products is smallest because there are fewer hashes to compute.

Another interesting fact is that the variation in the number of inner products is

greatest when L = 1 and smallest when L = 6. This behavior can be explained

using the law of large numbers; because L retrievals are made, the variance in the

number of items retrieved is proportional to 1/L. Also, the variation is greater for

k = 4 than for k = 2; when k is large, the number of bins per hash table increases,

and so does the variance in the number of items per bin.

Finally, in Figure 4.8, we plot the number of inner products computed as a

103

0 5000 10000 15000 20000
Dictionary Size (K)

0

50000

100000

150000

200000

250000

In
ne

r
P

ro
du

ct
s

C
om

pu
te

d

OMP
STOMP
AMP (1,2)
AMP (3,2)
AMP (3,4)
AMP (6,4)

Figure 4.8: Number of inner products averaged over fifty trials as a function of the

dictionary size, K. The dimensionality is M = 100, and the sparsity is ||s0||0 = 10.

function of the dictionary size, K. The number of inner products is averaged over

fifty trials. We fix the dimensionality to be M = 100, the sparsity as ||s0||0 = 10,

and we vary the dictionary size from 1000 to 20000. We find that AMP uses fewer

inner products than OMP or STOMP for most values of K. Despite averaging

results over fifty trials, there is still a fair amount of variance among the number of

inner products required because LSH is a randomized algorithm, especially for large

dictionary sizes. In future work, we shall further investigate the empirical impact

of dictionary size on computational complexity.

104

4.6 Music Transcription

Here, we show how AMP can be used to perform music transcription. First, we

discuss how to build a dictionary, and then we provide examples on real musical

signals.

4.6.1 Dictionary Construction

The success of this method is determined in part by how representative the dictio-

nary is over the space of inputs. For example, when the input is a spectrum of a

musical signal, we expect the dictionary to contain plenty of musical spectra with

similar characteristics. Here, we describe how to build a large dictionary to describe

a wide range of musical sounds.

For this work, our data comes from the University of Iowa database of musical

instrument samples [68], a data set often used in MIR. Each file in the data set

is labeled by pitch and loudness, e.g., “Piano C4 mf”, and contains a signal of an

isolated note sampled at 44100 Hz. We only consider the subset of piano sounds;

in future work, we will consider other instruments, as well. Nevertheless, accurate

determination of multiple pitches from polyphonic piano music remains a nontrivial

task that we address here.

For each signal, we compute a short-time Fourier transform with frame size of

92.9 milliseconds (i.e., 4096/44100) and a hop of 10 milliseconds. To discard silent

segments, we detect any spectrum whose power is below a threshold. The remaining

spectra are normalized to have unit Euclidean norm and are saved on disk using

105

the HDF5 format along with their pitch and instrument labels. These normalized

spectra constitute the dictionary. In total, we have a dictionary of 176,339 spectra

of piano sounds covering the entire piano keyboard (i.e., MIDI values 21 through

108).

4.6.2 Examples

In Figure 4.9, we plot the output from AMP for a C-major scale played by a pi-

ano. This file was recorded by the authors as a single-channel waveform sampled at

44100 Hz. We obtain the magnitude spectrogram of this signal using a frame size of

92.9 milliseconds and a hop of 46.4 milliseconds. Each column of this spectrogram

is decomposed using AMP with the maximum number of iterations set to 8. The

parameters used in LSH are L = 12 and k = 10. Each point on the scatter plot

represents one coefficient in the output vector, ŝ. The area of each circle is propor-

tional to the magnitude of the corresponding coefficient. (For display purposes, we

set constant the area of the largest circle in each frame.) In Figure 4.10, we plot the

output from OMP for the same signal.

All of the scatter plots clearly indicate the correct notes being played by the

piano. Both of the plots for AMP are very close to that of OMP. In Table 4.1, we

show the execution times for each of the algorithms. AMP is clearly faster than

OMP for multiple choices of parameters for L and k.

In Figures 4.11 and 4.12, we show the outputs from AMP and OMP for Clair

de Lune by Claude Debussy, measures 1–4. Here, the sparse decompositions are not

106

0 1 2 3 4 5 6 7 8 9
Time (seconds)

20

30

40

50

60

70

80

90

100

110

P
it

ch
(M

ID
I

nu
m

be
r)

C Major Scale (AMP, L=8, k=8)

0 1 2 3 4 5 6 7 8 9
Time (seconds)

20

30

40

50

60

70

80

90

100

110

P
it

ch
(M

ID
I

nu
m

be
r)

C Major Scale (AMP, L=10, k=10)

Figure 4.9: Scatter plots of atoms as detected by AMP using LSH with parameters

(L, k) = (8, 8) and (10, 10) for a C-Major scale. The maximum number of iterations per

frame, and equivalently ||ŝ||0, is set to 8.

107

0 1 2 3 4 5 6 7 8 9
Time (seconds)

20

30

40

50

60

70

80

90

100

110
P

it
ch

(M
ID

I
nu

m
be

r)
C Major Scale (OMP)

Figure 4.10: Top: scatter plot of atoms as detected by OMP for a C-Major scale. The

maximum number of iterations per frame, and equivalently ||ŝ||0, is set to 8. Bottom:

corresponding sheet music notation.

Song OMP AMP8,8 AMP10,10

C-major scale 81.05 43.63 21.03
Debussy mm. 1-4 118.57 88.45 29.01
Debussy mm. 5-8 123.05 121.73 121.84

Table 4.1: Execution times in seconds.

108

as clear, even for OMP. A subsequent postprocessing step may help during tran-

scription. Nevertheless, Table 4.1 shows that AMP is still faster. Finally, Figures

4.13 and 4.14 show outputs for Clair de Lune, measure 5–8. This passage contains

more overlapping notes and a denser decomposition. Interestingly, in Table 4.1, we

find that the benefits of AMP are not as pronounced in this case, perhaps due to

the polyphonic nature of this excerpt.

4.7 Summary

We have proposed AMP, a pursuit algorithm that is nearly as accurate and robust

as OMP while requiring fewer computations to achieve convergence. This algorithm

is fast and scalable; complexity is sublinear in the dictionary size, and expanding

the dictionary is straightforward. Given our particular choice of the LSH hash

function which maps vectors whose cosine distance is small into the same bin, we

have shown that using LSH reduces the number of computations while maintaining

an accurate sparse decomposition. Finally, we illustrated the usefulness of AMP for

music transcription. By visualizing the pitch labels of the largest sparse coefficients,

we find that AMP can accurately retrieve the proper dictionary atoms.

The execution times in Table 4.1 are encouraging, but as Figures 4.11 and 4.13

show, there is room for improvement. As future work, we will investigate the impact

of the LSH parameters L and k more closely. The proper choice of these parameters

depends upon many factors including the type of music, the dimensionality, and the

dictionary size. A careful analysis of pairwise distances among dictionary atoms can

109

0 2 4 6 8 10 12
Time (seconds)

20

30

40

50

60

70

80

90

100

110

P
it

ch
(M

ID
I

nu
m

be
r)

Debussy Clair de Lune, mm. 1-4 (AMP, L=8, k=8)

0 2 4 6 8 10 12
Time (seconds)

20

30

40

50

60

70

80

90

100

110

P
it

ch
(M

ID
I

nu
m

be
r)

Debussy Clair de Lune, mm. 1-4 (AMP, L=10, k=10)

Figure 4.11: Scatter plots of atoms as detected by AMP using LSH with parameters

(L, k) = (8, 8) and (10, 10) for Clair de Lune by Debussy, mm. 1-4. The maximum number

of iterations per frame, and equivalently ||ŝ||0, is set to 8.

110

0 2 4 6 8 10 12
Time (seconds)

20

30

40

50

60

70

80

90

100

110

P
it

ch
(M

ID
I

nu
m

be
r)

Debussy Clair de Lune, mm. 1-4 (OMP)

Figure 4.12: Top: scatter plot of atoms as detected by OMP for Clair de Lune by

Debussy, mm. 1-4. The maximum number of iterations per frame, and equivalently ||ŝ||0,
is set to 8. Bottom: corresponding sheet music notation.

111

0 2 4 6 8 10 12
Time (seconds)

20

30

40

50

60

70

80

90

100

110

P
it

ch
(M

ID
I

nu
m

be
r)

Debussy Clair de Lune, mm. 5-8 (AMP, L=8, k=8)

0 2 4 6 8 10 12
Time (seconds)

20

30

40

50

60

70

80

90

100

110

P
it

ch
(M

ID
I

nu
m

be
r)

Debussy Clair de Lune, mm. 5-8 (AMP, L=10, k=10)

Figure 4.13: Scatter plots of atoms as detected by AMP using LSH with parameters

(L, k) = (8, 8) and (10, 10) for Clair de Lune by Debussy, mm. 5-8. The maximum number

of iterations per frame, and equivalently ||ŝ||0, is set to 8.

112

0 2 4 6 8 10 12
Time (seconds)

20

30

40

50

60

70

80

90

100

110
P

it
ch

(M
ID

I
nu

m
be

r)
Debussy Clair de Lune, mm. 5-8 (OMP)

Figure 4.14: Top: scatter plot of atoms as detected by OMP for Clair de Lune by

Debussy, mm. 5-8. The maximum number of iterations per frame, and equivalently ||ŝ||0,
is set to 8. Bottom: corresponding sheet music notation.

113

reveal which set of parameters minimizes the probability of error. The dictionary

itself has a significant impact on the decomposition. Therefore, future work will also

include proper dictionary design, i.e., how to create dictionary atoms from musical

data sets for maximum accuracy and efficiency.

After using AMP in the manner shown in this chapter, we want to use the

decomposition to perform full music transcription. Future work includes measuring

the transcription accuracy of AMP by clustering common pitch and instrument

labels together as a single note by using onset and offset detection and temporal

smoothing. We also believe that AMP can be used directly in the time domain like

other methods that decompose signals as combinations of Gabor atoms [79, 76, 77,

78]. AMP can also be used entirely for instrument recognition by finding the most

common instrument labels among the sparse coefficients of the decomposition.

114

Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this dissertation, we have explored three important areas in sparse and nonneg-

ative factorization for music understanding.

1. Constrained dictionary learning. Adding constraints to the learning process

allows us to learn dictionary atoms that are semantically meaningful in a

musical context.

2. Spectral-temporal musical instrument recognition. NMF decomposes signals

into a product of spectral atoms and temporal atoms, both of which can be

used to improve upon the state of the art in instrument recognition.

3. Fast, fixed-dictionary factorization using approximate matching pursuit. When

using a large, overcomplete, predefined dictionary for factorization, approxi-

mate matching pursuit can provide sparse decompositions that are nearly as

accurate and robust as orthogonal matching pursuit while reducing computa-

tional complexity.

The work presented in this dissertation represents a significant technological

advance in the way factorizations are applied to problems in music information

115

retrieval. We have focused on MIR problems at low, fundamental levels such as

the signal level. Adequately solving such problems will make an enormous impact

throughout the world of MIR. The seminal works in NMF and sparse coding [99, 5,

6, 14] may have already revolutionized signal processing, but there remains plenty of

progress to be made in order to refine these methods for specific application domains

such as MIR. In their unmodified forms, these factorization methods simply cannot

perform tasks such as music transcription, source separation, or classification at the

level that end users expect from a commercial-strength music understanding system.

This dissertation brings us closer to that goal by improving upon ordinary

NMF and sparse coding algorithms. By intelligently adding constraints and making

use of available data, we were able to improve transcription performance, classifi-

cation performance, and reduce complexity. As a result, subsequent systems that

annotate discrete musical events will have an easier time doing so. Furthermore,

this work may make an additional impact on neighboring application domains such

as signal enhancement, noise removal, superresolution, and more.

First, in Chapter 2, we presented a novel method of dictionary learning based

upon nonnegative K-SVD which can separate sources that are otherwise inseparable

using common methods. Despite the simplicity of our algorithm, it performs well for

a variety of musical scenarios involving pitched sounds with spectral-temporal over-

lap. We also proposed novel multiplicative update rules that impose co-occurrence

constraints on either of the matrices produced through NMF. These update rules

can minimize different divergence metrics, and they integrate easily with the basic

NMF multiplicative updates. The constraints are useful when representing objects

116

with multiple atoms, and they provide a natural way to cluster co-occurring atoms.

Examples involving music transcription show that these constraints are operate suc-

cessfully either in the frequency or time domains.

Second, in Chapter 3, we presented a method for extracting information from

NMF atoms at multiple resolutions for the purpose of musical instrument recogni-

tion. Inspired by the early cortical stage of the human auditory system, this method

performs multiresolution analysis upon NMF atoms through the use of MFCCs and

a multiresolution gamma filterbank. The filters that compose this filterbank are ca-

pable of describing any combination of attack time and decay rate. Although there

are other works that explore the combination of spectral and temporal information

for instrument recognition, to our knowledge, this work is the first to parameterize

the profiles of temporal NMF atoms through multiresolution analysis. Our original

hypothesis was that the combination of spectral and temporal information extracted

from NMF atoms would improve instrument recognition over systems that use spec-

tral information alone. The results support this hypothesis, but the conclusion is

stronger for isolated sounds than it is for solo melodic phrases where the improve-

ment in performance is less significant.

Finally, in Chapter 4, we presented AMP, a pursuit algorithm that is nearly as

accurate and robust as OMP while requiring fewer computations to achieve conver-

gence. This algorithm is fast and scalable; complexity is sublinear in the dictionary

size, and expanding the dictionary is straightforward. Given our particular choice

of the LSH hash function which maps vectors whose cosine distance is small into the

same bin, we have shown that using LSH reduces the number of computations while

117

maintaining an accurate sparse decomposition. Finally, we illustrated the usefulness

of AMP for music transcription. By visualizing the pitch labels of the largest sparse

coefficients, we find that AMP can accurately retrieve the proper dictionary atoms.

5.2 Future Research

The MIR community has only begun to scratch the surface of possibilities related to

sparse and nonnegative factorization. Although many researchers are now aware of

its potential, additional work must be performed in order to bring the performance

of these algorithms up to a satisfactory level for regular use by the general public.

First, there is a great need for studies related to the statistics of musical data.

Many works impose assumptions related to sparsity or a particular probability dis-

tribution. However, it is not yet clear how well natural musical signals follow these

assumptions, or how the statistics of musical signals change under environmental

distortion such as additive noise or reverberation. It is also unclear how trans-

formations of musical data – e.g., into chroma or constant-Q transform – changes

the statistics of data. Therefore, we plan to investigate the robustness proposed

algorithm under different acoustic conditions, particularly for music that includes

additive noise or unpitched sources, along with decomposition of time-frequency

representations and other generic transformations of natural music signals.

Then, to perform music transcription, the factorization output must be intelli-

gently postprocessed. After learning a dictionary of perceptually meaningful atoms,

the next stage involves clustering of the dictionary atoms according to their musical

118

source. For example, all atoms sharing the same pitch and instrument label over a

short interval could be treated as a single note; this note event could become an ele-

ment of a MIDI file. While some clustering methods already exist, difficulties remain

when doing this in an unsupervised manner. If combined with a successful atom

clustering method, we believe that our proposed algorithms can offer state-of-the-art

accuracy and robustness in music transcription and source separation tasks.

We also believe that these new factorizations will become useful in many ap-

plications addressed by NMF beyond music transcription and source separation.

For example, AMP can also be used entirely for instrument recognition by finding

the most common instrument labels among the sparse coefficients of the decom-

position. It would be enlightening to compare the performance of AMP as an in-

strument recognition algorithm against our spectral-temporal instrument recognizer

using NMF. AMP can also be used for search; the statistics of sparse coefficients

of decomposed input signals can be observed using histogram analysis, and these

statistics can be used to compare songs at varying levels of similarity. Some works

already use LSH in a similar way for search and retrieval but over a much coarser

time window and without any decomposition provided by matching pursuit.

In instrument recognition, an important direction for future research is to test

this method on polyphonic music. Although we expect the task to become more

difficult, we believe that the primary obstacle to successful classification is NMF.

Ideally, if NMF can learn perfect dictionary atoms, then the polyphonic nature

of music is not an obstacle. Unfortunately, NMF is not perfect. If NMF cannot

accurately learn dictionary atoms, then any following feature extraction may fail.

119

Therefore, one direction for future research may include combining novel constrained

dictionary learning algorithms such as the ones proposed in this dissertation with

spectral-temporal instrument recognition using NMF. By improving the decomposi-

tion performance, subsequent processing using a multiresolution gamma filterbank

will likely provide better results.

The boundary between locality-sensitive hashing and constrained factoriza-

tion is also a new research frontier. Our work related to AMP is one of the first

to employ LSH inside of a factorization algorithm. In the future, I fully expect

enormous growth in the area of classification and factorization that makes use of

side information. The gains that have been realized by unsupervised algorithms

have reached a plateau. In order to break past this barrier, researchers must loosen

assumptions related to the system model, for example, by assuming that side in-

formation is present such as manual user input via an interactive human-computer

interface. This simple change in assumptions could be the impetus for achieving

better performance gains and reducing complexity.

Despite these many directions for future research, no one can enumerate all of

the open problems that are left to be solved in music information retrieval. Because

of its highly interdisciplinary nature, scholars continue to raise new questions about

music from different perspectives and provide truly innovative solutions. Our vision

for the future of MIR has not yet been realized, but given the explosive progress

witnessed thus far, we may not be far away.

120

Appendix A

Pursuit Algorithms

For Approximate Matching Pursuit (AMP), see Algorithm 1.

Algorithm 2 Matching Pursuit [1]

Input: x ∈ RM ; A = [a1, a2, ..., aK] ∈ RM×K s.t. ||ak||2 = 1 for all k.
Output: ŝ ∈ RK

Initialize: S ← ∅; s← 0; r← x; ε > 0.
while ||r|| > ε do

k ← argmaxj aTj r
S ← S ∪ k
r← x−As

ŝ← s

Algorithm 3 Orthogonal Matching Pursuit [2]

Input: x ∈ RM ; A = [a1, a2, ..., aK] ∈ RM×K s.t. ||ak||2 = 1 for all k.
Output: ŝ ∈ RK

Initialize: S ← ∅; s← 0; r← x; ε > 0.
while ||r|| > ε do

k ← argmaxj aTj r
S ← S ∪ k
Solve for {sj|j ∈ S}: minsj |j∈S ||x−

∑
j∈S ajsj||

r← x−As

ŝ← s

121

Algorithm 4 Stagewise Orthogonal Matching Pursuit [3]

Input: x ∈ RM ; A = [a1, a2, ..., aK] ∈ RM×K s.t. ||ak||2 = 1 for all k.
Output: ŝ ∈ RK

Initialize: S ← ∅; s← 0; r← x; ε > 0.
while ||r|| > ε do
S ← S ∪ {k|aTk r > τr}
Solve for {sj|j ∈ S}: minsj |j∈S ||x−

∑
j∈S ajsj||

r← x−As

ŝ← s

122

Bibliography

[1] S. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictionaries,”
IEEE Trans. Signal Processing, vol. 41, no. 12, pp. 3397–3415, 1993.

[2] Y. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal matching pursuit:
Recursive function approximation with applications to wavelet decomposition,”
in Asilomar Conf. Signals, Systems and Computers, 1993, pp. 40–44.

[3] D. L. Donoho, Y. Tsaig, I. Drori, and J.-L. Starck, “Sparse solution of underde-
termined linear equations by stagewise orthogonal matching pursuit,” Stanford
University, Tech. Rep., 2006.

[4] P. Paatero and U. Tapper, “Positive matrix factorization: A non-negative fac-
tor model with optimal utilization of error estimates of data values,” Environ-
metrics, vol. 5, no. 2, pp. 111–126, 1994.

[5] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative
matrix factorization,” Nature, vol. 401, pp. 788–791, 1999.

[6] ——, “Algorithms for non-negative matrix factorization,” in Adv. Neural In-
formation Processing Syst., vol. 13, Denver, 2001, pp. 556–562.

[7] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for design-
ing overcomplete dictionaries for sparse representation,” IEEE Trans. Signal
Processing, vol. 54, no. 11, pp. 4311–4322, Nov. 2006.

[8] M. Aharon, M. Elad, and A. M. Bruckstein, “K-SVD and its non-negative
variant for dictionary design,” in Proc. SPIE Conf. Wavelets, vol. 5914, Jul.
2005, pp. 327–339.

[9] K. Engan, S. O. Aase, and J. H. Husoy, “Method of optimal directions for frame
design,” in Proc. of the IEEE Conf. Acoustics, Speech, and Signal Processing,
vol. 5, Mar. 1999, pp. 2443–2446.

[10] C. Joder, S. Essid, and G. Richard, “Temporal integration for audio classifica-
tion with application to musical instrument classification,” IEEE Trans. Audio,
Speech, and Language Processing, vol. 17, no. 1, pp. 174–186, 2009.

[11] A. A. Wieczorkowska, J. Wróblewski, P. Synak, and D. Ślȩzak, “Application of
temporal descriptors to musical instrument sound recognition,” J. Intelligent
Information Systems, vol. 21, no. 1, pp. 71–93, 2003.

[12] A. Eronen and A. Klapuri, “Musical instrument recognition using cepstral co-
efficients and temporal features,” in Proc. IEEE Int. Conf. Acoustics, Speech,
and Signal Processing, vol. 2, 2000.

123

[13] S. Essid, G. Richard, and B. David, “Instrument recognition in polyphonic
music based on automatic taxonomies,” IEEE Trans. Audio, Speech, Language
Processing, vol. 14, no. 1, pp. 68–80, Jan. 2006.

[14] P. Smaragdis and J. C. Brown, “Non-negative matrix factorization for poly-
phonic music transcription,” in Proc. IEEE Workshop on Appl. Signal Process-
ing to Audio and Acoustics, New Paltz, NY, Oct. 2003, pp. 177–180.

[15] S. A. Abdallah and M. D. Plumbley, “Unsupervised analysis of polyphonic
music by sparse coding,” IEEE Trans. Neural Networks, vol. 17, no. 1, pp.
179–196, Jan. 2006.

[16] M. Schroeder, “Period histogram and product spectrum: New methods
for fundamental-frequency measurement,” J. Acoustical Society of America,
vol. 43, p. 829, 1968.

[17] M. Elad, Software: http://www.cs.technion.ac.il/∼elad/software/.

[18] P. Smaragdis, M. Shashanka, B. Raj, and G. Mysore, “Probabilistic factor-
ization of non-negative data with entropic co-occurrence constraints,” in Proc.
Int. Conf. Independent Component Analysis and Signal Separation. Springer,
2009, pp. 330–337.

[19] A. Cichocki, R. Zdunek, and S.-i. Amari, Csiszárs Divergences for Non-negative
Matrix Factorization: Family of New Algorithms, ser. Lecture Notes in Com-
puter Science. Springer-Verlag, 2006, vol. 3889, ch. 5, pp. 32–39.

[20] F. Wang, T. Li, and C. Zhang, “Semi-supervised clustering via matrix factor-
ization,” in Proc. SIAM Conf. Data Mining, 2008.

[21] T. Virtanen, “Monaural sound source separation by nonnegative matrix factor-
ization with temporal continuity and sparseness criteria,” IEEE Trans. Audio,
Speech, and Language Processing, vol. 15, no. 3, pp. 1066–1074, Mar. 2007.

[22] A. Cichocki, R. Zdunek, and S.-i. Amari, “New algorithms for non-negative
matrix factorization in applications to blind source separation,” in IEEE Int.
Conf. Acoustics, Speech and Signal Processing, vol. 5, 2006.

[23] K. Miyamoto, H. Kameoka, T. Nishimoto, N. Ono, and S. Sagayama,
“Harmonic-temporal-timbral clustering (httc) for the analysis of multi-
instrument polyphonic music signals,” in Proc. IEEE Int. Conf. Acoustics,
Speech, and Signal Processing, 2008, pp. 113–116.

[24] O. Gillet and G. Richard, “Transcription and separation of drum signals from
polyphonic music,” IEEE Trans. Audio, Speech, and Language Processing,
vol. 16, no. 3, pp. 529–540, 2008.

[25] A. Klapuri, “Timbre modeling for the purpose of sound source recognition and
separation in music,” J. Acoustical Soc. America, vol. 122, p. 2988, 2007.

124

http://www.cs.technion.ac.il/~elad/software/

[26] J. J. Aucouturier, F. Pachet, and M. Sandler, “The way it sounds: timbre
models for analysis and retrieval of music signals,” IEEE Trans. Multimedia,
vol. 7, no. 6, pp. 1028–1035, 2005.

[27] M. Levy, M. Sandler, and M. Casey, “Extraction of high-level musical structure
from audio data and its application to thumbnail generation,” in Proc. IEEE
Int. Conf. Acoustics, Speech, Signal Processing, vol. 5, 2006, pp. 13–16.

[28] G. Tzanetakis and P. Cook, “Musical genre classification of audio signals,”
IEEE Trans. Speech and Audio Processing, vol. 10, no. 5, pp. 293–302, 2002.

[29] I. Kaminskyj and A. Materka, “Automatic source identification of monophonic
musical instrument sounds,” in Proc. IEEE Int. Conf. Neural Networks, 1995,
pp. 189–194.

[30] K. Martin, “Sound-source recognition: A theory and computational model,”
Ph.D. dissertation, Massachusetts Inst. Tech., Jun. 1999.

[31] A. Eronen, “Automatic musical instrument recognition,” Master’s thesis, Tam-
pere University of Technology, Oct. 2001.

[32] T. Kitahara, M. Goto, and H. Okuno, “Musical instrument identification based
on f0-dependent multivariate normal distribution,” in Proc. IEEE Int. Conf.
Acoustics, Speech, and Signal Processing, 2003.

[33] P. Herrera-Boyer, G. Peeters, and S. Dubnov, “Automatic classification of mu-
sical instrument sounds,” J. New Music Research, vol. 32, no. 1, pp. 3–21,
2003.

[34] B. Kostek, “Musical instrument classification and duet analysis employing mu-
sic information retrieval techniques,” Proc. IEEE, vol. 92, no. 4, pp. 712–729,
Apr 2004.

[35] N. D. Chétry, “Computer models for musical instrument identification,” Ph.D.
dissertation, Queen Mary, University of London, Apr. 2006.

[36] E. Vincent and X. Rodet, “Instrument identification in solo and ensemble music
using independent subspace analysis,” in Proc. Int. Soc. Music Information
Retrieval Conf., 2004, pp. 576–581.

[37] S. Essid, G. Richard, and B. David, “Musical instrument recognition by pair-
wise classification strategies,” IEEE Trans. Audio, Speech, and Language Pro-
cessing, vol. 14, no. 4, pp. 1401–1412, Jul. 2006.

[38] F. Sha and L. K. Saul, “Real-time pitch determination of one or more voices
by nonnegative matrix factorization,” in Adv. Neural Information Processing
Syst., Vancouver, 2004, pp. 1233–1240.

125

[39] S. Raczynski, N. Ono, and S. Sagayama, “Multipitch analysis with harmonic
nonnegative matrix approximation,” in Proc. Int. Conf. Music Information
Retrieval, 2007, pp. 381–386.

[40] E. Vincent, N. Bertin, and R. Badeau, “Harmonic and inharmonic nonnegative
matrix factorization for polyphonic pitch transcription,” in Proc. IEEE Int.
Conf. Acoustics, Speech and Signal Processing, 2008, pp. 109–112.

[41] N. Bertin, R. Badeau, and E. Vincent, “Enforcing harmonicity and smooth-
ness in bayesian non-negative matrix factorization applied to polyphonic music
transcription,” IEEE Trans. Audio, Speech, and Language Processing, vol. 18,
no. 3, pp. 538–549, Mar. 2010.

[42] S. K. Tjoa, M. C. Stamm, W. S. Lin, and K. J. R. Liu, “Harmonic variable-
size dictionary learning for music source separation,” in Proc. IEEE Int. Conf.
Acoustics, Speech, and Signal Processing, Dallas, TX, Mar. 2010, pp. 413–416.

[43] A. Holzapfel and Y. Stylianou, “Musical genre classification using nonnegative
matrix factorization-based features,” IEEE Trans. Audio, Speech, Language
Processing, vol. 16, no. 2, pp. 424–434, Feb. 2008.

[44] C. Fevotte and S. J. Godsill, “A bayesian approach for blind separation of sparse
sources,” IEEE Trans. Audio, Speech, Language Processing, vol. 14, no. 6, pp.
2174–2188, Nov. 2006.

[45] T. Blumensath and M. Davies, “Sparse and shift-invariant representations of
music,” IEEE Trans. Audio, Speech, and Language Processing, vol. 14, no. 1,
pp. 50–57, Jan. 2006.

[46] R. Lyon and S. Shamma, “Auditory representations of timbre and pitch,” in
Auditory Computation, H. L. Hawkins, Ed. Springer, 1996, ch. 6, pp. 221–270.

[47] S. Dubnov and X. Rodet, “Timbre recognition with combined stationary and
temporal features,” in Int. Computer Music Conf., 1998.

[48] S. K. Tjoa and K. J. R. Liu, “Musical instrument recognition using biologi-
cally inspired filtering of temporal dictionary atoms,” in Proc. Int. Soc. Music
Information Retrieval Conf., Utrecht, Netherlands, Aug. 2010, pp. 435–440.

[49] P. Herrera-Boyer, A. Klapuri, and M. Davy, Signal Processing Methods for
Music Transcription. New York: Springer, 2006, ch. 6, pp. 163–200.

[50] F. Fuhrmann, M. Haro, and P. Herrera, “Scalability, generability, and temporal
aspects in automatic recognition of predominant musical instruments in poly-
phonic music,” in Proc. Intl. Soc. Music Information Retrieval Conf., 2009, pp.
321–326.

[51] H. Hermansky and S. Sharma, “TRAPS - classifiers of temporal patterns,” in
Int. Conf. Spoken Language Processing, 1998.

126

[52] ——, “Temporal patterns (TRAPS) in ASR of noisy speech,” in Int. Conf.
Acoustics, Speech, and Signal Processing, 1999, pp. 289–292.

[53] M. Athineos and D. Ellis, “Frequency-domain linear prediction for temporal
features,” in IEEE Workshop on Automatic Speech Recognition and Under-
standing, 2003, pp. 261–266.

[54] M. Athineos, H. Hermansky, and D. Ellis, “LP-TRAP: Linear predictive tempo-
ral patterns,” in Int. Conf. Spoken Language Processing, 2004, pp. 1154–1157.

[55] N. Morgan, Q. Zhu, A. Stolcke, K. Sonmez, S. Sivadas, T. Shinozaki, M. Os-
tendorf, P. Jain, H. Hermansky, D. Ellis, G. Doddington, B. Chen, O. Cretin,
H. Bourlard, and M. Athineos, “Pushing the envelope - aside [speech recogni-
tion],” IEEE Signal Processing Mag., vol. 22, no. 5, pp. 81–88, 2005.

[56] M. Athineos and D. Ellis, “Autoregressive modeling of temporal envelopes,”
IEEE Trans. Signal Processing, vol. 55, no. 11, pp. 5237–5245, 2007.

[57] M. Elhilali, T. Chi, and S. A. Shamma, “A spectro-temporal modulation index
(stmi) for assessment of speech intelligibility,” Speech Commun., vol. 41, pp.
331–348, Oct. 2003.

[58] P. Ru and S. A. Shamma, “Representation of musical timbre in the auditory
cortex,” J. New Music Research, vol. 26, no. 2, pp. 154–169, Jun. 1997.

[59] Y. Panagakis, C. Kotropoulos, and G. Arce, “Non-negative multilinear prin-
cipal component analysis of auditory temporal modulations for music genre
classification,” IEEE Trans. Audio, Speech, and Language Processing, vol. 18,
no. 3, pp. 576–588, Mar. 2010.

[60] T. Chi, P. Ru, and S. A. Shamma, “Multiresolution spectrotemporal analysis
of complex sounds,” J. Acoustical Soc. America, vol. 118, no. 2, pp. 887–906,
Aug. 2005.

[61] N. Mesgarani, M. Slaney, and S. A. Shamma, “Discrimination of speech from
nonspeech based on multiscale spectro-temporal modulations,” IEEE Trans.
Audio, Speech, Language Processing, vol. 14, no. 3, pp. 920–930, May 2006.

[62] M. D. Plumbley, “Conditions for nonnegative independent component analy-
sis,” IEEE Signal Processing Lett., vol. 9, no. 6, pp. 177–180, Jun. 2002.

[63] M. Helén and T. Virtanen, “Separation of drums from polyphonic music us-
ing non-negative matrix factorization and support vector machine,” in Proc.
EUSIPCO, 2005.

[64] B. Gold and N. Morgan, Speech and Audio Signal Processing. Wiley, 2000.

[65] A. Klapuri and M. Davy, Eds., Signal Processing Methods for Music Transcrip-
tion. New York: Springer, 2006.

127

[66] C.-C. Chang and C.-J. Lin, “Libsvm: a library for support vector machines,”
2001–. [Online]. Available: http://www.csie.ntu.edu.tw/∼cjlin/libsvm

[67] E. Jones, T. Oliphant, P. Peterson et al., “Scipy: Open source scientific tools
for python,” 2001–. [Online]. Available: http://www.scipy.org

[68] L. Fritts, “Musical instrument samples,” Univ. Iowa Electronic Music Studios,
1997–. [Online]. Available: http://theremin.music.uiowa.edu/MIS.html

[69] F. Opolko and J. Wapnick, “Mcgill university master samples,” McGill Univ.,
1987.

[70] “Free sound samples – olpc,” One Laptop per Child. [Online]. Available:
http://wiki.laptop.org/go/Sound samples

[71] “Freesound project,” Music Technology Group, Univ. Pompeu Fabra. [Online].
Available: http://www.freesound.org

[72] R. Weiss and J. Bello, “Identifying repeated patterns in music using sparse
convolutive non-negative matrix factorization,” in Proc. Int. Soc. Music Infor-
mation Retrieval Conf., Utrecht, Netherlands, Aug. 2010, pp. 123–128.

[73] V. Tan and C. Févotte, “Automatic relevance determination in nonnegative ma-
trix factorization,” in Proc. Signal Proccesing with Adaptive Sparse Structured
Representations, Saint-Malo, France, Apr. 2009.

[74] N. Japkowicz and S. Stephen, “The class imbalance problem: A systematic
study,” Intelligent Data Analysis, vol. 6, no. 5, pp. 429–449, 2002.

[75] M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka, “RWC music database:
Music genre database and musical instrument sound database,” in Proc. Int.
Conf. Music Information Retrieval (ISMIR), Oct. 2003, pp. 229–230.

[76] P.-A. Manzagol, T. Bertin-Mahieux, and D. Eck, “On the use of sparse time-
relative auditory codes for music,” in Proc. Intl. Soc. Music Information Re-
trieval Conf., 2008, pp. 603–608.

[77] E. Smith and M. S. Lewicki, “Efficient coding of time-relative structure using
spikes,” Neural Computation, vol. 17, no. 1, pp. 19–45, 2005.

[78] E. C. Smith and M. S. Lewicki, “Efficient auditory coding,” Nature, vol. 439,
pp. 978–982, 2006.

[79] N. Cho, Y. Shiu, and C. C. J. Kuo, “Efficient music representation with content
adaptive dictionaries,” in Proc. IEEE Int. Symp. Circuits and Systems, 2008,
pp. 3254–3257.

128

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.scipy.org
http://theremin.music.uiowa.edu/MIS.html
http://wiki.laptop.org/go/Sound_samples
http://www.freesound.org

[80] F. Cañadas Quesada, P. Vera-Candeas, N. Ruiz-Reyes, R. Mata-Campos, and
J. Carabias-Orti, “Note-event detection in polyphonic musical signals based on
harmonic matching pursuit and spectral smoothness,” J. New Music Research,
vol. 37, no. 3, pp. 167–183, 2008.

[81] J. Carabias-Orti, P. Vera-Candeas, F. Cañadas Quesada, and N. Ruiz-Reyes,
“Music scene-adaptive harmonic dictionary for unsupervised note-event detec-
tion,” IEEE Trans. Audio, Speech, and Language Processing, vol. 18, no. 3, pp.
473–486, Mar. 2010.

[82] S. K. Tjoa and K. J. R. Liu, “Multiplicative update rules for nonnegative
matrix factorization with co-occurrence constraints,” in Proc. IEEE Int. Conf.
Acoustics, Speech, and Signal Processing, Dallas, TX, Mar. 2010, pp. 449–452.

[83] S. Chen and D. L. Donoho, “Application of basis pursuit in spectrum estima-
tion,” in IEEE Int. Conf. Acoustics, Speech, Signal Processing, vol. 3, 1998, pp.
1865–1868.

[84] S. Chen, D. Donoho, and M. Saunders, “Atomic decomposition by basis pur-
suit,” SIAM J. Scientific Computing, vol. 20, no. 1, pp. 33–61, 1999.

[85] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by
basis pursuit,” SIAM Review, vol. 43, no. 1, pp. 129–159, 2001.

[86] R. Gribonval and E. Bacry, “Harmonic decomposition of audio signals with
matching pursuit,” IEEE Trans. Signal Processing, vol. 51, no. 1, pp. 101–111,
2003.

[87] D. Donoho and J. Tanner, “Thresholds for the recovery of sparse solutions via l1
minimization,” in 40th Annual Conf. Information Sciences and Systems, Mar.
2006, pp. 202–206.

[88] M. Ryynänen and A. Klapuri, “Query by humming of midi and audio using
locality sensitive hashing,” in IEEE Int. Conf. Acoustics, Speech and Signal
Processing, 2008, pp. 2249–2252.

[89] Y. Yu, M. Crucianu, V. Oria, and E. Damiani, “Combining multi-probe his-
togram and order-statistics based lsh for scalable audio content retrieval,” in
ACM Int. Conf. Multimedia. ACM, 2010, pp. 381–390.

[90] C. Cotton and D. Ellis, “Finding similar acoustic events using matching pursuit
and locality-sensitive hashing,” in IEEE Workshop Appl. Signal Proc. Audio
and Acoustics. IEEE, 2009, pp. 125–128.

[91] M. Casey and M. Slaney, “Song intersection by approximate nearest neighbor
search,” in Proc. ISMIR, vol. 6, 2006, pp. 144–149.

[92] ——, “Fast recognition of remixed music audio,” in IEEE Int. Conf. Acoustics,
Speech and Signal Processing, vol. 4. IEEE, Apr. 2007, pp. IV–1425–IV–1428.

129

[93] M. Casey, C. Rhodes, and M. Slaney, “Analysis of minimum distances in high-
dimensional musical spaces,” IEEE Trans. Audio, Speech, and Language Pro-
cessing, vol. 16, no. 5, pp. 1015–1028, 2008.

[94] J. Bentley, “Multidimensional binary search trees used for associative search-
ing,” Communications of the ACM, vol. 18, no. 9, pp. 509–517, 1975.

[95] R. Weber, H. Schek, and S. Blott, “A quantitative analysis and performance
study for similarity-search methods in high-dimensional spaces,” in Proc. Int.
Conf. Very Large Data Bases, 1998, pp. 194–205.

[96] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high dimensions via
hashing,” in Proc. Int. Conf. Very Large Data Bases, 1999, pp. 518–529.

[97] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni, “Locality-sensitive hashing
scheme based on p-stable distributions,” in Proc. 20th Annual Symposium on
Computational Geometry, 2004, pp. 253–262.

[98] M. S. Charikar, “Similarity estimation techniques from rounding algorithms,”
in Proc. ACM Symp. Theory of Computing. ACM, 2002, pp. 380–388.

[99] B. A. Olshausen and D. J. Field, “Emergence of simple-cell receptive field
properties by learning a sparse code for natural images,” Nature, vol. 381, pp.
607–609, Jun. 1996.

130

	List of Tables
	List of Figures
	List of Algorithms
	List of Abbreviations
	List of Symbols
	Introduction
	Motivation
	Dissertation Outline
	Constrained Dictionary Learning
	Spectral-Temporal Musical Instrument Recognition
	Approximate Matching Pursuit

	Constrained Dictionary Learning
	Harmonic Constraints
	Problem Formulation
	Dictionary Learning: Existing Methods
	Proposed Algorithm
	Experiments

	Co-occurrence Constraints
	Problem Formulation
	Proposed Update Rules
	Experiments

	Summary

	Spectral-Temporal Instrument Recognition
	Representations of Timbre
	Nonnegative Matrix Factorization
	Multiresolution Gamma Filterbank
	Proposed Feature Extraction and Classification
	Experiments
	Isolated Sounds
	Feature Vector Classification of Solo Melodic Phrases
	Signal Classification of Solo Melodic Phrases

	Discussion
	Summary

	Approximate Matching Pursuit
	Related Work
	Problem Formulation
	Proposed Algorithm
	Locality Sensitive Hashing
	Experiments
	Learning Curves
	Phase Transition Diagrams
	Noise Robustness
	Computational Complexity

	Music Transcription
	Dictionary Construction
	Examples

	Summary

	Conclusions and Future Work
	Conclusions
	Future Research

	Pursuit Algorithms
	Bibliography

